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Abstract
Background and Purpose—Functional tissue engineering of the gastrointestinal (GI) tract is a
complex process aiming to aid the regeneration of structural layers of smooth muscle, intrinsic
enteric neuronal plexuses, specialized mucosa and epithelial cells as well as interstitial cells. The
final tissue engineered construct is intended to mimic the native GI tract anatomically and
physiologically. Physiological functionality of tissue engineered constructs is of utmost
importance while considering clinical translation. The construct comprises of cellular components
as well as biomaterial scaffolding components. Together, these determine the immune-response a
tissue engineered construct would elicit from a host upon implantation. Over the last decade,
significant advances have been made to mitigate adverse host reactions. These include a quest for
identifying autologous cell sources like embryonic and adult stem cells, bone marrow-derived
cells, neural crest-derived cells and muscle-derived stem cells. Scaffolding biomaterials have been
fabricated with increasing biocompatibility and biodegradability. Manufacturing processes have
advanced to allow for precise spatial architecture of scaffolds in order to mimic in vivo milieu
closely and achieve neovascularization. This review will focus on the current concepts and the
future vision of functional tissue engineering of the diverse neuromuscular structures of the GI
tract from the esophagus to the internal anal sphincter.
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1. Introduction
The gastrointestinal (GI) tract is a structurally complex hollow organ that displays diverse
motility patterns to perform a variety of functions that aid ingestion, digestion, absorption of
nutritive elements and excretion of waste. GI motility is a result of chemical and electrical
interactions between smooth muscle, intramural innervation, interstitial cells and mucosal
epithelial layers. This innate anatomical and physiological complexity dictates the
requirement for a multi-disciplinary approach to regeneration of functional tissue
replacements.

Anatomic complexity is recreated by engineering biomaterial micro-environments with
characterized porosity and stiffness. Remodeling of the scaffold occurs upon cellular
seeding according to the microenvironment, thereby dictating the functionality of the final
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bioengineered product. The primary goal of tissue engineering is to manufacture/engineer a
physiological functional replacement tissue, using materials with appropriate biologic
activity and biodegradability. Various strategies, including flow/perfusion or mechanical
conditioning, are employed to maximize the functionality of the engineered “replacement
tissue” before implantation. Although the flow of the process is fairly logical, there are
multiple hurdles involved in each step. Figure 1 shows a schematic representation of the
complexity involved in intestinal tissue engineering.

This review will focus on the multiple approaches used to reconstruct the neuromusculature
of the gut, classified under the following functional segments: esophagus, stomach, small
intestine and colon that are interspersed with “sphincters” – closure zones that prevent
backflow and reflux. These sphincteric regions include the lower esophageal sphincter
(LES), pyloric sphincter, and the internal anal sphincter (IAS). Table 1 summarizes different
GI neuromuscular disorders that could directly benefit from intestinal tissue engineering.

2. Challenges in Intestinal Tissue Engineering
2.1 Cell Source & Proliferation

The first hurdle in bioengineering any tissue is the cell source. Due to the complexity of the
gut, procuring cells of multiple phenotypes remains a challenge. Many individual types of
cells need to be isolated by enzymatic dissociation of a single full-thickness biopsy. In this
process of identifying a cell source, one also has to pay heed to the challenge of expansion
of these cells to adequate numbers. Biopsy of native gut may not be an efficient source of
highly proliferative cells. Therefore, cell expansion of isolated intestinal smooth muscle
cells, enteric neuronal and glial precursor cells, interstitial cells of Cajal, or epithelial cells is
an on-going challenge in intestinal tissue engineering.

Tissue engineered replacements can be autologous, heterologous or allogenic. The cellular
component as well as the material component of the tissue engineered construct contributes
to its biocompatibility and its immunogenicity. Advancement in our understanding of
immunology has led to various immune-suppression and immune-tolerance treatments for
patients receiving xenografts. However, this prospect of eliciting an adverse host immune
response has driven regenerative medicine towards acquiring autologous cell sources.

