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Abstract

Paradigms for substance abuse cue-reactivity research involve short term pharmacological or
stressful stimulation designed to elicit stress and craving responses in cocaine-dependent subjects.
It is unclear as to whether stress induced from participation in such studies increases drug-seeking
behavior. We propose a 2-state Hidden Markov model to model the number of cocaine abuses per
week before and after participation in a stress- and cue-reactivity study. The hypothesized latent
state corresponds to ‘high’ or ‘low’ use. To account for a preponderance of zeros, we assume a
zero-inflated Poisson model for the count data. Transition probabilities depend on the prior week’s
state, fixed demographic variables, and time-varying covariates. We adopt a Bayesian approach to
model fitting, and use the conditional predictive ordinate statistic to demonstrate that the zero-
inflated Poisson hidden Markov model outperforms other models for longitudinal count data.
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1. Introduction

Human laboratory paradigms for examining stress- or cue-reactivity in substance-dependent
individuals often involve exposure to short-term pharmacological, social, or physical
laboratory-based procedures or drug paraphernalia [1, 2, 4, 5, 6]. Although these studies are
designed such that risks associated with participation are not outweighed by the importance
of knowledge to be gained (e.g., improving treatment of future patients with drug
dependence), stress contributes to drug-seeking behavior and increased risk of relapse [7, 8].
In particular, in an effort to determine underlying biological mechanisms of relapse among
cocaine-dependent individuals, it has been shown that stress-related increases in cue-elicited
craving result in a shorter time to drug relapse [9]. As minimizing risks to human subjects
participating in clinical research is of paramount importance, we seek to determine whether
participation in a clinical research study designed to induce stress and craving alters drug
seeking behavior among cocaine-dependent individuals.

The DSM-IV symptoms[10] of substance dependence include the need for increasing
amounts of the substance to maintain desired effects, withdrawal if drug-taking ceases, and a
great deal of time spent in activities related to substance use [11]. Due to the detrimental
impact of these behaviors, it is important to ensure that they do not increase after study
participation as a result of study procedures. Consequently, ethical issues in substance abuse
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research have been widely studied, mainly with respect to coercion, ability to consent, and
the influence ofmonetary reward on drug-seeking behavior [12, 13, 14, 15]. Using Time-
Line Follow-Back (TLFB) data[14], compensating cocaine-dependent participants with cash
did not result in increased rates of cocaine use during a one-month follow-up period. In fact,
compensation has been shown to double the abstinence rate in smoking studies [16]. In an
outpatient cocaine cue-reactivity study[17], 90% of patients had the same urine test results
before and 3 days after cocaine cues, thus no detrimental effect was observed in patients
immediately following testing. But to date, none of these studies have provided insight into
longitudinal drug using behavior as a response to participation in non-treatment outpatient
clinical research. As a result, it is still unclear whether participation in laboratory paradigms
that invoke stress or craving could increase drug-seeking behavior or relapse among
individuals with substance use disorders.

The motivating data for this paper come from an experiment performed on 45 cocaine-
dependent participants that consist of daily diaries of cocaine use collected using the method
of TLFB. In a study of alcohol abuse, [18] discuss why simple summary statistics are not
adequate for modeling such self-reports of use over time. Such problems have also been
discussed with respect to commonly used summary statistics in drug abuse [19]. For
example, one commonly used summary variable, average dollar amount used per using day,
does not differentiate from one person who uses moderately throughout the week and
another who binges only on the weekend. The variable percent days used does not
differentiate between light and heavy cocaine use. Another commonly used summary
variable, time to relapse, is subject to censoring as a result of dropout and also requires a
definition of relapse. Due to the loss of information in these summary measures or the
introduction of censoring, which requires the use of survival analytic techniques, it is
optimal to model the observed data at higher resolution, i.e., via daily or weekly
observations, as opposed to one dimensional summary statistics. This will allow us to utilize
the full data to model substance use longitudinally over many times points and will also
enable us to make patient-specific predictions about drug abuse.

As drug-seeking behavior may be erratic due to various factors such as variable access to
illegal drugs, social stigma, knowledge of impending drug testing and cost, it can be difficult
to model serial drug use using standard longitudinal models for correlated data, such as
linear mixed models. In particular, these high-dimensional serially correlated TLFB counts
exhibit zero-inflation (ZI), are overdispersed, and dependent on possibly time varying
covariates. The analytic challenges are summarized here:

1. Atthe top of Figure 1 is a chromatic plot of weekly drug use for the 45 cocaine-
dependent patients enrolled in the above-mentioned study. The figure demonstrates
a preponderance of zeros in that there are many days on which participants do not
use cocaine. In addition, overdispersion is evident in these data in that the variance
of the weekly counts increases faster than the mean count, violating the Poisson
assumption.

2. We observed 16 weeks of serially correlated counts. Raw data auto- (and partial)
correlations are shown in Figure 2 for 20 randomly chosen subjects.
Autocorrelation is evident up to a potential time lag of 2 weeks for most of the
subjects. Standard longitudinal methods such as generalized linear mixed models
(GLMM) typically only handle a small number of time points because of the
increase in the number of parameters required to explain the correlation structure.
Typically in substance abuse studies, it is believed that the drug intake activity of a
subject in a particular week might be highly dependent on the intake in the previous
week (or weeks). This may not be readily handled using a random effects structure
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in the model or a multivariate structure for the response. Hence, there is a need to
explore more sophisticated models assuming an alternative dependence structure.

