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Rubisco, the most abundant enzyme on the Earth and responsible for all photosynthetic carbon fix-
ation, is often thought of as a highly conserved and sluggish enzyme. Yet, different algal Rubiscos
demonstrate a range of kinetic properties hinting at a history of evolution and adaptation. Here,
we show that algal Rubisco has indeed evolved adaptively during ancient and distinct geological
periods. Using DNA sequences of extant marine algae of the red and Chromista lineage, we
define positive selection within the large subunit of Rubisco, encoded by rbcL, to occur basal to
the radiation of modern marine groups. This signal of positive selection appears to be responding
to changing intracellular concentrations of carbon dioxide (CO2) triggered by physiological adap-
tations to declining atmospheric CO2. Within the ecologically important Haptophyta (including
coccolithophores) and Bacillariophyta (diatoms), positive selection occurred consistently during
periods of falling Phanerozoic CO2 and suggests emergence of carbon-concentrating mechanisms.
During the Proterozoic, a strong signal of positive selection after secondary endosymbiosis occurs at
the origin of the Chromista lineage (approx. 1.1 Ga), with further positive selection events until
0.41 Ga, implying a significant and continuous decrease in atmospheric CO2 encompassing the
Cryogenian Snowball Earth events. We surmise that positive selection in Rubisco has been
caused by declines in atmospheric CO2 and hence acts as a proxy for ancient atmospheric CO2.
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1. INTRODUCTION
The living ecosystem and carbon dioxide (CO2) and
oxygen (O2) levels in the atmosphere are inexorably
linked through tight feedback mechanisms. The advent
of oxygenic photosynthesis around 2.4 Ga increased
atmospheric and surface ocean O2 levels and reduced
atmospheric CO2. However, O2 levels remained low
for the next billion years despite declining CO2 [1],
partly attributed to anoxygenic photosynthesis prevent-
ing oxygenation of the deep ocean [2]. It was not until
the Neoproterozoic when oxygenic photosynthesis
became dominant, hypothesized to contribute to the
second rise of O2 which paved the way for evolution of
complex multi-cellular life [1].

Biological innovations certainly exert an influence
on the atmosphere, but atmospheric composition
also drives biological adaptations. The rate-limiting
step of photosynthesis, CO2 fixation, is catalysed by
the enzyme, ribulose-1,5-bisphosphate carboxylase/
oxygenase (Rubisco, EC 4.1.1.39). During oxygenic
photosynthesis, Rubisco catalyses the two competitive
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reactions: CO2 fixation for photosynthesis (carboxyla-
tion) and energy-wasting photorespiration using O2

(oxygenation). The ability of a particular Rubisco to
discriminate between non-polar, structurally similar
substrates of CO2 and O2 is determined by the kinetic
properties of Rubisco and the CO2 and O2 concen-
trations at the catalytic site of the enzyme, denoted
as the specificity factor (V) [3]:

V ¼ VcKo

V oK c

� ½CO2�
½O2�

;

where Vc and Vo are maximal velocities of the carboxy-
lase and oxygenase reactions and Kc and Ko are the
Michaelis constants for CO2 and O2. Thermodynamic
constraints dictate a trade-off between carboxylation
velocity (Vc) and affinity for CO2 that has led to sugges-
tions that despite being conserved and sluggish, Rubisco
is optimized to its physical environment [4]. The vari-
ation in Rubisco catalytic properties found within
photosynthetic eukaryotes hints that it has undergone
adaptations to low CO2 [5–8], but little is known
about the detailed timing of evolution of Rubisco and
its relationship to the environmental change.