The quest for autologous cell sources led to the discovery of populations of tissue-resident,
organ-associated adult stem cells (1). Recent reports suggest that bone marrow-derived cells
can be used for vascular and bladder smooth muscle regeneration by manipulating the
soluble factors in their growth medium (2-4). This is an optimistic step towards producing
tissue engineered smooth muscle from autologous bone marrow-derived cells. Multiple
populations of muscle derived-stem cells have been identified with evidence of self-renewal
and multi-lineage differentiation capabilities (5, 6). These cells have displayed the ability to
differentiate into myotubes as well as smooth muscle phenotypes (7).

Neuronal progenitor cells have been identified to reside within both the central nervous
system as well the enteric nervous system in embryonic as well as post-natal rodents and
humans (8). Neural crest-derived stem cells have been shown to persist through adult
development (9) and are a potential source of autologous neuronal cells required to re-
engineer the gut neuromusculature (10). Advances in cell culture techniques have allowed
the isolation of enteric neuronal and glial progenitor cells by cell sorting that express
markers such as Ret and p75 (11). A recent report by Kulkarni et al. focuses on nudging
CNS-derived neuronal progenitor cells into an enteric phenotype by culturing them in the
presence of gut derived soluble factors (12). Metzger et al. (13) also demonstrated the
reliable and reproducible isolation of enteric neuronal progenitor cells from adult human gut
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up to 84 years of age. These cells demonstrated the ability to differentiate into a number of
mature enteric neuronal subtypes. Thus, advances in cell culture techniques have expanded
the pool of available cells for autologous intestinal tissue engineering.

2.2 Biomaterials
Cells cultured within a three-dimensional environment demonstrate better cell-cell contact.
The cellular microenvironment mimics in vivo milieu more closely. Tissue engineering aims
to re-engineer this environment using multiple approaches, including the use of porous
biocompatible scaffolds or spinner flasks maintained in bioreactor cultures. Biomaterials act
as a surface to direct cell-cell interactions. They support the adhesion, proliferation and
differentiation of cells seeded on to them. Scaffolding substances are typically polymeric
biomaterials that are either bioinert or are adequately biodegradable. Many biomaterials
have been widely used in tissue engineering applications for decades. Porous three-
dimensional scaffolds provide a matrix for seeding a high density of cells to promote
reorganization into a functional tissue. During this process, the cells secrete and deposit their
own extra cellular matrix, while the biomaterial degrades ideally into non-toxic products.
Biodegradable materials or bioinert materials are chosen depending on the end objective of
the tissue engineered construct (14). Biodegradable materials need to provide adequate
mechanical support until remodeling by cellular components over time can support the
engineered structure structurally and mechanically. Ideally, when neuronal and muscular
ingrowth and mechanical activity are required, biodegradable materials that degrade slowly
over time while being replaced by cellular extracellular matrix are preferred. Moreover,
bioinert materials prolong the body's exposure time with the biomaterial, which may trigger
an inflammatory or foreign body response due to its permanent presence (15, 16).

Factors to keep in mind while designing scaffolds for intestinal tissue engineering are: i)
mechanical properties of the scaffold itself; ii) porosity to promote gas and nutrient
exchange; iii) degradation rates and iv) biocompatibility with respect to adhesion,
proliferation as well as host-immune response (14, 16). Commonly used biomaterials for
intestinal tissue engineering have been naturally derived materials (collagen scaffolds,
small-intestinal submucosa derived scaffolds) or synthetic polymer based scaffolds (poly-L-
lactic acid, poly glycolic acid (PGA), poly ε-caprolactone, etc.).

While designing scaffolds for smooth muscle, the end objectives are to provide the cells a
microenvironment that specifically permits the following: i) maintenance of a contractile
phenotype; ii) formation of cellular syncytium connections; and iii) directional self-
organization.