3. Figure 1 (top) clearly demonstrates the sometimes erratic abuse patterns observed
in cocaine-dependent populations. This may result in periods of consistent low
level, or no use, punctuated by bursts of increased usage. Participants may use
several times in one day or zero times in one week. This may result in several
‘outlying’ observations that we do not want to drive inference, however should be
accounted for.

The preponderance of zeros problem in statistical modeling is well-recognized in the
biomedical literature [20, 21, 22, 23, 24, 25] and in drug and alcohol consumption literature,
in particular [26]. Here, commonly used Poisson regression models can underestimate the
zero-count probability and hence make it difficult to identify significant covariate effects
[27]. The zero-inflated Poisson (ZIP) regression model[28] is very useful for modeling those
excess zeroes that cannot be explained by a Poisson distribution. Thus, we assume that
weekly counts arise from a ZIP distribution [29].

To analyze the discrete time series at a high resolution, mitigate the effects of outliers, and
account for measurement error inherent in self report, we propose a 2-state heterogeneous
Hidden Markov Model (HMM) to reflect underlying, unmeasurable states of substance
abuse. For each subject at each week, we hypothesize two underlying latent states
corresponding to ‘high use’ and ‘low use’. These surrogate states have no predefined
meaning or value, they are merely representations of frequency of use. Such latent
constructs have been previously proposed to answer similar questions in the drug, alcohol,
and psychiatry literature. For example, [30] analyzed binary longitudinal cocaine use
outcomes using Markov transition models, [31] considered existence of an underlying
healthy or unhealthy state based on the frequency of alcohol-related hospital visits, [18]
hypothesized three underlying drinking states representing no drinking, light drinking, and
heavy drinking based on daily usage data to analyze a longitudinal clinical trial of alcohol
use disorders and [32] modeled underlying health states of schizophrenic patients in a
longitudinal drug treatment study of just four time points. The common theme among all of
these studies is the desire to model health status over time at an individual level. Similar
approaches have also been proposed for the analysis of longitudinal count data in other
biomedical applications, e.g., [33, 34].

In this paper, we adopt a Bayesian approach for the proposed HMM for ZIP counts because
of its simplicity of exposition and ability to incorporate prior information in the presence of
a large number of covariates that might potentially influence the ZI phenomenon. Although
there is an artificial upper bound on the counts (due to data collection methods) for our
motivating data, in general the number of uses in a week has no upper bound. In most
substance use studies (in particular alcohol data), the fact that there is no upper bound
underscores the need for accommodating zero inflated counts rather than zero inflated
events/successes (e.g., through a zero inflated binomial, or ZI-BIN model). In the
Discussion, we compare our fit to that obtained if the ZI-BIN were used and show that there
is negligible difference in terms of prediction and mean squared error. Bayesian estimation
relies on the MCMC[35] techniques for parameter estimation and is straightforward to
implement in existing software, like WinBUGS. We assume that the probability of
transitioning between states for a particular person in a given week depends on the prior
week’s state, as well as fixed demographic variables and time-varying covariates, such as
participation in the clinical study. The main research question is whether study participation
alters drug seeking behavior. This question motivates the use of a change point model[36],
as does the clear drop off in average weekly use at week 12 (study participation) shown in
Figure 3. Further motivation for a change point will be discussed in Section 3.

Stat Med. Author manuscript; available in PMC 2012 June 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

DeSantis and Bandyopadhyay Page 4

The remainder of the paper proceeds as follows. Section 2 provides a description of the
motivating data. The HMM model for ZIP counts, along with competing models, is
introduced in Section 3. Section 4 provides the estimation method using the Bayesian
paradigm and issues related to prior specifications, model selection and goodness-of-fit.
Section 5 presents results from model comparisons and summarizes the findings from data
analysis. Discussions and future extensions are relegated to Section 6.

2. Cocaine Data

The 45 participants in this study were part of a larger, non-treatment study examining the
relationship between stress reactivity, hypothalamic-pituitary axis functioning, and cocaine
dependence. Participants were recruited in South Carolina via newspaper and other media
advertisements. Following baseline assessment, participants underwent an overnight stay at
the General Clinical Research Center (GCRC) at the Medical University of South Carolina
where they were exposed to pharmacological and psychosocial laboratory stress tests.
During the two-day hospital stay, three tasks were conducted: 1) the Trier Social Stress
Task, 2) a pharmacological provocation (through administration of corticotrophin releasing
hormone), and 3) a drug cue exposure paradigm (i.e., drug paraphernalia and a video
depicting cocaine use). Before, during and after each stress task, neuroendocrine (e.g.,
cortisol) and physiologicalmeasures (e.g., heart rate) were obtained along with subjective
reports of stress and craving. These data have been published in [38] who demonstrated the
ability of these tests to elicit substantial subjective stress, craving, as well as physiological
responses immediately after testing. Participants with elevated craving following testing
procedures were required to stay in the hospital until craving subsided, and all participants
were provided with resources for treatment programs in the community prior to discharge.
Participants were discharged 2 hours following the last test and a follow-up visit was
conducted 30 days after discharge during which participants were asked to provide detailed
information about drug use since the testing. It was shown that in this cohort, increased
stress reactivity was strongly associated with an increased risk of cocaine relapse [3]. The
Structured Clinical Interview for DSM-1V was used to diagnose cocaine dependence [11]
and the TLFB as described in Section 1 was used to assess the dollar value and frequency of
cocaine use approximately three months before and one month after the study. This method
has been show to provide accurate assessments of use in cocaine-dependent subjects [39].
Historical data were complete in all 45 subjects while follow-up data were missing on
average, less than 10% of days. The mean [range] age in the study was 38 [20-53]. In
addition, 44.4% were female, 46.7% were African American, 45.5% were employed, 54.5%
attended some college, 80.0% were smokers, and 33.3% were married. Top panel of Figure
1 displays the TLFB daily usage for the 12 weeks prior to and 4 weeks after completion of
the 2-day stress and cue-reactivity study.

