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Abstract
Transcription factors with aberrant activity in disease are promising yet untested targets for
therapeutic development, particularly in oncology. Directly inhibiting or activating the function of
a transcription factor requires specific disruption or recruitment of protein-protein or protein-DNA
interactions. The discovery or design of small molecules that specifically modulate these
interactions has thus far proven to be a significant challenge and the protein class is often
perceived to be ‘undruggable.’ This review will summarize recent progress in the development of
small-molecule probes of transcription factors and provide evidence to challenge the notion that
this important protein class is chemically intractable.
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Introduction
Cells use transcription factors to regulate specific gene expression patterns in response to
developmental and environmental cues. Transcription factors form specialized multiprotein
complexes in a combinatorial fashion to regulate expression at the promoters of genes
involved in cellular responses [1]. Transcription factors that become overactive in cancers
are promising therapeutic targets as they mediate the disproportionate transcription of genes
whose products are required for tumor growth and metastasis. In 2002, James Darnell of
Rockefeller University made a highly publicized call for a new transcription factor-based
focus in medicine, especially with respect to cancer [2]. He argued that selected transcription
factors having increased activity in a large percentage of cancers may serve as the most
direct and promising targets for therapeutic development as they are less numerous than
upstream signaling enzymes and reside at a focal point in deregulated pathways. Darnell
noted the dearth of small molecules that directly modulate transcription factors other than
nuclear receptors, which bind to endogenous small-molecule ligands and selected
xenobiotics. He acknowledged the challenges associated with developing direct small-
molecule modulators of transcription factors. Unlike enzymes, directly modulating the
function of a transcription factor requires specific disruption or recruitment of DNA-protein
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or protein-protein interactions. The discovery or design of small molecules that specifically
modulate these interactions has historically proven to be a challenge and the protein class is
often perceived to be recalcitrant or ‘undruggable.’ Darnell challenged chemical biologists
in his closing statement “Finally, a query might be offered: what is the benefit to medicine in
all of the twenty-first century promise of proteomics if we cannot selectively inhibit protein-
protein interactions?” Darnell’s challenge is especially significant considering that the
human genome encodes 2,000–3,000 transcription factors and this class may represent more
than 10% of all genes [3,4]. Genome-wide association and linkage studies are generating a
growing list of disease-relevant transcription factors for which relatively little is known
about structure or function. Notable examples include THAP1, a regulator of cell
proliferation associated with early-onset torsion dystonia [5] and BCL11A, a stage-specific
regulator of fetal hemoglobin and emerging target in β-hemoglobin disorders [6]. In the
absence of small-molecule probes, several other approaches have been used to modulate
transcription factors including antisense oligonucleotides [7], transcription factor decoy
oligonucleotides [8], poylamides [9], RNAi approaches [9] and stapled peptides [10].
Whether motivated to develop therapeutics or to develop probes of function, chemical
biologists have responded to Darnell’s challenge by rallying around this important and
challenging protein class. This review will highlight recent developments involving small
molecules that directly modulate selected members of the transcription factor classes Darnell
noted as attractive anti-cancer targets- nuclear receptors, resident nuclear factors, latent
cytoplasmic transcription factors, and fusion proteins arising from chromosomal
translocations [2,11]. The review will emphasize research published from 2008 onward. The
reader is referred to several earlier review articles that provide a comprehensive summary of
small molecules modulators of transcription described before 2008 [12–14].