We aim to define the history of adaptation of
Rubisco in red and Chromista algae. Our study
focused on these oxygenic photosynthesizing algae
because they all possess a red chloroplast containing
This journal is q 2012 The Royal Society
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the same Form 1D Rubisco [9]. Their chloroplast
evolutionary history stemmed from a primary endosym-
biotic event that resulted in the red algae (Rhodophyta
and Cyanidiales), and subsequent secondary endosym-
biosis to form the Chromalveolata [10]. Chromalveolata
includes the Chromista (Haptophyta, Stramenopiles
and Cryptophyta) [11] and the Alveolata. However,
as there is debate on the plastid monophyly of the
Chromalveolata (for review, see Keeling [12]), we
focused only on the Chromista which have a well-
supported single secondary endosymbiotic origin of
their plastids [13]. Furthermore, many representatives
of the Chromista algae, such as diatoms and Haptophyta,
dominate the modern ocean and display an extensive
fossil history [14,15], making it possible to date the
periods of adaptive evolution in Rubisco. Form 1D
Rubisco protein is made up of eight large and eight
small subunits. The active sites of Rubisco are formed
by large subunits which are encoded by the chloroplast
gene rbcL.

To infer adaptation of Rubisco, we reconstructed the
chloroplast evolutionary history of the red and Chro-
mista algae as a template on which we identified
positive selection in rbcL by applying phylogenetic
analysis of maximum likelihood (PAML) [16]. PAML
identifies positive selection by comparing the substi-
tution rates of mutations that do and do not affect
protein sequence (dN and dS, respectively) along a
phylogeny. The former is likely to affect the survival of
the organism, whereas the latter is neutral, or nearly
neutral; so dN/dS . 1, dN/dS ¼ 1 and dN/dS , 1 indicate
positive, neutral and purifying selection, respectively.
Bayesian tree reconstruction and dating were conduc-
ted using a number of fossil calibrations, allowing the
timing of adaptive events to be constrained between
branch nodes providing an evolutionary history to
around 1.5 Ga.
2. MATERIAL AND METHODS
(a) DNA extraction and amplification of rbcL
DNA was extracted from Haptophyta and diatom cul-
tures maintained at Marine Biological Association,
Plymouth, UK using previously published methods
[17]. About 95 per cent length of the coding region
of the chloroplast rbcL gene was PCR amplified
using Biomix (Bioline, MA, USA) and primers (elec-
tronic supplementary material, table S1), and the
following PCR conditions: initial cycle of 958C for
2 min, 558C for 30 s, 728C for 30 s followed by 40
cycles of 928C for 30 s, 538C for 30 s and 728C for
3 min, with final elongation of 728C for 10 min.
DNA sequencing was performed using ABI BIGDYE

v. 3.1 and capillary sequencers 3700 and 3730xl
(Applied Biosystems Inc., CA, USA). Sequences of
the rbcL gene for 17 species were uploaded to NCBI
GenBank under accession numbers HQ656822–
HQ656838. The new rbcL sequences were combined
with a further 227 rbcL sequences from NCBI Gen-
Bank (electronic supplementary material, table S2)
and aligned using CLUSTALX [18], followed by minor
manual editing of the alignment and assignment of
coding region using PROSEQ3 [19].
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(b) Phylogenetic and molecular clock analysis

The phylogeny shown in figure 1 was reconstructed
using four plastid protein-coding genes used by Yoon
et al. [22] with a few changes: removal or replacement
of species owing to short or poor quality rbcL sequences
and additional sequences of heterokonts, Haptophyta
and coralline red algae. The Haptophyta tree (electronic
supplementary material, figure S1) was reconstructed
only using rbcL sequences. The diatom tree (electronic
supplementary material, figure S2) was constructed
with the 18S rRNA and rbcL genes. Bayesian tree recon-
struction and dating were conducted using BEAST
software [23]. The calibration constraints used for
each tree are summarized in electronic supplemen-
tary material, table S3 [13–15,24–26]. Phylogeny
reconstruction assumed the general time-reversible
substitution model [27] with gamma-distributed rate
heterogeneity. For protein-coding genes, we assumed
separate rates for the three codon positions. We con-
ducted runs with chain lengths of 5 � 107 to 108

steps assuming the Yule model of speciation process
and both clock and uncorrelated lognormal-relaxed
clock across the tree [28,29] with similar results. Given
the standard deviation of the uncorrelated lognormal-
relaxed clock (ucld.stdev parameter) was consistently
below 1, the data appeared to fit the molecular clock
model quite well, hence the latter was used for dating
of individual nodes. The convergence of parameter esti-
mates was checked using TRACER [30]. The data were
saved every 103 steps and the first 5� 103 trees were
ignored as a burn-in. TREEANNOTATOR v. 1.5.4 was
used to summarize the post-burn-in trees, and the maxi-
mum credibility tree along with 95% probability density
of ages was visualized in FIGTREE v. 1.3.1 [31].
(c) Phylogenetic analysis of maximum likelihood