Overall function directly translates from the structural cellular alignment as well as the
maintenance of the contractile muscle phenotype. The template scaffold must permit circular
smooth muscle of the gut to concentrically align in syncytium and form a hollow tube that
can contract to propel luminal contents. Similarly, the scaffold must also allow the
alignment of longitudinal smooth muscle in parallel sheets orthogonal to the circular smooth
muscle layer. Scaffold chemistry and mechanical properties highly influence self-
organization and regeneration of functional smooth muscle (17).

2.3 Challenges in Vascularization
Vascularization is the limiting step in the survival of a tissue engineered construct. It
determines the optimal size and porosity of the scaffolding backbone. Neovascularization of
implanted de novo re-engineered tissues remains a challenge to the success of tissue
engineering constructs. Generation of vasculature is key to the survival of implanted tissues
in vivo, because oxygen diffusion is limited to ∼200μm in tissues. Beyond this limit,
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vascular in-growth is required to facilitate nutrient exchange and survival. Lack of vascular
in-growth into the thickness of engineered tissue will result in hypoxia, necrosis and loss of
viability and subsequently functionality.

Prevascularization, either in vivo or in vitro, has been a commonly used strategy. Tissue
engineered grafts are often initially implanted into a region with an artery suitable for
microsurgery like the omentum for in vivo prevascularization. Alternately, tissue engineered
grafts are often combined with endothelial cells that form pre-vascular structures in order to
speed up vascular in-growth upon implantation (18-20). For the regeneration of complex
tissues with multiple layers, like GI neuromuscular structures, thicker tissues will require
more extensive vascular networks to provide nutrients to every cellular layer.
Prevascularization provides the advantage of providing a vascular network-ready tissue
engineered construct that can be readily perfused upon implantation, although an additional
surgical step is often involved. Moreover, prevascularization offers a distinct advantage only
when anastomosis to the host vasculature is available at the final site of implantation for
ready perfusion (21, 22).

Delivery of angiogenic growth factors, like FGF-2, VEGF, TGF-β and more recently PDGF-
BB (approved by the FDA), promote mobilization and recruitment of endothelial cells as
well as stabilization of newly formed vessels (23). Delivery is achieved either by the use of
micro-osmotic pumps, polymeric carrier systems, growth factor loaded collagen
microspheres or even adenoviral vectors that stimulate the secretion of growth factors in
situ. Polymeric carrier systems can have precisely defined spatio-temporal release patterns
to locally deliver a cocktail of angiogenic growth factors to tissue engineered grafts (24).
Collagen microspheres encapsulating FGF-2 have been successfully used in intestinal
smooth muscle maintenance for grafts implanted in the small bowel of a mouse model (25).
Recently, our group compared the use of FGF-2, VEGF and PDGF-BB in maintenance of
bioengineered sphincteric smooth muscle implanted in a mouse animal model. Our data
indicated that there was no significant difference with the use of any of these growth factors
on neovascularization, smooth muscle fiber diameter, viability and phenotype (26).

3. Functional tissue engineering of phasic GI neuromusculature:
Esophagus, Stomach, Small Intestine & Colon

Phasic neuromuscular structures of the GI tract contain orthogonal layers of smooth muscle,
interlaced with enteric neuronal plexuses. They are also associated with the interstitial cells
of Cajal (ICC) and specialized mucosal layers. The propagating peristaltic wave defines the
phasic nature of this neuromusculature. It encompasses contraction and relaxation of both
the circular and longitudinal smooth muscle layers. The neuronal components as well as the
ICC generate electrical activity for the coordination of peristalsis. This activity is coupled in
a highly coordinated manner to intracellular biochemical events in the smooth muscle layers
to result in gut motility. These mechanisms are additionally segmentally modulated by the
release of different neurotransmitters from the enteric neuronal plexuses as well as the
electrical activity from the ICCs (27, 28). While designing tissue engineering replacements,
it is important to keep in mind that motility patterns of the GI tract, though segmental are
inherently linked to one another and work in a highly coordinated fashion (29). An example
of this phenomenon is the entry of the food into the esophagus leading to the relaxation of
the LES to allow passage of food into the stomach (30). Table 2A-D summarizes literature
cited in the following section.
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3.1 Esophagus
The esophageal conduit extends from the pharynx to the gastroesophageal junction. Due to
coordinated motility in the GI tract, the lack of peristalsis in the esophagus leads to
hypertensive LES. Surgical interventions to remedy long-gap esophageal atresia are usually
followed by dysmotility and impaired quality of life. In the case of bioengineered
esophageal replacements, the restoration of physiological functionality must meet the
requirement of both gravitational and peristaltic food transport. This becomes challenging
due to the phenomenon of at-will “primary peristalsis”; a complex interplay between the
central and enteric nervous systems (31).

