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Abstract
Predictive models are critical for risk adjustment in
clinical research. Evaluation of supervised learning
models often focuses on predictive model discrimina-
tion, sometimes neglecting the assessment of their cal-
ibration. Recent research in machine learning has
shown the benefits of calibrating predictive models,
which becomes especially important when probability
estimates are used for clinical decision making. By ex-
tending the isotonic regression method for recalibra-
tion to obtain a smoother fit in reliability diagrams,
we introduce a novel method that combines paramet-
ric and non-parametric approaches. The method cali-
brates probabilistic outputs smoothly and shows better
generalization ability than its ancestors in simulated
as well as real world biomedical data sets.

Introduction
Risk assessment tools such as the Cox proportional
hazard model, the logistic regression model, and other
machine-learning based predictive models are widely
used in patient diagnosis, prognosis and clinical stud-
ies. Accurate calibration of these models is impor-
tant if the outputs are going to be applied to new co-
horts [3]. For example, the Gail model, a predic-
tive model of a woman’s risk of developing breast
cancer, was reported to underestimate the risk among
a specific subgroup of patients [8]. After recalibra-
tion, the model identified more patients who would
benefit from chemoprevention than the original model
[1]. Another example is derived from the Framingham
Heart Study model, in which gender-specific coronary
heart disease (CHD) prediction functions can be used
for assessing the risk of developing CHD. While the
original model overestimated the risk of 5-year CHD
events among Japanese American men, Hispanic men
and Native American women, the recalibrated risk
score based on the new cohort’s own average incidence
rate, performed well [4].

A well calibrated predictive model provides risk esti-
mates that reflect the underlying probabilities for an

disease. This means that the proportion of positive
events (c = 1 from c ∈ {0, 1}) in a group of cases
that have according to the model a risk of e.g. p = 0.8

is exactly 0.8. Needless to say, this notion of calibra-
tion depends on an sufficient number of cases with the
same risk to be evaluated reliably. In practice, when
there are not many cases with the same estimated prob-
ability, cases with similar values for p are grouped for
evaluation.

Calibration Assessment A simple way of assessing
the calibration of a predictive model is a calibration
plot or reliability diagram. This visual tool plots ex-
pected versus observed events as follows: all estimated
probabilities p are grouped according to the fixed cut-
off points 0.1, 0.2, . . . , 1.0. The x-coordinates of the
points in the plot are the mean values of the estimated
probabilities in each group. The y-coordinates are the
observed fraction of cases with c = 1. If the predictive
model is well calibrated, the points fall near the diag-
onal line. An example of a calibration plot is given in
Figure 1. The points of the plot are connected by a line
for better visualization. The meaning of the dotted red
lines is explained in the next paragraph.

A quantitative measure of calibration is given by
a goodness-of-fit test like the well-known Hosmer-
Lemeshow test [9]. The Homer-Lemeshow C-statistic
is given by:

HLc =

1∑
c=0

G∑
i=1

(Oc
i − Ei)

2

Ei(1− E1

ni
)
,

where G denotes the number of groups (usually 10),
Oc

i is the sum of cases with c = 0 or c = 1, Ei is
the sum of estimated probabilities, and ni denotes the
number of cases in group i. This value is then com-
pared to a chi-square distribution with G-2 degrees of
freedom.

To improve the calibration of binary classification
models, different calibration methods have been pro-
posed.

Calibration Improvement Two popular methods to
improve the calibration of predictive models are the
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Figure 1:

1

Figure 1: Calibration plot with fitted probabilities by
(a) sigmoid fitting and (b) isotonic regression.

methods proposed by Platt [13] and Zadrozny and
Elkan [15].

The parametric approach of Platt applies to model out-
put rank p consists of finding the parameters A and B
for a sigmoid function fs(p) = 1

1+eA·p+B , such that
the negative log-likelihood is minimized. However,
this method may lead to poor calibration when the out-
puts do not fit the sigmoid function. The application of
this method, referred to as sigmoid fitting, is shown in
Figure 1 (a) by the dotted red line.