3. Statistical Models

3.1. ZIP Hidden Markov Model for Poisson Counts

ZIP models are appropriate when the data exhibit overdispersion due to excess zeros as
compared to a Poisson distribution. The total set of zeros in the data is a mix of ‘sampling
zeros’ (those generated from the underlying Poisson process) and “structural zeros’ (the
remaining zeros that are not originating from any process). This distinction relies on the
result of a Bernoulli trial to dichotomize the study population into two sub-populations, viz.
the low-risk group having the structural zeroes, and the high-risk (normal) group whose
counts arise from a Poisson process [40]. This attractive feature naturally divides the total
set of zero responses in the study population into the high and low risk subgroups. In the
current study, such risks may depend on a variety of demographic variables.
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We first present a heterogeneous zero-inflated Poisson HMM (ZIP-HMM) with subject-
specific random effects that allows counts to move through the state-space according to
covariate-specific transition probabilities, assuming a logit model for each row of the hidden
state transition matrix. In the following, let Z;; represent the observed weekly drug use count
and let the binary variable S;; denote the latent abuse state, which can take on two discrete
values corresponding to high or low use, where i denotes patient and t denotes week; i = 1,
., Nandt=1, ..., T. Xjand X1 gr;; are the design matrices, representing fixed and possibly
time-dependent covariates and treatments respectively. Note that there were no actual
treatments administered in this particular study; the term “treatment” simply refers to
participation in the study, which is the main effect of interest in order to assess patient
safety.

To develop the model, let Sj; represent the “latent’ state of a two-state discrete time Markov
chain where S;j; = 1(0) denotes the high (low) use state. The ZIP-HMM model can be written
as

0 W.P-Ti,
Poisson (6;;) w.p.l1 —mj; )

(Zit[Sir) = {

with log(@it) = {hoi + MiSit—1}, Where Ag; and A4; are subject-specific random intercept and
log ratio of the means in the high and low states for a given subject, respectively. For
interpretation, exp(Loj) and exp(Xgi + A1j) denote the mean number of days used per week in
the low use group and high use groups respectively. Now, Zj; = 0 could represent either a
structural zero (with probability ;) or a sample zero (with probability 1 — z;j;), where zj; is
allowed to depend on covariates. The subscript i on the Poisson mean parameter allow for
intra-subject heterogeneity[34]. We assume that given S;j; = 1, the observed count Z;; follows
a Poisson distribution with

20, S =1, Xie, X,y ) =m0
f( itl6irs S =1, Xit, TRT’.,)-E" it @)

where each unobserved binary T x 1 random vector (Sq, ..., Sy) follows a 2-state discrete
time hidden Markov chain with transition probabilities defined as

p?fO = P(Sl'f:OlSi,t—lzos Xif7 XTRT,',)
Py’ = PSi=11Si1=0, Xiv, Xy )
P?,l = PSa=0lSi1=1, Xit, X, 7. )

Pyt = PSu=US 1=, X X)) -

fort=2, ..., T. Thus, the transition probability between two states at time t depends on the
subject’s state at time t — 1, fixed and time varying covariates Xj;, and time varying
treatment X1 gr;;- This dependence is clarified by writing the probability in terms of a
logistic regression on the latent state,

15 ir—1) =
iy “V=logit™ (Bo+B1S i1 +Ba Xi+ B3 Xy ). @

For the current example, this probability represents the probability of transitioning to or
remaining in the high use state given the covariates. The initial values, Sj1, fori=1, ..., N,
are modeled as independent and identically distributed draws from a Bernoulli distribution
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with initial probability, pg. We allow observed covariates (and possibly unobserved states,
although not in this exposition) to predict the probabilities of the zero inflation phenomenon.
This dependency is of interest as it allows us to identify low risk subgroups based on the
covariates. Thus,

logit(my|Yi)=ao+a1Yin+---+a,Y,, (5)

where Yiy, ..., Yj; g are a set of J covariates that may or may not overlap with Xj; in (2) and
op is an intercept. Rather than assuming all covariates are predictive of this process, we
instead prefer to discriminate from a potentially large list of variables to avoid over-
parameterization. To identify a subset of the J covariates that are useful in predicting the
zero inflation process, we consider an informative double exponential (DE) prior (also called
a Laplace prior) on the coefficients in Equation 5. Such priors are frequently used for
variable selection in regression to give the Bayesian estimates of the lasso [41]. How well
the parameter is differentiated from zero will determine how well that variable is predictive
of the zero state. Prior selection will be discussed further in Section 4.1.