Early reports in esophageal wall replacement demonstrated no muscular ingrowth with non-
absorbable materials like polytetrafluoroethylene or Dacron. Surface functionalization of
these bioinert prosthetic materials with antigenic collagen resulted in a moderate cellular
repopulation. However, major side-effects associated with the use of these materials were
stricture formation and inflammatory reaction (32-35). Acellular absorbable biomaterials
were developed in order to improve the biocompatibility and minimize the host-
inflammatory response of the existing prosthetic materials. These were typically extra
cellular matrix patches or collagen matrices derived from the urinary bladder or intestinal
submucosa. The use of acellular xenogenic extra cellular matrix scaffolds to repair patch
defects in the esophageal wall of canine models demonstrated neovascularization and neo-
innervation, but no repopulation of esophageal smooth muscle (35, 36).

Acellular approaches were improved by seeding biomaterials with cells. A modular
approach to the regeneration of the esophagus by Saxena et al. used basement membrane
matrix coated scaffolds to promote survival and unidirectional alignment of both epithelial
cells as well as smooth muscle (37). Autologous neo-esophagus constructs have been
engineered using composite cells (human esophageal epithelial cells, aortic smooth muscle
cells and dermal fibroblasts) all embedded into porcine tendon collagen or PGA meshes (38,
39). More recently, Nakase et al. replaced a small portion of resected esophagus using
keratinocytes, fibroblasts and smooth muscle cells seeded on human amniotic membrane
and PGA sheets (40).

Although these tissue engineering attempts display significant repopulation of constituent
cell types and similarities to native esophagus morphology, most segments remain
aperistaltic and may cause dysmotility related problems during long-term implantation. In
order to externally induce peristalsis, artificial esophagus have been engineered using
nickel-titanium shape memory alloys, and programmed to display peristaltic patterns when
implanted in a goat model (41). Independent experiments using these materials for
esophageal reconstruction, however, resulted in stenosis to different degrees (42). The
paradigm of functional esophageal tissue engineering, if clinically intended to replace long
segments, must mandatorily include peristalsis mediated by the intramural and myogenic
esophageal components.

3.2 Stomach
The stomach acts as a food reservoir. Gastric motility breaks down food mechanically and
enhances mixing with digestive enzymes. This further breaks down food chemically. Gastric
emptying into the duodenum is mediated by mechanical, neuronal and hormonal influences.
This ensures delivery of nutrients in an orderly manner to facilitate absorption. Disruption of
motility in the stomach, due to diabetes, depletion of ICCs or weakened smooth muscle
function results in either delayed or rapid gastric emptying.

Hori et al. used acellular collagen sponge scaffolds to repair gastric wall defects in a canine
model. They demonstrated the regeneration of a mucosal layer with proton pump positive
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cells. However, the regenerated muscular layer did not display the ability to contract upon
treatment with Acetylcholine (43). Araki et al. seeded collagen sponge scaffolds with
autologous bone marrow and mesenchymal cells. They additionally supported the scaffold
with a biodegradable composite of poly-L-lactic acid and polycaprolactone, to prevent
shrinkage of the scaffold upon implantation (44). Gastric epithelial organoid units were
seeded on composite PLGA meshes to replace native stomach of rats (45). While all the
above techniques repopulated a functional mucosa, the regeneration of stratified smooth
muscle layers with the proper orientation remains a challenge. Moreover, restoration of
functional motility was not demonstrated in the study, highlighting the biggest challenge yet
again in functional tissue engineering of the GI neuromusculature.