The non-parametric approach of Zadrozny and Elkan
applies a pair-adjacent violators algorithm [2] to the
previously sorted output probabilities p of the model
in order to find a stepwise-constant isotonic function
that best fits according to a mean-squared error crite-
rion. However, the outputs of this calibration method
tend to overfit the data if no smoothing regularization
is applied. The use of this method, referred to as iso-
tonic regression, is shown in Figure 1 (b) by the dotted
red line.

Smooth non-parametric estimators are expected to al-
leviate overfitting and underfitting problems, and thus
have received more attention recently. The methods by
Wang et al. [14] and Meyer [10] find a non-decreasing
mapping function t() that minimizes:∑

i

(ci − t(pi))2 + λ

∫ b

a

[t(m)(γ)]2 dγ, (1)

where m corresponds to a smoothness parameter, a
and b represent the range of input predictions, and λ
balances the goodness-of-fit (first component) and the
smoothness (second component) of the transformation
function t(). When m = 1, Equation 1 corresponds
to a piece-wise linear estimator. When m = 2, Equa-
tion 1 represents a smooth monotone estimator. In the-
ory, these models are smoother than isotonic regres-
sion and more flexible than sigmoid regression, but
their inferences require much heavier computation and
tedious parameter tuning. Moreover, approximation

algorithms show large empirical losses, e.g. 30% us-
ing second-order cone programming [14].

Method
We intended to develop a smoother yet computation-
ally affordable method to further improve the cali-
bration of predictive models. We observed that iso-
tonic regression is a non-parametric method that joins
predictions into larger bins, as indicated by the flat
regions in Figure 1(b). By interpolating between a
few representative values, we can obtain a smoother
function. However, we must ensure that such inter-
polation function g() is monotonically increasing to
maintain the discriminative ability of the predictive
model. Let P = {pi} the set of all predictions pi and
C = {ci} their corresponding class labels, then the
function t∗() = g(f(P ′), C ′) is also monotonically
increasing, where f() is the isotonic regression func-
tion, P ′ and C ′ are subsets of predictions and their
corresponding class labels, repectively.

Based on these considerations, we propose a novel
approximation to the optimal smooth function t∗()

that minimizes Equation 1 in three steps. First,
we apply isotonic regression to obtain a mono-
tone non-parametric function f() that minimizes∑

i(ci − f(pi))
2. Second, we select s representative

points from the isotonic mapping function. Finally, we
construct a monotonic spline, called Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP) [7], that
interpolates between the sampled points from the iso-
tonic regression function to obtain a smoothed approx-
imation to Equation 1. Note that the interpolation by
PCHIP is monotonic to keep the partial ordering of the
predictive model probabilities, and that it introduces
the smoothness. Algorithm 1 gives the details on these
steps in a compact form.

Inputs: Prediction probabilities P = p1, . . . , pn, class
labels C = c1, . . . , cn.
Output: Smoothed isotonic regression function h.

1. Obtain f∗ = argminf

∑
i (ci − f(pi))

2, subject
to f(pi) ≤ f(pi+1),∀i (Isotonic Regression).

2. Sample s points from f∗(γ), γ ∈ (0, 1), one point
per flat region of f∗(·). Denote samples as P ′,
and their corresponding class labels as C ′.

3. Construct a Piecewise Cubic Hermite Interpolat-
ing Polynomial function t∗(f∗(P ′), C ′)) to ob-
tain a monotone smoothing spline as the final
transformation function for calibration.

Algorithm 1: Smooth Isotonic Regression

17



Experiments

We compare our method with sigmoid fitting and iso-
tonic regression on the task of improving the calibra-
tion of logistic regression (LR) models learned on syn-
thetic and real world data.

Synthetic Data We took random samples of size
n = 1000 from two Gaussian distributions with vary-
ing differences in means but fixed variances. The dif-
ferences between µ1 and µ2 were set to 0.5, 1.0, 1.5

and 2.0 and the variances were set to Σ1 = 2.0,Σ2 =

1.0, respectively. We used 80% of the generated data
sets to train the LR model, and 20% to test the calibra-
tion of the predictions from the LR model and the pre-
dictions after recalibration by sigmoid fitting, logistic
regression, and our method.

