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Abstract
Apoptosis is a tightly regulated physiologic process of programmed cell death that occurs in both
normal and pathologic tissues. Numerous in vitro or in vivo studies have indicated that
cardiomyocyte death through apoptosis and necrosis is a primary contributor to the progression of
anthracycline-induced cardiomyopathy. There are now several pieces of evidence to suggest that
activation of intrinsic and extrinsic apoptotic pathways contribute to anthracycline-induced
apoptosis in the heart. Novel strategies were developed to address a wide variety of cardiotoxic
mechanisms and apoptotic pathways by which anthracycline influences cardiac structure and
function. Anthracycline-induced apoptosis provides a very valid representation of cardiotoxicity in
the heart, an argument which has implications for the most appropriate animal models of damaged
heart plus diverse pharmacological effects. In this review we describe various aspects of the
current understanding of apoptotic cell death triggered by anthracycline. Differences in the
sensitivity to anthracycline-induced apoptosis between young and adult hearts are also discussed.
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Introduction
Heart failure in childhood causes significant morbidity and mortality. The etiologies are
diverse [1-3]. One of the most common causes is chemotherapy, such as anthracycline-
induced cardiotoxicity. The anthracyclines, primarily doxorubicin, also including
daunomycin, epirubicin and idarubicin, are among the most widely used and successful
chemotherapeutics for childhood cancers, but their cumulative and dose-dependent cardiac
toxicity has been the major concern of oncologists for decades [4, 5]. With the increasing
population of cancer survivors, there is a growing need to develop preventive strategies and
effective therapies against anthracycline-induced cardiotoxicity, in particular, the late onset
cardiomyopathy.

Apoptosis, a Greek word that means falling of leaves from trees in autumn in response to the
impending threat of freezing and damage in winter [6], is a genetically programmed cell
death which proceeds through distinct morphological changes such as nuclear condensation,
DNA fragmentation, shrinkage of the cell body, membrane blebbing and cellular
fragmentation into apoptotic bodies. These apoptotic bodies are then engulfed by
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neighboring healthy cells or macrophages [7]. Apoptosis deletes cells with little tissue
disruption and no inflammatory response. Two major apoptotic signaling cascades have
been described and are generally referred to as the extrinsic (or receptor-mediated) and
intrinsic (or mitochondrial) pathways. Apoptotic cell death is an essential process in normal
and diseased pediatric heart. Recent in vitro and in vivo studies provided compelling
evidence that terminally differentiated cardiomyocytes, can and do undergo programmed
cell death. Apoptosis has been shown to be involved in numerous pathophysiological
consequences, contributing to many diseases including cancer, immunity disorders, and
cardiovascular disorders. Cardiomyocyte death has been found in major heart diseases,
including cardiomyopathies, myocardial infarction (MI), end-stage heart failure,
arrhythmogenic right ventricular dysplasia, etc [8-10]. Besides adult cardiac problems,
numerous human and animal studies have shown distinct roles of apoptosis in normal and
abnormal aspects of the pediatric heart. These studies have been instrumental in
demonstrating the importance of cardiomyocyte apoptosis and in the characterization of the
distinct apoptotic pathways.

Although intensive investigations on anthracycline-induced cardiotoxicity have continued
for decades, the underlying mechanisms responsible for anthracycline-induced
cardiotoxicity remain incompletely understood. The mechanism for anthracycline-induced
cadiotoxicity has been suggested to be attributable, at least in part, to the generation of free
reactive oxygen species (ROS), which then activate mitochondrial-mediated apoptotic
signaling pathway leading to caspase 3 activation and cardiomyocyte apoptosis [11-16] (Fig.
1). In this review, we will focus on the current understanding of molecular mechanisms
underlying anthracycline-induced apoptosis and on the differences in the sensitivity to
anthracycline-induced apoptotic signals between adult and young cardiomyocytes.