3.2. Other Hidden Markov Models

Addition of subject-level random-effects in a HMM framework is a natural extension[34]
that accounts for other intra-subject heterogeneity. The random effects that we specify
accommodate the individualized nature of the diagnosis of cocaine dependence by giving
the underlying latent variable a subject-specific definition. We compare our ZIP-HMM to a
model without zero inflation [31] and with and without random effects. The ‘Wall and Li’
model[31] assumed that Zji®t, Sit, Xit, Xt rT;; IS Poisson distributed, i.e.

~ 1 —0ir it
P(Zilbir. S it Xits X gy, ) =— €6 ©
it -

where 0 = log(Ag + A1S; t—1) where transition probabilities between hidden states are
defined as in Equation 3. This model[31], originally conceived to assess outpatient alcohol-
related hospital visits, is not directly applicable to modeling illicit drug use due to the erratic
nature of cocaine use in our study. In addition, the diagnostic criteria for drug dependence
depend on individual behaviors and not necessarily on amount or frequency of use. For
example, although two people exhibit the same use pattern, only one person may be deemed
by DSM-1V criteria to be drug-dependent. From hereon in, we will call the “Wall and Li’
model with (without) random effects as “Wall (RE)/(no RE)’ model. Similarly, we will use
the terminology ZIP-HMM (RE) and ZIP-HMM (no RE) to distinguish the ZIP-HMM with
and without random effects.

3.3. Modeling the Time Trend After the Study

Figure 3 plots the average number of cocaine uses versus week with the overlayed LOWESS
curve for the 16 weeks of study. Study participation occurred at time, ty = 12 after which
there appears to be an immediate drop off in use. Further, fitting a simple lagged Poisson
regression with a time dependent study effect to these data resulted in a highly significant
study effect on use behavior. This motivates consideration of a semi-continuous ‘change-
point’ model[36] to model the time-dependent effect of participation on the transition
activities. A priori, we expect the effect of time on transition activity to be altered by
participation in the study and potentially allow for this trend to change as participants
become further removed from the day of participation. To provide more flexibility in
studying the nature of effects generated by the change-point, we expand on the treatment
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covariate effect in Equation 4 by including not only the binary indicator of change-point but
also associated linear and quadratic terms as,

B3X iy, =BoI(t 2 1)+, (1 = DI(t 2 1)+, (1 ~ DU > 1),

Introduction of the parameters So, A and Sq allow us to characterize the effect of study
participation and to determine whether or not it provides a lasting preventative or
detrimental impact. The change-point term I(t > t;) accommodates a sudden change in the
response profile at time tg, while the associated linear and quadratic terms determine the
trend (nature and extent) of the change and whether it dies off or not.

3.4. Nested Models

To both compare and further motivate the need for multi-state latent variables for analyzing
the data, we considered nested, or ‘1 state’ models. We fit four nested lagged models
including first and second order autoregressive (AR) and autoregressive error models[37],
all of which included the aforementioned fixed and time dependent covariates. Based on the
lag, these can be denoted AR(1), AR(2), AR(1) error, and AR(2) error models ([37, 42]. The
simple AR(1) and AR(2) include a covariate term for the count at the previous one or two
time points, e.g., ZitMj; ~ Poisson(dj) where log(6it) = yo + p1Zit-1 + v1Xit + Y2XT RTj¢ * Uits
where the errors uj; are exchangeable white noise ~ N(0,62), and Cov(u;s, Uit) = 0. The
AR(1) error model takes the form Zj; 8 ~ Poisson(6j) where log(fit) = yo + v1 Xit + Y2XT RTjt
U,
+ & Here, we let Gy =p1 Gr—1 + Ui fori=1,..Nandt=2, ..., T,and Iete”zﬁ asin
[42]. In this formulation, U; fort =2, ..., T, is assumed to be normally distributed with mean
0 and variance ¢, for which a hyperprior is specified for Bayesian inference. Consecutive
error terms are assumed correlated for the nonzero portion of the ZIP model, where the
strength of the correlation parameter p; lends insight into the autoregressive nature of the
error terms. Given the potential autocorrelation of the raw data up to time lag of week 2 as
shown by the autocorrelation plots in Figure 2, we similarly fit a second order autoregressive
AR(2) error model with an additional parameter p, of the form &; = p1 Gi—1 + p2 Gi—2 + Ut
fort=3, ..., T. We note that for a AR(p) (p'" order autoregressive) process to be stationary,
the constraint |py + p, + ... + pp| <1 must be applied.

4. Bayesian Inference

We adopt a Bayesian approach to model fitting, which requires the specification of prior
distributions for all unknown parameters. This has several advantages over a likelihood-
based frequentist approach. An Expectation-Maximization (EM) algorithm using forward
backward recursion is a viable alternative for HMM parameter estimation but is slow to
converge and requires multiple runs from several initial points in the parameter space.
Besides the ability to incorporate prior information, the Bayesian paradigm uses the Gibbs
sampler and MCMC algorithms to determine estimates of an exact posterior distribution. In
our case although the posterior distribution of the model parameters cannot be computed
analytically, this can be easily automated within WinBUGS Version 1.4.3 [43]. The code is
available upon request from the first author. We ran 2 chains with widely dispersed starting
values to assess convergence. Due to the complexity of the ZIP-HMM model which consists
of nested mixtures, parameter convergence was achieved at a relatively high burn-in size of
40,000 iterations. Discarding these burn-in samples, we monitored the posterior distribution
of model parameters over 40,000 further iterations, saving every second sample in the chain
to reduce autocorrelation in the MCMC simulation. The length of burn-in and monitoring
was determined by assessing trace and autocorrelation plots and the Gelman-Rubin potential

Stat Med. Author manuscript; available in PMC 2012 June 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

DeSantis and Bandyopadhyay Page 8

scale-reduction factor, R [44]. With these specifications, the chains took approximately 20
minutes to converge using a Windows XP, 32-bit, Dell workstation with Pentium 4, 2.40
GHz dual processors and 2G of RAM.