Nuclear Receptors
The human genome contains 48 members of the nuclear receptor (NR) superfamily of
transcription factors [15]. NRs regulate gene expression upon binding to a small-molecule
ligand such as a vitamin or hormone that modulates interactions with coactivators or
corepressors by inducing a conformational change. Drugs that modulate selected NRs have
been used clinically for many years and include agonists, antagonists, inverse agonists, and
selective receptor modulators. Despite being druggable, challenges and opportunities
associated with developing novel small-molecule modulators of NRs remain. First, a number
of NRs, called orphan receptors, have no assigned endogenous ligand partner. Several
orphan receptors are associated with human disease and considerable effort has been placed
on identifying both endogenous ligands and novel synthetic ligands for these NRs [16]. For
example, nuclear receptor HNF4α, a regulator of hepatic lipid metabolism implicated in
diabetes and atherosclerosis, was recently ‘deorphanized’ when linoleic acid (Figure 1a) was
identified as an endogenous ligand using an affinity isolation/mass spectrometry approach
[17•]. Salbert and coworkers identified novel direct nitronapthofuran activators of HNF4α
using a yeast one-hybrid screen [18•]. The nitronapthofurans bound directly to the ligand
binding domain of HNF4α and Compound 5 (Figure 1a) enhanced HNF4α-mediated
transcription in HepG2C3A cells whereas lineolic acid does not. Early efforts to develop
novel NR modulators focused on the development of ligands that targeted the ligand binding
domain and altered receptor conformation such that transactivation was dissociated from
transrepression activity [19]. The dissociated ligands typically had an improved therapeutic
index relative to classical NR agonists as they were capable of inducing transrepression with
little transactivating activity and they were useful tools in studying the role of NRs in
inflammation. More recently, several groups have developed direct inhibitors of interactions
between NRs and coactivator proteins (CBIs). Guy and colleagues developed β-
aminoketones that disrupt steroid receptor coactivator SRC2 binding to the thyroid receptor
(TR) with submicromolar IC50s (Figure 1b) [20,21]. Several compounds inhibit binding of
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estrogen receptor (ER) to SRCs and estrogen-induced transcriptional activity with single-
digit micromolar IC50 values, including amphipathic benzenes, guanylhydrazones, and
compounds containing a pyrimidine core [22–24]. Katzenellenbogen and coworkers further
explored the pyrimidine core using a structure-based peptidomimetic approach to develop
several CBIs that selectively target the androgen receptor (AR) interaction with SRC over
the ER/SRC interaction [25••]. Small molecules capable of inhibiting AR transcriptional
activity and cell proliferation by blocking AR-SRC interactions involving agonist-occupied
receptors may be used to treat androgen-independent prostate cancer or patients that have
developed resistance to anti-androgen therapies [25••,26]. New approaches to NRs,
particularly those involving small molecules that target interactions with other proteins
rather than the ligand-binding pocket of the receptor, may lead to novel therapeutics for
diseases involving NR malfunctions.

Resident Nuclear Factors
Resident nuclear factors (RNFs) enter the nucleus upon synthesis where they bind to DNA
constitutively and are activated by serine/threonine phosphorylation as the terminal step in
signaling cascades [11]. Oncogenic proteins affect serine kinase cascades that terminate in
phosphorylation of RNFs, leading to altered transcriptional patterns and cellular phenotypes
[2,11]. RNFs stimulate transcription by associating with a variety of transcription factors
and coactivators in multiprotein complexes. Hundreds of proteins fall into this class and
most genes are regulated in part by one or more of these transcription factors [11]. Several
RNFs are aberrantly overexpressed in cancers including the prolific oncogene c-Myc
[2,14,27]. Historically, efforts have focused on understanding the pathways that modulate
the function of these factors and targeting the signaling enzymes was considered to be a path
forward for therapeutic development. Small molecules that restore overactive transcription
factors to normal levels of transcription may provide a novel approach toward treating
selected cancers. Unlike NRs, these factors are considered to be ‘undruggable’ as they lack
ligand binding domains or intrinsic enzymatic activities. Potential strategies for modulation
include perturbing DNA-binding capacity or protein-protein interactions with other
transcription factors or cofactors. Designing such molecules has proven to be a challenge as
many of the protein domains involved in DNA recognition or protein recognition are
intrinsically disordered in the absence of interacting partners [14,28]. Increasingly,
interactions involving intrinsically disordered (ID) proteins are considered accessible with
small molecules [29–31••]. Identifying small molecules that prevent disorder-to-order
transitions associated with binding to a partner protein or DNA may trap selected proteins,
including many transcription factors, in an inactive state and may represent a general
strategy for therapeutic development for ID proteins.