Pediatric cardiomyopathy
The etiologies of heart failure in childhood are strikingly different from adults and can result
from 1) congenital structural defects; 2) inherited cardiomyopathies (i.e. abnormalities of
sarcomeric or cytoskeletal proteins); 3) acquired disease (i.e. infection such as viral
myocarditis [17] or exposure to cardiotoxic agents such as anthracycline chemotherapy for
cancer [18, 19]); 4) ischemia-reperfusion injury during open-heart surgery to repair
structural defects [20, 21]. Among the diverse causes, congenital heart defects are the
leading cause of heart failure in children and represent approximately 1% of all live birth,
making this the most common birth defect in humans [22]. As a result of abnormal heart
morphogenesis, they present most commonly during infancy between birth and one year of
age. Dilated or hypertrophic cardiomyopathies are most common in children over one year
of age and remain the principal indication for cardiac transplantation in children throughout
childhood [23]. The prognosis of dilated cardiomyopathy in children is poor, with a 5-year
survival rate of only 60% [24].

Despite the importance of heart failure in infants and children, this disease is still under-
studied during these ages. On the contrary, there are rich literature and a relatively better
understanding of the cellular molecular aspects of heart failure in adults. As a result, most
new concepts for management of heart failure in children today are based on translation of
adult treatment strategies with little preclinical evidence supporting their use in children [1,
3].

Anthracycline cardiotoxicity
The anthracyclines are among the most widely used and successful anticancer drugs ever
developed. Despite extensive and long-standing clinical use (more than 40 years), they still
play a major role in the treatment of a wide spectrum of hematologic malignancies and solid
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tumors. Anthracycline chemotherapy, together with other improvements to treatment, has
significantly improved cancer survival, particularly among children, with an increase in the
5-year survival rates from less than 50% in the 1970s to about 80% currently [25-27].
Unfortunately, the therapeutic potential of anthracycline is limited by their cumulative and
dose-dependent cardiac toxicity [4, 5]. Three types of anthracycline-induced cardiotoxicity
have been described: acute (within the first week of treatment), early-onset (within a year)
and late-onset (more than one year after completion of treatment). Most patients who
develop significant cardiotoxicity have a late-onset dilated cardiomyopathy.

Children and adolescents are particularly susceptible to the cardiotoxic effects of
anthracycline chemotherapy [19, 28, 29]. About half of the young adult survivors of
childhood cancer have received anthracyclines at some time points in their treatment. The
frequency of cardiotoxic effects has been reported to be more than 50% among the survivors
of childhood cancer and there is no safe dose in this population [18, 28-33]. At 30 years after
diagnosis, cardiac complications are the leading noncancerous cause of chronic health
condition in childhood cancer survivors. The standardized mortality rate for cardiac death in
long-term survivors of childhood cancer is 8 times higher than expected [34]. There are
currently more than 300,000 long-term survivors of childhood cancer in the United States,
and this number is increasing [35]. Hence, the development of novel therapeutic strategies to
improve the survivor outcome is of high clinical importance.

Apoptosis in anthracycline-induced cardiotoxicity
Because anthracyclines are such effective anticancer drugs, their mechanisms of action have
been under intense investigation for many years. Cardiomyocyte death, which occurs within
hours after anthracycline exposure and during the late process of ventricular remodeling, is
one of the most studied mechanisms for anthracycline-induced cardiomyopathy [11-15].
Cell death is classified by the morphology of the affected cells: apoptosis, necrosis and
autophagy. Most experimental studies and histopathology of endomyocardial biopsies from
human patients have provided evidence that anthrocycline-induced cardiac toxicity is
associated with cardiomyocyte apoptosis and necrosis [11, 12]. Recent evidence indicates
that autophagy and senescence can also be related to anthracycline-induced cardiomyopathy
[36-39].