4.1. Prior Specification

Where variable selection was not of interest, we specified noninformative prior distributions
for the model parameters. For the HMM’s presented in Section 3, we specified the following
non-informative priors: Bo, 1, 2, Bo, PL. Pg ~ N(0,62=100). The parameters Ag; ~
Gamma(0.01,0.01) and A4; ~ Gamma(0.01,0.01), where Gamma(a, b) is the density of a

a

Gamma distribution given by fa,h(x):ﬁexp(—h")-“aﬁl. Where random effects weren’t
included, we specified A9, A1 ~ Gamma(0.01,0.01). For the ZI model, we specified fy ~
Bernoulli(zj), where zj; is as in Equation 5. In all models, the prior for the initial transition
probability was, po ~ Beta(1,1). For the AR models, we specified yo, y1, 72, 0, 7L, 7Q ~
N(0,62=100), ¢ ~ N(0,62=100). To select a subset of covariates predictive of the ZI process,
we used an informative double exponential (DE) prior, such that if § ~ DE(O, z), then the

p.d.fof gis IeXP(—T 1B for —oo < g < 00, and variance 2/z2. The DE prior was centered at 0
to reflect a skeptical view about parameter effects and requiring strong evidence from data a
posteriori to suggest otherwise. Thus for the parameters determining the zero inflation
probability, we specified ap ~ N(0,62=100) and the vector of parameters, a; ~ DE(0,1).

Another approach to identify a subset of the J covariates that are useful in predicting the
zero inflation process is to embed a “spike and slab’” mixture prior [45] to study the effect of
the covariates on the logit probabilities in Equation 5. Such priors are frequently used for
variable selection in linear and logistic regression [46]. As we already specified a ZI mixture
at the level of modeling the time series as well as a binary latent variable reflecting hidden
state, introducing another mixture might run the risk of model over-parameterization. Thus
in the interest of parsimony, we imposed an informative DE prior to achieve variable
selection.

4.2. Selecting the Order of the HMM

To determine the appropriateness of a pt" order Markovian structure for our HMM, we first
examine the raw autocorrelation function (ACF) and partial correlation function (PACF) for
each individual in the sample to visually assess the correlation at various time lags, up to a
lag of 5 (Figure 2). The plots reveal presence of a strong first order and a possible second
order dependence, however, both the correlation and partial correlation decrease rapidly
with increasing time lag of p > 3. Next, we explore several nested (i.e., ‘1- state’) models in
order to further discern the autoregressive nature of the data, as well as to motivate the need
for the assumption of a p™" order Markovian structure. The simplest model that we
considered was a lagged Poisson regression as described in Section 3.4 where we tested
several time lags. Results from this models based on posterior mean and associated 95%
credible intervals (C.1.) were consistent with the raw ACF and PACF plots, as they indicated
the need for a first and second, but not third order dependency. Finally, we fit AR(1) and
AR(2) error models to the data as described in Section 3.4 assuming a ZIP structure to
accommodate over-dispersion.

4.3. Model Selection and Assessment

We compared the four competing models discussed in Section 3, i.e., (a) theWall model, (b)
the Wall model with random effects (RE), (c) the ZIP-HMM and (d) the ZIP-HMM with
RE. We also compared these HMMs with the nested models. Although a variety of model
selection procedures exist in the Bayesian toolbox, there is dearth of any unanimous
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‘correct’” approach for model selection [44]. Thus our model comparisons are based solely
on predictive performances of competing models. If ® denotes the entire parameter space of
our model and Zp,; denotes the predictive data vector, then the posterior predictive
distribution (p.p.d) is given by:

P(zprl2)= [ p(2pr1©) p(©l2)d© @

where predictive data are easily obtained from converged posterior samples. The basis for
our model selection is the conditional predictive ordinate (CPO) statistics, a widely used tool
for Bayesian model diagnostic and assessment [47, 48, 49]. Importantly, it is useful in
evaluating model fit when the Bayesian deviance information criteria (DIC)[59] is difficult
to calculate. The CPO is calculated as a ‘leave-one-out’ cross validation predictive density.
As it provides a quantitative measure for the effect of observation i on the overall prior
predictive density, small CPO values indicate observations that are not expected under the
cross-validation predictive distribution of the current model; larger values implies that the
data point is consistent with the current model. Defining DU to be the covariate data for the
ith subject, letting D) be the covariate data for all subjects except the it subject, and
letting © represent the parameter space, it follows that the CPO statistic for the i™" subject is

CPO; = (D)
[p(i1®, D)n(@ID")de ®

where z(©ID()) is the posterior distribution of ® under the prior, z(®). Due to the lack of a
closed form solution to (8), a Monte Carlo approximation[48] for observation i can be
obtained from G iterations of the Gibbs sampler as,

G -1

CPO;=

3

1 1
EZP(Z:‘@("’))

g=1 (9)

where ©) denote the parameter samples at the g, g = 1, ..., G iteration of the Gibbs
sampler. Plots of -log(CPO;) values for i = 1, ..., N provide evidence of the predictive
performance of the competing models. Smaller values of -log(CPO;) indicate better support
for the model from observation i. To compute an overall summary measure of model fit, the

N —
log pseudo-marginal likelihood (LPML) statistic is obtained by evaluating ZiZIIOg(CPOz).
Thus, a larger LPML value indicates a better support of the model from the aggregated
observed data.