Detection of positive selection in the rbcL gene was
conducted using nested maximum-likelihood models
A and A1 allowing for variation in the ratio of non-
synonymous to synonymous substitution rates (dN/dS)
across codons and across branches implemented in
PAML v. 4 [16]. The analysis was conducted assuming
the phylogenies in figure 1 and electronic supplementary
material, figures S1 and S2. The null model A1 allows
dN/dS ratios to vary both among sites and among
branches; it allows 0 , dN/dS , 1 and dN/dS ¼ 1 for
both foreground and background branches, and also
two additional classes of codons with fixed dN/dS ¼ 1
on foreground branches while restricted as 0 ,

dN/dS , 1 and dN/dS ¼ 1 on background branches.
The alternative A model allows 0 , dN/dS , 1 and
dN/dS ¼ 1 for both foreground and background
branches, and also two additional classes of codons
under positive selection with dN/dS . 1 on foreground
branches while restricted as 0 , dN/dS , 1 and
dN/dS ¼ 1 on background branches. One branch at a
time was labelled as a foreground branch with allowed
positive selection, whereas all other branches were
labelled as background branches with no positive selec-
tion allowed. Likelihood-ratio tests (LRTs) were
repeated with a different branch labelled as a foreground
branch until all branches had been tested [32,33]. The
significance of the A/A1 LRTs was calculated assuming
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that twice the difference in the log of maximum likeli-
hood between the two models was distributed as a chi-
square distribution with one degree of freedom. The
Bonferroni correction procedure implemented in
SISA-Binomial [34] was used to correct the statistical
significance for multiple comparisons.

These tests were applied to three datasets, red and
Chromista algae, Haptophyta and diatoms, consisting
of 39, 28 and 30 species, respectively (figure 1 and
electronic supplementary material, figures S1 and S2).

Phylogenies shown in figure 1 and electronic sup-
plementary material, figures S1 and S2 were also used
to detect positive selection within a group using the
site test M1a/M2a [35]. Four other red and Chromista
algal groups were also tested using M1a/M2a LRTs
consisting of 49 Rhodophyta, 45 Phaeophyceae, 28
Cryptophyta, 33 Chrysophyceae and Synurophyceae
rbcL sequences (electronic supplementary material,
figure S3 and table S2). Phylogenies of these groups
were reconstructed using Bayesian method (MRBAYES

v. 3.1, GTR model with gamma-distributed rate vari-
ation across sites and a proportion of invariable sites
with at least 106 runs) [33]. In M1a/M2a LRTs, the
null model M1a (nearly neutral) that allows 0 � dN/
dS � 1 was compared with the M2a model (same as
the M1a model plus an extra class under positive selec-
tion with dN/dS � 1). The significance of the M1a/M2a
LRTs was calculated assuming that twice the difference
in the log of maximum likelihood between the two
models was distributed as a chi-square distribution
with two degrees of freedom.

The Bayes empirical Bayes method [36] imple-
mented in PAML was used to calculate the posterior
probabilities that particular sites fall into classes with
different dN/dS and to identify sites with a high prob-
ability of being under positive selection (having dN/
dS . 1). Rubisco sites under positive selection were
numbered against the spinach (Spinacia oleracea)
sequence for comparison with other studies. Residue
location in the tertiary structure was visualized using
the structural data file of spinach Rubisco (1RBO) avail-
able on RCSB Protein Data Bank with DEEPVIEW-SWISS

PDBVIEWER v. 3.7 [37].