Oxidative stress generated by anthracyclines has been the most studied cause of
cardiotoxicity and is believed acting as a major trigger for cardiomyocyte death [40-42].
ROS such as superoxide and hydroxyl radical are formed when the quinine moiety of
anthracyclines is reduced to semiquinone [40-42]. These drugs are also able to combine with
iron, generating toxic and highly charged ROS. Also, mitochondrial damage induced by
ROS or directly by anthracyclines can further lead to respiratory chain failure and ROS
liberation [43, 44]. Endothelial nitric oxide synthase (eNOS) reductase domain converts
anthracycline to an unstable semiquinone intermediate that favors ROS generation [45].
Oxidative stress can also occur via induction of NOS, leading to nitric oxide and
peroxynitrite formation [46]. Oxidative stress leads to many deleterious effects on cell
membrane (lipid peroxidation) [47] and subcellular apparatuses, specifically cardiac
mitochondria [48]. Ultimately these changes can lead to cell death by apoptosis and
necrosis, and organ damage.

Cardiac mitochondria are the key mediators of anthracycline-induced cardiomyocyte death
[48] (Fig.1). Mitochondrial damage induced by ROS or directly by anthracyclines include,
but are not limited to, mitochondrial membrane damage due to lipid peroxidation, impaired
mitochondrial oxidative phosphorylation and adenosine triphosphate synthesis, impaired
mitochondrial calcium homeostasis resulting in loss of membrane stability [48], increased
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mitochondrial DNA mutations [49], impaired mitochondrial creatine kinase activity and
function [50], disruption of cardiac mitochondrial biogenesis [51], and mitochondrial
fragmentation [52]. All these events can trigger cardiomyocyte death by activating
mitochondrial intrinsic apoptotic pathway or necrosis. For example, mitochondrial calcium
overload triggers mitochondrial permeability transition (MPT), resulting in a loss of
mitochondrial membrane potential, mitochondrial swelling, and outer membrane rupture,
consequently release of cytochrome c, apoptosis inducing factor (AIF), and endonuclease G
(EndoG) from mitochondria. Following mitochondrial release, cytochrome c forms a
complex with the adaptor protein Apaf-1, dATP, and caspase 9, resulting in the formation of
apoptosome. Apoptosome formation leads to the proteolytic cleavage and concomitant
activation of caspase 9. Active caspase 9 directly cleaves and activates caspase 3. When a
critical amount of activated caspase 3 is present within a cell, apoptosis is elicited. In
addition, MPT can also trigger necrosis through inducing inner membrane rupture. Multiple
studies have shown that anthracyclines induce cardiomyocyte apoptosis via the
mitochondrial intrinsic pathway [16, 53-57].

In addition to mitochondrial damage, numerous signaling pathways are activated by ROS or
by anthracyclines leading to the activation of the intrinsic apoptotic pathway. Cytochrome c
release from mitochondria is regulated by the members of the Bcl-2 family, which includes
three groups: anti-apoptotic members Bcl-2, Bcl-XL, and Mcl-1, pro-apoptotic members Bax
and Bak, and BH3 only proteins such as Bad, Bid, Nix and BNip3 that enhance apoptosis
via inhibition of anti-apoptotic Bcl-2 proteins or activation of pro-apoptotic Bax and Bak.
Activation of BH3-only proteins by stress stimuli promotes Bax/Bak translocation from the
cytosol to the outer membrane of mitochondria, resulting in increased mitochondrial outer
membrane permeabilization (MOMP), leading to protein release from the intermembrane
space to the cytoplasm, particularly the apoptogenic molecule cytochrome c. Anthracycline-
induced cardiomyocyte apoptosis is associated with increased Bax/Bcl-2 ratio and down-
regulations of anti-apoptotic factors, which can result from multiple mechanisms which
include, but are not limited to, 1) activation of p53 tumor suppressor protein leading to
increased Bax expression [58, 59]; 2) down-regulation of transcriptional factor GATA-4
leading to decreased Bcl-XL expression [57, 60]; 3) activation of the stress-activated protein
kinase c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)
[56, 61, 62]; 4) down-regulation of apoptosis repressor with a caspase recruitment domain
(ARC) (mediated by ubiquitin-proteasome system mediated degradation) leading to
increased Bax translocation to mitochondria [63, 64]; 5) inactivation of PI-3K/Akt survival
pathway which has multiple impacts on apoptotic signaling [51, 65-68]; 6) dysregulation of
a phosphodiesterase 3A/inducible cAMP early repressor feedback loop resulting in
decreased Bcl-2 expression [69].