Tissue engineering of the stomach needs to primarily focus on creating a hollow elastic
reservoir. Aspects of bladder tissue engineering, whereby de-novo bladder reservoirs are
manufactured with a variety of biomaterials, can be used as templates to re-engineer the
musculature of the stomach. These can be paced by implantable gastric stimulation units,
already commonly used in bariatric surgeries and in gastroparesis to stimulate enteric
neurons or simulate gastric electrical rhythm. A report by Micci et al. demonstrates that the
transplantation of CNS-derived neuronal progenitor cells can repopulate nitrergic neurons as
well as improve gastric function in the pylorus of a rodent model of gastroparesis (46).
Transplantation of the progenitor cells offers an alternate route to be explored in mimicking
aspects of functional gut motility.

3.3 Small Intestine
The small intestine is the primary nutrient absorptive structure of the GI tract. Peristalsis and
segmental contractions of the small intestine increase the surface area to facilitate greater
absorption by the villi of the intestinal epithelium. Loss of intestinal segments due to
congenital defects or multiple surgical resections due to inflammation or cancer result in
short bowel syndrome. Short segments of small bowel result in malabsorption, malnutrition
and adaptive alteration of motility patterns.

Tissue engineering has offered an elegant solution to the bowel lengthening surgeries
commonly carried out in short bowel syndrome. Collagen sponge scaffolds seeded with
autologous smooth muscle cells have been successfully implanted as a patch graft in a
canine model (47). This patch graft regenerated the mucosal and intestinal epithelial layers
along with the villi structures. The major problem encountered with these grafts was
shrinkage. Dunn et al. used pseudo-tubular structures formed from collagen sponge
scaffolds seeded with intestinal smooth muscle cells. These were neovascularized within a
month after prevascularization in the omentum (25). These techniques did not regenerate the
enteric neuronal layers, and the smooth muscle cells demonstrated a phenotypic switch to
their non-contractile forms.

In order to preserve the epithelium-mesenchyme interaction to aid survival, intestinal
organoid units were cultured and seeded onto tubular polymer scaffolds (48, 49). Vacanti
and colleagues implanted tissue-engineered intestine comprised of neonatal rat intestinal
organoid units into the omentum of adult rats, and then subsequently implanted these
constructs to rescue morbidity resulting from a massive bowel resection. (50). Scaffolds
made of small intestinal submucosa and wrapped with omentum were implanted in canine
models of short bowel syndrome. These scaffolds repaired patch defects and replaced
tubular segments of short bowel, thereby increasing the length of the short bowel (51).
Tissue engineered small intestinal constructs regenerated enteric neuronal plexuses and met
basic physiological demands. However, these techniques did not regenerate the alignment of
the circular and longitudinal smooth muscle that is crucial to generating appropriate force
and motility to facilitate nutrient absorption.
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3.4 Colon
The colon is contiguous with the small intestine, facilitating water absorption and excretion
of stool. Loss of colonic segments by surgical resections to treat aganglionosis
(Hirschsprung's Disease) or inflammation significantly alters colonic motility. Disruption of
colonic motility alters transit time, resulting in constipation or diarrhea. The idiopathic
nature of some of these disease states poses a strong demand for in vitro tissue engineered
models of colon, where investigations can be carried out on individual components (smooth
muscle, enteric neurons, interstitial cells and mucosa) to understand alterations in
pathophysiological conditions. Moreover, alterations in peristalsis and segmental
contractions of the colon have direct implications on an individual's quality of life.