(d) Geological history of atmospheric carbon

dioxide and oxygen

Ranges of atmospheric CO2 during the Proterozoic were
taken from the literature [38–41]. Phanerozoic CO2 was
reconstructed from modelled (GEOCARBSULF, incor-
porating the full variability of basalt/granite ratios [42])
and proxy (CO2 estimates from d13C values from phyto-
plankton, liverworts, boron and stomatal indices as
compiled by Royer et al. [43] with revised d13C palaeosol
data [44], binned into 10 Ma and 1 s.d.) data. Pro-
terozoic O2 levels were taken from Canfield [1].
Phanerozoic O2 was derived from models [45–47] and
proxies ([48], showing 1 s.d.).
3. RESULTS AND DISCUSSION
(a) Positive selection of algal Rubisco occurred

during distinct geological periods

The analysis of individual branches revealed that posi-
tive selection was restricted to branches basal to the
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radiation of the red and Chromista algae between
1.56 and 0.41 Ga (average ages of the nodes; for the
range at each node see figure 1). Positive selection in
rbcL was prior to the divergence of large algal taxo-
nomic groups, but not within the groups. To further
explore this pattern, we focused on two geochemically
and ecologically important groups with relatively
good fossil records: the Haptophyta (including coccoli-
thophores) and Bacillariophyta (diatoms). Once again,
positive selection was restricted to a few, deep branches.
The Haptophyta (electronic supplementary material,
figure S1) showed a strong signal of positive selection
along the branch leading to, and basal to, the radiation
of the Prymnesiophyceae (which includes the cocco-
lithophores Emiliania huxleyi, Coccolithus pelagicus and
colony-forming Phaeocystis spp.) between 375 and
285 Ma. Once this group diverged, there is little
evidence of positive selection apart from the branch
leading to the Phaeocystaceae. In the diatoms
(electronic supplementary material, figure S2), adap-
tation also occurred in deep branches within radial
centrics (including Aulacoseira and Coscinodiscus spp.)
at 142–97 Ma and pennates (including Fragilariopsis,
Phaeodactylum and Pinnularia spp.) at 73–56 Ma and
in bipolar centrics (including Thalassiosira, Chaetocera
and Skeletonema spp.) at 114–92 Ma.

Positive selection hints at changes of amino acids that
would influence the catalytic activity of Rubisco.
Indeed, positive selection does appear to explain the vari-
ation in known Rubisco specificity factors (figure 1b).
However, specificity factors are only a ratio and are
unable to reveal the true sensitivity of kinetic changes in
Rubisco. There are few measurements of Kc and Vc in
algae but the Kc for both diatoms and Haptophyta are
higher than Rhodophyta, which is higher again when
compared with the Cyanidiales (figure 1b).

Using a Bayesian approach [36], we identified
positively selected amino acid positions in rbcL in the
basal branches where selection occurred. Only a few
domains have been identified to influence activity or
kinetics [9] and our sites under positive selection do
not fall within these domains. However, there is
some commonality to the residues under positive selec-
tion between land plants [49] and algae (figure 2),
suggesting that these additional residues outside known
important protein domains may also significantly affect
Rubisco performance.
(b) Positive selection of Rubisco in algae

contrasts to that of land plants

Our results of positive selection only in the deep
branches of the algal phylogeny contrasts with the ubi-
quitous positive selection found throughout the land
plant groups [49]. To test whether this result may be
owing to differences in the analytical approaches
between studies, we applied the methodology pre-
viously used for plants [49] to an expanded set of
red and Chromista algal groups, including Rhodo-
phyta, Phaeophyta, Cryptophyta, Chrysophyceae and
Synurophyceae, along with Haptophyta and diatoms
with phylogenies constructed using rbcL sequences
(electronic supplementary material, figure S3). This
analysis confirmed the absence of positive selection
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Figure 1. (a) RbcL phylogeny of red and Chromista algae with branches under positive selection (magenta) and those with no

evidence for positive selection in Rubisco (black). Black italic numbers along branches are p-values for the probability of
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within algal taxonomic groups, with none of the
expanded algal groups displaying a signal of positive
selection using this test (table 1).