In addition to the activation of the intrinsic mitochondrial apoptotic pathway, activation of
extrinsic apoptotic pathway also contributes to anthracycline-induced cardiomyocyte
apoptosis [70-73]. In the extrinsic pathway, death ligands, such as FasL and TNFα, bind
their receptors and stimulate recruitment of the adaptor proteins Fas-associated via death
domain (FADD) and TNFR associated death domain (TRADD). FADD and TRADD recruit
caspase 8 into a complex named death-inducing signaling complex (DISC), where it
undergoes dimerization and concomitant activation. Activated caspase 8 then activates
caspase 3 directly or indirectly through the mitochondria via activation of Bid which
translocates to mitochondria and activates Bax and Bak to trigger the release of cytochrome
c. Anthracyclines activate the extrinsic apoptotic pathway by several mechanisms which
include 1) activation of nuclear factor-activated T cell-4 (NFAT4) by increased
mitochondrial ROS production and activation of the calcium/calcineurin signaling pathway,
leading to up-regulation of Fas/FasL [74]; 2) activation of transcription factor NF-κB by
ROS leading to increased Fas/FasL and p53 [75-77]; 3) down-regulated expression of FLIP,
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a FLICE/caspase-8 inhibitory protein, by ROS thereby sensitizing Fas-mediated apoptosis
[72]; 4) down-regulation of ARC, an endogenous inhibitor of extrinsic pathway through
interaction with Fas, FADD, and caspase 8 to prevent the formation of DISC [63, 64].

Additional mechanisms for anthracycline-induced apoptosis include endoplasmic/
sarcoplasmic reticulum (ER/SR)-mediated apoptotic pathway leading to the activation of
caspase 12 [78], and caspase-independent but AIF- and/or EndoG-dependent apoptosis
[79-82]. Although a majority of the studies documented the involvement of apoptosis in
anthracycline-induced cardiotoxocity, other reports have challenged the induction of
apoptosis in these pathologies [83-85]. This controversy may be explained by the low
prevalence of cardiomyocyte apoptosis in these hearts (typically <1%) and a wide variety of
experimental conditions used in the studies including differences in dosage and frequency of
anthracycline administration, in timing of assays, and in animal species and so on [86].

Potential therapeutic targets in anthracycline-induced apoptosis
Several approaches have been used to reduce the incidence of anthracycline-induced
cardiotoxicity [11, 12, 87]. These strategies includes 1) dose limitation; 2) close cardiac
monitoring; 3) alteration of dosage schedule such as using low-dose prolonged continuous
infusion; 4) development of new anthracycline analogs that retain chemotherapeutic
potential but with reduced cardiotoxicity; 5) liposome-encapsulation which limits the drugs
to escape the tight capillary junctions of the heart, but not the discontinuous capillary system
in tumors; 6) the administration of protective agents such as antioxidants, iron chelators and
free radical scavengers. Although many efforts have been focused on reducing
anthracycline-associated cardiotoxicity, it continues to have a high incidence.