Vacanti et al. generated tissue engineered colon on composite poly lactic and glycolic acid
polymers from organoid units isolated from the sigmoid colon (52). These approaches
demonstrated that the tissue engineered conduits have significant absorptive capacity when
implanted, but there was no direct measurement of peristalsis or motility. Our group has
successfully bioengineered three-dimensional fibrin-based models of colon that allow self-
alignment of circular smooth muscle layers concentrically around a patent lumen. These
bioengineered tissues mimic native smooth muscle alignment and maintain aspects of
colonic physiology like peristalsis, contraction and relaxation (53). In a recent study by Pan
et al. (54), neural crest progenitor cells isolated from neonatal rats were transplanted into the
distal colon of a rat model of Hirschsprung's Disease. These cells differentiated into neurons
and glia in the host colon. They also demonstrated rescue of neuronal mediated motility in
the aganglionic host colon. Metzger et al. (55) demonstrated that adult human gut derived
enteric progenitor cells can repopulate segments of human aganglionic colon grown in
organotypic cultures. Transplantation of enteric neuronal progenitor cells therefore offer
successful alternate routes to regeneration and improvement of gut function.

Although significant advances have been made in tissue engineering of phasic
neuromuscular structures, focus is required on the identifiable gaps that exist in regeneration
of functional smooth muscle and enteric neuronal plexuses.

4. Functional tissue engineering of sphincteric neuromusculature: Lower
Esophageal, Pyloric & Internal Anal Sphincters

Sphincters of the GI tract segregate the different phasic segments. They are made of
concentrically aligned specialized circular smooth muscle with dense enteric neuronal
plexuses. Sphincters remain tonically closed, creating a high pressure (basal tone) closure
zone. They mediate transfer of luminal contents between esophagus and stomach (Lower
Esophageal Sphincter; LES), stomach and small intestine (Pyloric sphincter) or from the
rectum to the outside (Internal Anal Sphincter; IAS). Efferent innervation pathways
automatically signal to the sphincter during the passage of food. This allows sphincters to
transiently relax their pressure and allow luminal contents to pass and then subsequently
return to their basal closure pressure. Sphincter specialized circular smooth muscles express
higher levels of proteins involved in contractility like RhoA, PKCα, smooth muscle actin,
myosin isoforms, etc. to myogenically generate basal tone in the absence of innervation
(56-58). Inhibitory neurotransmission, in particular mediated by nitric oxide, is more
important in sphincters than in adjoining phasic muscle segments to mediate transient
relaxation. Age-related weakening of the mechanical efficiency of the sphincters, diabetes-
induced neuropathy, idiopathic degeneration of sphincter muscle all result in altered closure
pressures of the sphincter leading to reflux (LES), gastroparesis (Pylorus) or incontinence
(IAS). Ideally, the paradigm for functional sphincteric tissue engineering should focus on
manufacturing innervated smooth muscle replacement structures. These replacements must
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be made of structurally sound biomaterials that do not alter mechanotransduction while
allowing biocompatible integration, neovascularization and neuronal in-growth from the
central and peripheral nervous system. Table 2E summarizes literature cited in the following
section.

4.1 Lower Esophageal Sphincter
The lower esophageal sphincter is responsible for preventing reflux of acidic gastric
contents back to the esophagus which can lead to severe conditions ranging from
Gastroesophageal reflux disease (GERD) to Barretts esophagus and adenocarcinomas.
Pharmacotherapies do not directly address the issue of weakened sphincter efficiency, while
surgical manipulations significantly alter the GI tract anatomy at the gastroesophageal
junction.

Initial solutions for reflux management focused on augmenting the bulk of the LES by
submucosal injection of bioinert materials like polymethylmethacrylate beads (59),
polyacrylonitrile based hyrdrogels (60), etc. However, there was no evidence of long-term
efficacy or improvement in sphincteric physiology due to a lack of follow-up. Bioinert
magnetic titanium beads looped in a roman arch were implanted laprascopically to augment
LES closure pressure (61). Feasibility trials with this device however did not rule out the
propensity for device erosion. Recently, a cellular transplantation approach to improving
baseline LES pressure was achieved by injecting skeletal muscle-derived stem cells in the
LES region of canine models. These cells integrated within the underlying GI smooth
muscle, but did not demonstrate differentiation into contractile smooth muscle phenotypes
(62).