(c) Carbon dioxide as a driver for

Rubisco adaptation

There is evidence that Rubisco adaptation in land plants
was driven by a number of environmental factors in
addition to atmospheric composition, including aridity
and high temperatures [50]. However, in the marine
realm, we propose that it is the change in atmospheric
CO2 equilibrated with surface waters which acts as the
ultimate driver of positive selection in Rubisco. As
Rubisco is packaged within the chloroplast, the adaptive
response of Rubisco must be driven by changing intra-
cellular conditions. Intracellular CO2 conditions are
under physiological control, and as external CO2

becomes increasingly limited algae are known to
induce carbon-concentrating mechanisms (CCMs) to
boost the internal supply of CO2 to Rubisco [5]. How-
ever, this can also lead to an elevation in intracellular O2

of levels up to 6–6.5 times external concentrations [51],
Phil. Trans. R. Soc. B (2012)
owing to reduced leakiness of both CO2 and O2

[52,53]. While both intracellular CO2 and O2 levels
can change by induction of a CCM, the trigger for
the employment of CCMs is driven by changes in exter-
nal CO2. CCMs are regulated by external CO2, and on
geological scales of eukaryotic evolution, changes of
atmospheric CO2 are orders of magnitude greater
than changes in O2. Additionally, the Form 1D Rubisco
present in the studied algal species appears to have
reduced oxygenase potential and therefore a reduced
tendency to be inhibited by O2 [6]. Finally, optimiz-
ation of Rubisco efficiency is driven by the trade-off
between Vc and CO2 affinity, and therefore is in tune
with intracellular CO2 concentrations [54].

In land plants, it has been established that positive
selection in rbcL emerges coincident with the develop-
ment of a C4 CCM which elevates CO2 to almost
saturation at the site of Rubisco [55,56]. This relaxes
pressure for Rubisco to have a high affinity for CO2

and therefore allows an increase in Vc, which results in
increased photosynthetic efficiency as the plant requires
less nitrogen to achieve a given CO2 fixation capacity



1

2

3

15

25

5

35

45

fr
eq

ue
nc

y

100 200 300 400

land plants
diatoms
Haptophyta
red and Chromista algae

(a)

(b)

residue

Figure 2. Location of codons identified under positive selection aligned to Spinacia oleracea amino acid sequence, with pos-
terior probabilities greater than 95% detected with Bayes empirical Bayes methods [36]. (a) Frequency shows the number
of times when a particular site was detected as being under positive selection in trees; figure 1 (blue), Haptophyta (electronic
supplementary material, figure S1, red) and diatoms (electronic supplementary material, figure S2, green). This is compared

with results found in land plants [49] shown in grey. (b) Three-dimensional tertiary structure of S. oleracea with algal positive
selection sites highlighted (same colours as (a)). Loop 6 is denoted in yellow.

Rubisco adaptation and atmospheric CO2 J. N. Young et al. 487
[55,56]. By analogy, therefore, positive selection in
Rubiscos of the Haptophyta and diatoms is likely to
have occurred also in response to emergence of CCMs
as both Haptophyta and diatoms are thought to possess
them [57]. We can infer that, like in the C4 land plants,
positive selection indicates a lowering of CO2 affinity
and an increase in Vc in these algae after induction
of CCMs. Indeed, modern day Haptophyta and diatoms
do display lower specificities (V) and CO2 affinity
(i.e. higher Kc) than their red algal counterparts (their
ancestral endosymbionts; figure 1b). So, although
atmospheric CO2 acts as the ultimate driver of Rubisco
change, the mechanistic driver is the physiological inno-
vation in boosting intracellular carbon (the CCMs) in
response to declining CO2.