Therapeutic blockage of cardiomyocyte programmed death is obviously a challenge that
might require identification of numerous players in the apoptotic cascade and the right time-
point to begin treatment without compromising anthracycline toxicity to tumor cells.
Inhibition of the propagation and execution stages of anthracycline-induced apoptosis, e.g.
inhibition of caspases may delay or block cell death and could be used to recover cardiac
function. Therefore, a combination of an antiapoptotic therapy together with other
cardioprotective therapies may be more effective. In addition, models of anthracycline-
induced cardiotoxicity will probably help clarify the significance of combined therapies.
Future novel cardioprotective therapeutic strategies might be tested in both the intrinsic and
extrinsic apoptotic pathways using genetic and biochemical approaches. In keeping with this
view, unraveling the sequence of key apoptotic factors recruited during anthracycline-
induced apoptosis should enable us to identify regulatory molecules to be targeted for
producing an optimal effect.

Caspase inhibitors has been shown to be effective in reducing myocardial reperfusion injury,
which could at least be partially attributed to the attenuation of cardiomyocyte apoptosis [88,
89]. Inhibition of apoptotic DNA fragmentation and nuclear cleavage may block
programmed cell death, however, blockage of earlier signaling steps required for
anthracycline-induced apoptotic nuclear fragmentation might work better to ensure cell
survival. For instance, blocking MOMP is likely to maintain long-term survival by
abolishing the killing functions of downstream molecules including caspases. In fact MOMP
inhibition can also block caspase-independent cell death found in autophagic or necrotic
death. Therefore, inhibition of MOMP may have a wider range of cardioprotective actions
than inhibition of caspases. MOMP can be blocked by the antiapoptotic proteins of the Bcl-2
family and is proven to have very effective cytoprotective effects in various tissues
including the heart [90-93]. However, inhibition of mitochondrial permeabilization may not
block cell death in conditions in which caspase activation is activated via the external
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pathway or, for instance, by of IAP (Inhibitor of Apoptosis Protein) antagonists, where cell
death can occur without of MOMP.

Differences in anthracycline-induced cardiotoxicity in neonatal, young and
adult, and old hearts

As suggested by clinical studies, children and adolescents are particularly susceptible to the
cardiotoxic effects of anthracycline chemotherapy [19, 28, 29]. Children treated before the
age of 4 years are especially vulnerable [29]. Potential underlying mechanisms include, but
are not limited to, 1) increased cardiomyocyte apoptosis as neonatal cardiomyocytes appear
to be more susceptible to doxorubicin-induced apoptosis compared to adult cardiomyocytes
[94]; 2) impaired cardiac growth resulting in inadequate left ventricular mass and
cardiomyopathy in younger patients whose hearts are less developed [28]; 3) increased
proportion of fat in younger children (also in female sex) resulting in more sustained
exposure and resultant cardiotoxicity due to the lipophilic nature of anthracyclines [95]; 4)
cardiomyocyte atrophy and myofiber disarray which is observed in anthracycline treated
juvenile mice [96]; 5) increased anthracycline-sensitive cardiac transcription factors in
younger hearts including cardiac ankyrin repeat protein (CARP) which is present at a higher
level in neonatal hearts than in adult hearts [97, 98]; 6) increased number of cardiac
progenitor cells in younger hearts which can be more sensitive to anthracycline-induced
cytotoxicity resulting in impaired cardiac regenerative capacity [99, 100]. It is possible that
anthracycline-induced loss of cardiomyocytes, together with early damage of cardiac stem
cells in pediatric patients, can cause permanent cardiotoxicity among long-term cancer
survivors. Another effect of age is increased sensitivity in the old age group (more than 65
years) [101], possibly due to the alteration of doxorubicin pharmacokinetics [102, 103].