4.4. Goodness-of-Fit

The goodness-of-fit of the selected model was assessed by calculating the posterior
predictive p-values [44], which measures the discrepancy between the data and the model by
comparing a summary statistic of the p.p.d to the true distribution of the data. To accomplish
this, we calculated »2(z, #9) and y2(z¢P:(9, #9), where z"®P denote the replicated value of z
from the p.p.d at the gt iteration of the Gibbs sampler. The posterior predictive p-value is
then calculated as P(y2(z"¢P(9, 69) > »2(z, 69)), i.e. the proportion of times y2(z"¢P(9), ¢9)
exceeds y2(z, #9)) out of g = 1, ...,G simulated draws from the p.p.d. This Bayesian p-value,
as determined by the tail-area probability, measures the lack of fit of the data with respect to
the p.p.d, and is a good indication of whether the variation in the data is consistent with the
variation predicted by the model[51]. This measure can be computed within WinBUGS
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5. Results

using posterior simulations of the data and model parameters. A Bayesian p-value in the
range 0.05-0.95 indicates a reasonable fit, while a very large (>0.95) or a very small (<0.05)
p-value signals model misspecification, i.e., the observed pattern would be unlikely to be
seen in replications of the data under the true model [44].

Figure 4 is a plot of ordered -log(CPO;) statistics for three of the nested 1-state models, i.e.
the AR(1), the AR(1) error, and AR(2) error models. The AR(2) error model resulted in the
best performance of nested models. This model demonstrates consistently smaller -
log(CPO); values and a larger LPML (-1053.5) as compared to the AR(1) (LPML=-1166.4).
Further, the Cls of both autocorrelation parameters excluded the null value.

Next, we fit four second order HMM’s, i.e. (a) the Wall model, (b) the Wall model with RE,
(c) the ZIP-HMM, and (d) the ZIP-HMM with RE to the longitudinal cocaine use data.
Figure 5 is a plot of ordered -log(CPO;) statistics for each subject for each model; LPML is
also reported. While there is some overlap of -log(CPO;) values across the two ZI models,
the LPML is the largest for the ZIP-HMM with RE (LPML = -1013.3), implying that this
model provides the best predictive fit. In fact, according to the LPML and even individual
CPQ'’s, there is a clear progression of model performances, with the most basic model from
[31] without RE exhibiting the worst and stepwise improvement when incorporating RE and
a model for ZI. We surmise that as one incorporates RE and ZI, individual observations
become more consistent with the model. The residual ACF and PACF from the 2-state,
second order ZIP-HMM behaved like white noise with zero mean and constant variance,
revealing that the model fit is adequate and optimal. Compared to all HMM’s, the worst
LPML calculated was for the lagged Poisson model. This may be a result of the fact that the
HMM tempers the highly positive estimation of the time lag effect through the introduction
of a latent variable that better handles measurement error inherent in self report, and better
accommodates the natural variation in the weekly counts. Notably, for the lagged Poisson
model, the effect of the prior count on the current count resulted in a significant posterior
mean [95% Credible Interval], exp(y;) = 1.28 [1.25, 1.30]. This tight interval characterizes
the strong week to week dependency in drug using behavior. As discussed in [31], due to the
strong estimated lagged effect in the Poisson regression model, if there are a high number of
uses in a particular week, the nested model will predict a similar high number of uses in the
next week, which has a tendency to overestimate the number of uses when specific high
values do not persist. Henceforth, we present results from the ZIP-HMM with RE fitted to
our data.

The posterior predictive p-value for the ZIP-HMM model with RE was 0.36, implying that
the model is consistent with the observed data. Visual inspection of trace plots for
importantmodel parameters demonstrated a sufficient burn-in period (Figure 6).
Autocorrelation plots of important model parameters (Figure 7) up to a time lag of 20
iterations indicated that the thinning of the chains employed was sufficient. Unless otherwise
noted, results are presented as posterior mean odds ratio (OR) [95% C.1.].

As expected, due to serial autocorrelation, an individual’s prior state is significantly
predictive of their current state, thus the odds of transitioning between high and low use
states in general are low in this population. The log OR of remaining in the high use state at
time t given that the subject is in the high use state at time t — 1 is 6.46 [5.02, 8.29]. This
provides justification for considering a HMM to derive latent constructs for serially
correlated counts of cocaine use. The population ‘mean number of days use per week’ for
participants in the high use state is 3.4 versus 1.0 days in the low use state. Table 1 displays
the OR’s and 95% C.1. for covariates used in modeling the ZI and transition probabilities,

Stat Med. Author manuscript; available in PMC 2012 June 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

DeSantis and Bandyopadhyay Page 11

respectively. The odds of transitioning to or remaining in the high use state in any given
month after participation in the study was ORt gt = 0.06 [0.01, 0.19] of what it was in the
12 weeks prior to the study. As this 95% CI excludes 1, it provides evidence of a
substantially protective effect of study participation on subsequent drug use. Inversely
stated, the odds of remaining in or transitioning to the low use state after versus before the
study is 1/.06 = 16.7. This highly preventative effect of study participation on use behavior
is illustrated in the bottom of Figure 1. To construct this figure, participants were assigned to
the hidden state for which they had the highest posterior probability of membership at each
time point. The figure displays the hidden state at each time point for each participant in the
study, where black rectangles represent the high use state and white rectangles represent the
low use state. Accounting for covariate effects, the study-specific benefit (seen after week
12) in reducing drug-seeking behavior is evident by the preponderance of white rectangles in
the figure.