Tissue engineered LES constructs must possess the ability to generate myogenic basal tone.
They must also additionally be highly biocompatible and wire into the existing neuronal
network to transiently relax to allow food to pass from the esophagus to stomach, upon
esophageal peristalsis.

4.2 Internal Anal Sphincter
The Internal Anal Sphincter (IAS) contributes to 70% of the anal canal closure pressure,
maintaining continence. Weakened mechanical efficiency of the IAS due to idiopathic
sphincteric degeneration, surgical or obstetric trauma all lead to passive and active
incontinence. Similar to the LES, current therapeutic mainstays do not address the direct
issue of muscular degeneration of the sphincter itself.

A biomedical device approach to restore sphincteric function involved the manufacture of
artificial anal sphincters. These were prone to device failure and had significant morbidity
associated with them (63). Bulking of the IAS, similar to the LES, was carried out by
injecting biocompatible materials like microspheres of hydroxyapatite or cross-linked
collagen. This approach was associated with the potential of migration of biomaterials into
the lymph drainage and did not significantly improve sphincter contractility. These measures
of introducing biomaterials or biomedical devices have had limited success in their outcome
in overcoming incontinence or augmenting sphincteric function.

Recently, Kang et al. used a cellular transplantation approach to augment IAS function in a
rat incontinence model. The authors transplanted autologous skeletal muscle-derived stem
cells in cryo-injured IAS. These injected cells were integrated within the muscle with
minimal inflammation, but demonstrated no evidence of developing into functional muscle
(64). Our lab has demonstrated the functional bioengineering of self-aligned IAS smooth
muscle tissue constructs from rodents, rabbits and humans. These constructs generate
myogenic basal tone, display native smooth muscle alignment and contractile smooth
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muscle phenotype. These constructs were neovascularized upon implantation on the dorsum
of mice. Additionally, they also maintained key aspects of IAS physiology like myogenic
basal tone generation and transient relaxation (65). More recently, our group also
demonstrated the ability to bioengineer “pre-wired” sphincters with an intrinsic enteric
neuronal population associated with the smooth muscle. Implantation of these constructs
preserved neuronal networking as well myogenic and neuronal functionality (66).

5. Conclusion
The evolution of tissue engineering has advanced from its novelty as an experimental
therapeutic paradigm to an immensely clinically translatable therapy. Examples of GI
motility-related pathologies that are inclined to tissue engineering solutions are short bowel
syndrome, fecal incontinence and GERD among others. Bioengineering of GI
neuromuscular structures offers a solution to improve quality of life and reduce morbidity
associated with the use of external devices or conventional surgical and pharmacological
approaches that have formed the mainstay of current clinical management for many of these
conditions. Additionally, de novo generation of three-dimensional neuromuscular structures
of the GI tract in vitro can be used to investigate molecular mechanisms that contribute to
pathophysiology of functional GI disorders.
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Figure 1. Schematic of tissue engineered tubular constructs for replacement of GI
neuromuscular structures
The chosen biomaterial scaffold must be adequately porous to allow neovascularization
when implanted. Ideally, the tissue engineered replacement is envisioned to contain different
cellular components in different layers namely, the circular and longitudinal smooth muscle
components with intramuscular ICC. Additionally, the tubular construct would also
contained localized enteric neuronal plexuses (myenteric and submucosal). The scaffolding
material along with its cellular component must allow reepithelialization to regenerate
mucosal layers. Most importantly, the bioengineered tubular constructs must be able to
maintain a patent lumen and maintain integrity so as not to allow leakage during use in the
body as a replacement. The ideal tissue engineered construct, when implanted, would
integrate with the existing muscular, neuronal and mucosal layers as well as receive cues
from the central nervous system, to facilitate peristalsis, gut motility, digestion and
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excretion. For the stomach, different shaped molds can be envisioned with the same modular
approach to repopulation of different cellular layers.
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