Decreased apoptotic potential has been demonstrated in postmitotic cells such as
cardiomyocytes [104], skeletal muscle cells [105], and neuronal cells [106]. Reduced
expression levels of Apaf-1, caspases, and some pro-apoptotic members of the Bcl-2 family,
may contribute to the reduced apoptotic potential in postmitotic cells [82, 104-107]. Rapid
down-regulation of key apoptotic regulatory proteins including Bim, Apaf-1 and caspase 3
was observed in mouse heart, from neonate to adult [82, 107]. Recent in vitro studies also
support increased anthracycline-induced apoptotic signaling in neonatal cardiomyocytes
compared with adult cardiomyocytes, associated with significant down-regulation of pro-
apoptotic molecules [94]. The research in our laboratory has indicated that neonatal mouse
cardiomyocytes exhibit increased anthracycline-induced apoptosis compared to the
frequency in adult cardiomyocyte in vivo (Shi et al, unpublished observations). Given the
unique properties of cardiomyocytes during postnatal development, it is therefore important
to understand the molecular events involved in cardiomyocyte apoptosis in this age group.

Conclusion and future directions
A large body of experimental evidence indicates that cardiomyocyte death through apoptosis
and necrosis is a primary contributor to the progression of anthracycline-induced
cardiomyopathy. Excessive oxidative stress, DNA damage, changes in calcium handling and
cellular contractility, suppression of transcription factors that regulate cell survival and
sarcomere protein synthesis, and disruption of sarcomere stability are identified as
contributors to the mechanisms of cardiomyocyte death. These experimental results are
supported by clinical data. Dexrazoxane, the only cardioprotective drug currently available
clinically, is an intracellular iron chelator which has been proven to reduce cardiotoxicity
including cardiomyocyte death induced by anthracyclines, via removing iron from its
complex with anthracyclines, thereby reducing ROS formation [108-110]. Carvedilol, an
adrenergic blocking agent with potent anti-oxidant activity, has been found to be protective
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against anthracycline-induced ROS generation and apoptosis in experimental studies [111,
112] and in clincial trials with adult patients undergoing anthracycline therapy [113].
Combined treatment of antharcyclines and trastuzumab, an antibody targeting the erbB2,
shows synergistic cardiotoxic potential in metastatic breast cancer patients [114]; the
increased cardiotoxicity is attributable to the inhibition of PI-3K/Akt-mediated survival
signaling through inhibiting neuregulin/erbB2 interaction by trastuzumab resulting in
increased apoptosis and necrosis in response to anthracycline treatment [65, 115].

Numerous studies evaluating anthracycline-induced cardiomyocyte death were performed in
vitro or in vivo with a time window of hours or days after exposure to anthracyclines at high
concentrations. Future studies using long-term animal models should be performed to
evaluate the contribution of different types of cardiomyocyte death to the chronic and
delayed anthracycline-induced cardiotoxicity associated with clinically relevant doses of the
drugs. In addition to apoptosis and necrosis, future research should determine the
contribution of other forms of cell death such as autophagy and senescence as well as the
relative importance of each form of cell death in anthracycline-induced cardiotoxicity,
especially the late-onset cardiotoxicity. As mentioned above, the mechanisms for the late-
onset anthracycline cardiac toxicity in children remain under-explored. Future research
should continually validate the essential mechanisms and develop therapeutic strategies to
prevent premature cardiomyocyte death in pediatric patients who need anthracycline
treatment.

Although considerable efforts to prevent cardiotoxicity have been made, a significant
portion of patients, especially children, are still threatened by heart failure. At present, there
is no general accepted method to provide selective protection of the heart from damage
induced by anthracyclines. Knowledge derived from basic research has provided an
increasing number of potential therapeutic targets for developing new strategies of
cardioprotection against anthracycline-induced cardiotoxicity. Continuous efforts in
elucidating the pathogenic mechanisms and identifying new therapeutic targets will certainly
be helpful for the development of more effective therapies to minimize the most serious
adverse effect of this broadly used anticancer agent in order to increase cancer cure rate and
improve the life quality and expectancy of cancer survivors.
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Figure 1.
Simplified mitochondrial pathway of anthracycline-induced cardiotoxicity via activation of
distinct apoptotic mechanisms following mitochondrial outer membrane permeabilization
(MOMP) and/or mitochondrial permeability transition (MPT).
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