As there were too few weeks after the study to capture a quadratic time trend and the 95%
C.1. did not exclude 1, the quadratic term was dropped from all models so as not to
obfuscate the effect of other treatment covariates, TRTg and TRT . Estimates for linear
trend implies a linear increase in the odds of remaining in or transitioning to the high use
state after participation in the study (ORt gy, = 1.94 [1.28, 2.92]). We do note however that
the posterior mean treatment effect is so strong that even by the fourth week after the study
ended, participants do not rise up to their pre-study odds of transitioning. Another way to
quantify the effect of participation on transition behavior is to observe the posterior
distribution of relevant transition probabilities, p1; and p1g. These distributions illustrate the
probabilities of remaining in the high use state, and transitioning to the high use state,
respectively. In Figure 8, the distributions are plotted for 3 representative subjects in the
dataset, before (solid) and after (dashed) participation in the study. It is clear from both sets
of transition distributions p11 and pg that the probability of remaining in or transitioning to
the high use state decreases markedly after participation in the cue reactivity study. Of
greatest note is that participants are much less likely to remain in the high use state after
study participation than they were prior to study participation, thereby illustrating the strong
effects of study participation on use behavior. The remainder of the subjects demonstrated
very similar profiles.

As the 95% CI for gender, age and smoking status excluded the null value of 1, these
covariates are predictive of whether observations arise from the zero process. Gender (OR =
20.00 [2.88, 90.00]), smoking (OR = 12.51 [2.13, 100.03]) and age (OR=0.29 [0.10, 0.69])
are all predictive of structural zeros and hence males, smokers, and younger participants are
among the low risk subgroup. Although from a substantive point of view, it might seem
nonintuitive that males and smokers are less likely to abuse cocaine, this finding is
consistent with empirical observations of these data. For example, men used cocaine an
average of only 37 days while women used an average of 44 days during the 112 day study.
Similarly, smokers used cocaine an average of only 38 days while nonsmokers used an
average of 47 days. When reporting covariate effects, it is important to note that this was an
observational study with a limited sample size that resulted in some imbalance in covariates/
risk factors in the sample. For example, 80% of participants were smokers (as is common in
studies of substance abuse), which unfortunately limits inference for this covariate.

We note that while these covariates were predictive of structural zeros, no covariates
meaningfully influenced the odds of transitioning between states, as all 95% CI included 1.
This was not the case for the Wall model, i.e., when ZI was not explicitly modeled. Results
from fitting the Wall model (with or without RE) indicated that both age and smoking had
an effect on the odds of transitioning, but the ZIP-HMM model demonstrated that these
covariates are actually more predictive of the zero process, i.e., they identify low-risk
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subgroups. This comparison underscores the fact that ignoring ZI can underestimate the
zero-count probability and hence make it difficult to identify important covariate effects.

For the purpose of describing the effect of the non-treatment study on cocaine abuse, we a
priori defined a “full study effect’ as being assigned to the high use state for all four weeks
immediately before the study, but for zero weeks after the study. According to the model, 19
(42%) participants actually exhibited a full study effect. Moreover, the bottom of Figure 1
demonstrates that most participants evidenced a beneficial effect of participation in the
study, while only a few had no obvious change in pre-study behaviors.

Finally, a sensitivity analysis to prior variance specification was performed. Results were
not sensitive to more noninformative (larger than 100) choices of the variance of the normal
priors, as measured by posterior state memberships for each individual at each time point as
well as posterior mean parameter estimates for fixed effects. Results were also not sensitive
to the order of the HMM. To justify the need for a set of subject-specific random effects (as
suggested by a reviewer), we plotted the marginal posterior distribution of the random
parameter Aq;, for 16 random subjects in Figure 9. The posteriors vary considerably across
subjects and hence conditioning on this parameter is essential to accurately characterize
average using behavior.

6. Discussion

The goal of this study was to determine whether participation in a non-treatment outpatient
clinical study is protective or detrimental in terms of frequency of follow-up drug use among
cocaine-dependent participants and to determine relevant demographic predictors of use
parameters. This question is of ethical importance to researchers enrolling drug-dependent
individuals into studies where they will be exposed to pharmacological and social stressors.
It is also of interest from a treatment standpoint in that increased awareness resulting from
participation alone may affect substance using behavior.