The term CCM encompasses a wide variety of
poorly understood mechanisms that concentrate
carbon to different degrees. While the pattern of
positive selection in rbcL hints at a link between the
presence of CCMs and positive selection within
the Haptophyta and diatoms, there is insufficient
knowledge to explain whether a simple relationship
Phil. Trans. R. Soc. B (2012)
exists between gradational improvements in carbon
concentration and positive selection in rbcL.

It does appear that the presence of positive selection
certainly indicates elevated internal carbon. We have
already outlined that positive selection in Haptophtya
and diatoms suggest an increase in intracellular
carbon concentrations above the Rhodophyta but
many members of the Rhodophyta are also thought
to possess CCMs [6], though their relative abilities
to concentrate carbon are poorly documented [6].
Like the presence of positive selection that separates
the Rhodophyta and Chromista (Haptophyta and dia-
toms), positive selection also occurs at the divergence
of Rhodophyta and Cyanidiales, and again correlates
with an increase in Kc (figure 1b). This suggests that
positive selection of rbcL is linked to a gradual reduced
affinity of Rubisco for CO2, most likely driven by
development of a better functioning CCM.

On the other hand, absence of positive selection
does not necessarily indicate a lack of CCMs. No posi-
tive selection is detected leading to the Phaeophyta
(the branch leading to Pylaiella littoralis in figure 1).



Table 1. PAML results for models M0 and M1a/M2a.

group tree

M0 M1a/M2a

nF nG nS nN BL k dS dN dN/dS x2 p-value

Rhodophyta electronic
supplementary
material, figure S4a

31 37 50 1200 21.748 2.022 37.483 0.749 0.020 0 1

Phaeophyceae electronic
supplementary

material, figure S4b

8 29 45 1362 2.732 3.170 3.905 0.179 0.046 0.01 0.99

Chrysophyceae
and Synuophyceae

electronic
supplementary
material, figure S4c

4 5 33 930 8.950 0.968 14.821 0.449 0.030 0 1

Cryptophyta electronic

supplementary
material, figure S4d

4 8 28 972 9.227 1.778 0.312 13.086 0.024 0 1

Haptophyta electronic
supplementary

material, figure S1

10 21 32 1377 8.501 1.377 8.723 0.437 0.053 0 1

diatoms electronic
supplementary
material, figure S2

18 23 30 900 5.617 1.380 8.178 0.444 0.054 0 1

red and brown algae figure 1 28 39 40 1206 19.826 1.108 29.800 1.084 0.036 0 1

Using M0 model in PAML: nF, number of families; nG, number of genera; nS, number of sequences; nN, number of nucleotides;
BL, branch length; k, transition/transversion rate; dS, synonymous substitutions; dN, non-synonymous substitutions; dN/dS, average dN/dS

across tree (using 1 class for dN/dS). Comparing M1a (nearly neutral) with M2a (positive selection) using likelihood-ratio test (LRT),
where x2 ¼ 2 � (LRTM2a – LRTM1a) with degrees of freedom ¼ 2 to calculate probability (p-value) for the LRT value being as high as is
seen by chance.
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While there is no information on the carbon physi-
ology of P. littoralis, Phaeophyta studied to date do
appear to concentrate carbon, but to lower levels
than their diatom counterparts. Furthermore, some
orders are known to lack pyrenoids (Dicytotales, Spha-
celariales, Laminariales and Fucales) although they do
appear to be able to use HCO�3 [5]. Even though we
find no positive selection in groups which are estab-
lished as lacking CCMs (table 1 and electronic
supplementary material, figure S3; the Rhodophyta
genera Batrachospermum, Caloglossa, Membranoptera,
Nitophyllum, Phycodrys and Ptilota [58–60], and
the Chrysophyceae and Synurophyceae [60,61]), the
test used for this particular analysis is very conserva-
tive. This test averages positive selection across the
group and was unable to detect positive selection,
even within the Haptophyta and diatoms, in which
positive selection is established when individual
branches were tested.
(d) Rubisco adaptation correlates with declining