The results of this experiment are shown in Figure 2.
The blue circles in the plots are the predicted proba-
bilities of the LR model. The red dotted lines are the
recalibrated probabilities. While sigmoid fitting does
not improve the calibration in all four cases, both iso-
tonic regression and smooth isotonic regression follow
the data pattern closely. They smooth isotonic regres-
sion has less oscillation and has a p-value larger than
0.05 for the H-L test indicating that the recalibrated
predictions are reasonably well calibrated. We further
observe that isotonic regression tends to overfit, while
smooth isotonic regression provides a continuous re-
calibration and the highest p-values for the HL-test in
most cases.

Real World Experiment We used eight different
real world data sets. GSE2034 and GSE2990 are gene
expression data sets related to breast cancer. Both
data sets were preprocessed to keep only the top 15
features (see [12] for details). The HOSPITAL data
consists of microbiology cultures and other variables
related to hospital discharge errors of a subgroup in
[5]. ADULT, BANKRUPTCY, HEIGHT WEIGHT,
MNISTALL, PIMATR were obtained from the UCI
Repository [6]. MNISTALL has handwritten numbers
’0-9’. The problem has been converted into a binary
problem by treating all digits ’0’ as positive and the
others as negative, yielding a very unbalanced set. For
each data set, we learned an LR model on 60% ran-
dom samples and tested on the remaining 40%, with
the exception of the ADULT dataset, where we fol-
lowed the split used in [11]. A summary of the data
sets is given in Table 1. The percentage of positive
cases varies from 8% to 67%.

Figure 3 shows histograms of the predicted values (top

# Train Test %
Data Attr size size POS

GSE2034 15 125 84 54
GSE2990 15 54 36 67

ADULT 14 4,000 41,222 25
BANKRUPTCY 2 40 26 48

HEIGHT WEIGHT 2 126 84 64
HOSPITAL 22 2,891 1,927 8
MNISTALL 784 42,000 28,000 9.8

PIMATR 8 120 80 33

Table 1: Real world data sets used. % POS indicates
the percentage of positive cases.

row) and calibration plots for the predictions of lo-
gistic regression, after sigmoid fitting, isotonic regres-
sion, and smooth isotonic regression on all eight test
sets. None of the calibration methods decreases the
AUC, since the monotonic transformation functions
preserve the orderings. Isotonic regression sometimes
shows an increase in AUC because it introduces more
ties into the ranking.

An interesting observation gathered from the calibra-
tion plots is that they seldom display a sigmoid shape.
Because the result is mostly data-driven, it discourages
the use of a sigmoid function to transform predictions
into probabilities (see third row). The calibration plots
in the fourth row of the figure show results for isotonic
regression, which are not smooth and are unrealisti-
cally sharp at the corners. The calibration plots at the
bottom of the figure show the functions fitted with our
proposed smooth isotonic regression, which have bet-
ter performance than sigmoid fitting and less oscilla-
tion than isotonic regression. In all cases, smooth iso-
tonic regression gives the highest p-value for the HL-
test suggesting a better fit than the sigmoid approach
and less overfit when compared to isotonic regression.

Conclusion
There is increasing interest in improving the calibra-
tion of predictive models, especially given their po-
tential use for personalized medicine. While dis-
crimination is often optimized, calibration is some-
times neglected, potentially leading to the publication
of models that are not adequate for use in practice.
We proposed a smooth isotonic regression method
that significantly improves simple isotonic regres-
sion. The method combines the merits of parametric
and non-parametric models, providing a smooth non-
parametric method to improve the calibration of pre-
dictive models.
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Figure 2: Comparison of different calibration methods on synthetic data. Row one shows histograms of the original
predicted probabilities by LR (blue bars for class c = 0 and red bars for class c = 1). Row two to five show calibration
plots for the originall predicted probabilities of LR and the recalibrated probabilities after sigmoid fitting, isotonic
regression, and smooth isotonic regression. The caption of each figure contains the discriminatory ability in terms of
the area under the ROC curve (AUC) and the p-value of the HL test for the visualized probabilities.
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Figure 3: Comparison of different calibration methods on real world data. Row one shows histograms of the original
predicted values by LR (no color discrimination for classes is used). Row two to five show calibration plots for the
originally predicted probabilities of LR and the recalibrated probabilities after sigmoid fitting, isotonic regression, and
smooth isotonic regression. The caption of each figure contains the discriminatory ability in terms of the area under
the ROC curve (AUC) and the p-value of the HL test for the visualized probabilities.
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