The top panel of Figure 1 demonstrates that there are clear subpopulations of cocaine users,
including those who consistently abuse cocaine less frequently throughout the study, yet
who stillmeet the criteria for cocaine-dependence. This preponderance of structural zeros, as
well the lack of fit of the HMM with the standard Poisson structure for the discrete time
series, is the motivation for the current paper. The HMM presented here is a natural way to
derive an underlying use state. It accounts for ZI in the number of cocaine uses per week,
allows for measurement error between the self reported events and underlying latent states,
and mediates the effect of outlying observations. This novel formulation extends previously
proposed HMM for alcohol abuse introduced in [18, 31] by considering a random effects
HMM for ZIP counts of weekly drug use, with skeptical prior assumptions on the zero-
generating process. This approach improves substantially upon commonly used nested 1-
state models, which are much less sensitive in detecting weekly variations when high or low
values do not persist in the data. In addition, we presented a basis for model comparison
motivated by Bayesian arguments via CPQO’s. Results of fitting the ZIP-HMM showed that
participation in the study was highly protective against transitioning to the high use state. In
fact, if our hypothesized latent variable is to be believed, then our observed post-study
‘response rate’ of 42% mirrors abstinence rates reported following treatment for cocaine
addiction [52, 53, 54]. An investigation into whether a 3-state HMM is appropriate for these
data (as suggested by a reviewer) resulted in erratic and non-convergent MCMC chains,
implying that the 3-state HMM introduces issues of over-parameterization and consequent
parameter non-identifiability for fitting our moderate sample of 45 subjects. Finally, we
compared our findings to a model that assumes a ZI-BIN structure for the longitudinal data
using expected root mean square prediction error (ERMSPE) defined by
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_ P, V\"
ERMSPE=E {{Zir(z" Z) } Zit| \here, 7! denote a replicate of the observed Z;

obtained from the p.p.d (7), the summations are taken over all observations and the
expectations taken over the full posterior of all model parameters. The ERMSPE for the ZIP
is very close to the ZI-BIN model (1.77 versus 1.71) indicating that the Poisson model
provided an adequate approximation to the underlying Binomial structure.

There are several potential explanations for these observed findings. As people enter a
clinical study, assessments are collected and self-monitoring of behavior often leads to a
behavioral change. It has been demonstrated that self-monitoring alone can significantly
influence behavioral change leading to weight loss in obesity [55] and decreased smoking in
non-treatment seeking smokers [56]. We also speculate that drug-dependent individuals
willing to enter a study (even a non-treatment study) may be implicitly expressing
willingness to change or examine their drug use behaviors. Finally, the safe environment and
motivational materials provided by the clinic may encourage therapeutic behaviors among
participants.

There are several possible directions for future research. Firstly, the paper addresses
frequency rather than quantity of use. There is active debate in the substance use literature
over which measure, frequency or quantity, is more appropriate when trying to define
‘relapse’[57]. The ability to jointly model frequency and quantity in order to inform relapse
would be an important contribution to the literature. Secondly, rather than allow the change-
point in the logistic regression on the transition probabilities to occur at a fixed time point,
we could treat the change point in a time series as an additional random node in the
Bayesian model [58]. In this model, inference for the regression coefficients would reflect
prior uncertainty about the location of the change point. Our findings would be further
validated if the posterior mean of the change point parameter coincided with the timing of
study participation. Third, while the conditional predictive ordinate is motivated by
Bayesian arguments, the deviance information criteria (DIC) is more commonly used for for
Bayesian model selection because it measures model complexity in terms of the Kullback-
Liebler distance [59]. The DIC was not applied here because it is notoriously difficult to
calculate for mixture models; [60] discuss these limitations and propose alternatives. These
limitations were also discussed specifically for HMM in high-dimensional settings [46]. An
alternative DIC that is more appropriate for mixture HMM can be considered in future
research on model selection.
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Figure 1.

The top plot displays the matrix of weekly drug use counts for each participant in the study.
White represents 0 days of use and shades of gray represent gradations in use. The bottom
plot displays membership in the hidden state derived from posterior probabilities. White
rectangles represent the low use state and black rectangles represent the high use state.
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Figure 2.
Raw data autocorrelation (ACF) and partial autocorrelation (PACF) plots for 12 randomly
chosen subjects.
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Figure 3.
Averaged raw cocaine use data for the 16 weeks of the study. Curve represents the loess fit.
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Figure 4.

Relative model fits of nested models based on -log(CPO;). The value in parenthesis is the

LPML (larger is better).
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Figure 5.

Relative model fits of the 2-state hidden Markov models based on -log(CPO;). The value in
parenthesis is the LPML (larger is better).
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Figure 6.
Traceplots of some important parameters from the 2-state ZIP-HMM model showing
adequate mixing of the MCMC chain.
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Autacormlaion

Austcormlaion

Austrcormlaion

Autocorrelation plots from the 2-state ZIP-HMM model for various time lags showing
adequate thinning of the MCMC chain occurs with every 2 draws.
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Figure 8.

Posterior density of probability of remaining in the high use state (p1) and probability of
transitioning into the high use state (p1) before (solid) and after participation in the study

(dashed)
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Posterior distributions of random parameters A4
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Table 1

Odds ratios and 95% credible intervals illustrating the odds of zero inflation, and the odds of remaining in or
transitioning to the high use state obtained from fitting the ZIP-HMM.

Variable (Zero Process)  Posterior Mean Odds Ratio  95% Credible Interval

Gender(M:F) 20.0 2.88,90.00
AgeT 0.29 0.10, 0.69

Race (AA:White) 441 0.81, 80.16
Smoker (Y:N) 12,51 2.13,100.03

Variable (Transition Probabilities)

TRTo 0.06 0.01, 0.19
TRT, 191 1.30, 2.87
Gender(M:F) 0.76 0.25, 2.44
Aget 167 0.91,3.15
Race (AA:White) 1.43 0.47, 4.66
Smoker (Y:N) 0.51 0.17,1.52

*
95% Credible Interval excludes 1

TOdds ratio for a 1 standard deviation increase

AA = African American race
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