carbon dioxide

The timing of events of positive selection in Rubisco
further corroborates its relationship with atmospheric
CO2. A comparison of the occurrence of positive selec-
tion within Haptophyta and diatoms during the
Phanerozoic against the most recent compilation of
proxy-derived reconstructions and geochemical
models of CO2 and O2 show that positive selection
always corresponds with falling CO2 (inset, figure 3).
This correlation of Rubisco adaptation events with
declining CO2 demonstrates the potential for use
of adaptation of Rubisco as an indicator of past
atmospheric CO2.
Phil. Trans. R. Soc. B (2012)
Our pattern of adaptation prior to radiation, which
characterizes the history of algal Rubisco, is suggestive
that adaptive change at the physiological and molecu-
lar level was associated with the enhancement of
photosynthetic performance, and that this increased
efficiency could be the foundation for the success-
ful subsequent proliferation of the different algal
groups in novel ecological niches. Adaptation in the
Haptophyta between 375 and 285 Ga occurs over
the lowest limit of CO2 of the Carboniferous and
coincides with estimation of the emergence of calcifi-
cation and switch to full autotrophy in this group
[24]. Diatoms have carbon acquisition physiology
that would suggest a CCM [62,63] and it has even
been controversially suggested that some possess a
C4 mechanism [57–60]. The three separate adap-
tation events within diatoms occur during falling
CO2 of the Mesozoic and Cenozoic, which coincide
with their dominance and diversification, in particular
the Thalassiosirales, between 100 Ma and 30 Ma [61].
(e) Extending the carbon dioxide record

into the Proterozoic

We can apply the Phanerozoic relationship between
declining CO2 and positive selection to investigate poss-
ible CO2 change using the deeper branches in the tree of
the whole red/Chromista algal lineage (figure 3). It is
challenging to constrain timing of adaptation in the Pro-
terozoic owing to long branches and the lack of a fossil
record. Nonetheless, we find positive selection on the
earliest divergence of the Cyanidiales (1.56–1.14 Ga).
There is a cluster of signals of positive selection in a
number of branches immediately after the event of sec-
ondary endosymbiosis, the origin of the Chromista
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algae, approximately 1.1 Ga. The environmental trigger
for this symbiotic relationship between host and chloro-
plast is unknown but this relationship confirms that
Phil. Trans. R. Soc. B (2012)
Rubisco evolves in response to changing intracellular
conditions, plus there are certain advantages to an
endosymbiotic habitat in a low CO2 environment.
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The continued positive selection, on two branches
subsequent to those immediately after the secondary
endosymbiosis, points to sustained declining CO2

(0.93–0.52 Ga). We present a continuous record
suggesting decreasing CO2 encompassing periods
when there are currently few or no constraints. Because
advances in evolutionary innovation generally occurred
at times of major environmental or geochemical change,
the trend of declining CO2 during the Proterozoic
suggests this billion years of time may not have been
so ‘boring’. We suggest instead a backdrop of environ-
mental change associated with the expansion of the
eukaryotes during the very late Mesoproterozoic and
Neoproterozoic [22]. Further, such a decrease in CO2

likely played a role in triggering the subsequent Snow-
ball Earth events and at least contributed to dictating
Proterozoic climates [64].
4. CONCLUSION
The wide adoption of photosynthesis by life, resulting in
reduced atmospheric CO2–O2 ratios, created increased
evolutionary pressure on Rubisco which has evolved its
kinetic properties in response to declining atmospheric
CO2 [8]. Determining the timing of adaptation of the
CO2–O2 sensitive enzyme, Rubisco, presents a novel
approach in understanding the biological response to
changing atmosphere, and the periods of emergence
of CCMs. It supports the current estimation of the
periods of decreasing CO2 beyond the Phanerozoic
and provides important additional constraints to the
current scarcity of proxies available during these time
periods, uniquely delivering a continuous record
extending 1.5 Ga. The future challenge is to further
document the physiological innovations responsible
for driving the Rubisco change, and to discover other
genetic signatures which can open a window on past
major environmental change, such as the oxygenation
of the planet.
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