Several RNFs have been successfully modulated directly with small molecules [12–14]. A
number of direct inhibitors of c-Myc have been developed in the last decade and have been
the subject of a previous review by Berg [14]. One of the first success stories involves the
peptide mimetic IIA6B17 (Figure 2a), developed by Vogt and coworkers, that inhibits
formation of the c-Myc/Max heterodimer [32] and transcription mediated by c-Myc in a
reporter gene assay with an IC50 of 28 µM [33]. These studies paved the way for the design
or discovery of new antagonists of c-Myc/Max [31••–43] or c-Myc/Max-DNA interactions
[44,45] with comparable or improved potencies in binding assays and cellular studies
involving transcription or transformation (Figure 2a). In one example, Prochownik and
coworkers executed a high-throughput yeast-two hybrid screen to identify seven compounds
that modestly inhibited the c-Myc/Max interaction and HL60 cellular proliferation [38].
They performed subsequent computational studies to prepare improved derivatives of the
thioxothiazolidinone 10058-F4 (IC50 = 49 µM) [39,40,42]. Representative derivatives
include 28RH-NCN-1 and #764 with IC50s in the HL60 proliferation assay of 29 µM and
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4.6 µM respectively [39]. Metallo and coworkers performed NMR studies to identify the
residues of Myc that were directly involved in binding to the original seven compounds and
identified three distinct binding sites for the molecules in the bHLHZip domain [31••,43].
Importantly, they demonstrated that the compounds can bind independently and
simultaneously at all three sites, inducing only local changes in conformation and preserving
the overall disorder of c-Myc. These compounds inhibit heterodimer formation with Max as
they trap c-Myc in an ID state.

As reviewed previously [12–14], small molecules modulate a variety of other RNFs
including CREB binding protein (CBP) [46–50] and C/EBPα [50]. These small molecules
include compounds that inhibit transcription as well as compounds that mimic the functions
of transcriptional activation domains [50]. More recently, Shaw and coworkers described a
stereochemically complex lactam carboxamide (Figure 2b) prepared through diversity-
oriented synthesis that inhibits binding of HOXA13 to DNA with an IC50 of 6.5 µM and
inhibits HOXA13-mediated repression of transcription in a reporter-gene assay [51]. In
another example, Bushweller and colleagues used a combined virtual screening/FRET
approach to identify 2-aminothiazole compounds that inhibit the interaction between CBFβ
and Runx1 with IC50 values below 10 µM [52]. 2-aminothiazole 17 (Figure 2b) exhibited a
dose-dependent reduction in proliferation of ME-1 leukemia cells expressing the CBFβ-
SMMHC transcription factor translocation fusion required for leukemogenesis. Cress and
coworkers also used a virtual screening approach to identify putative small-molecule binders
to the E2F4/DP2 heterodimer combined with EMSA assays to identify HLM006474 (Figure
2b) as an inhibitor of intracellular binding of E2F4 to DNA with an IC50 of 29.8 µM [53••].
The compound was shown to increase apoptosis as well as inhibit the proliferation and
subsequent invasion of A375 melanocytes into an underlying dermal substrate. Although the
compound is not as potent as some of the other inhibitors of transcription factors described
in this review, the results provide a proof of principle for E2F blockers as anti-proliferative
agents. More work is required to develop small-molecule probes for all members of the class
but these early examples demonstrate that RNFs are chemically tractable.

Latent Cytoplasmic Factors
Latent cytoplasmic transcription factors (LCTFs) reside in the cytoplasm in an inactive form
until activation is triggered by a cell surface receptor-ligand interaction [11]. A wide variety
of mechanisms exist for activating these factors, including phosphorylation by serine or
tyrosine kinases at the cell surface (e.g. SMADs, STATs), proteolytic regulation in
combination with post-translational modification events (e.g. HIFs, NF-κB, Notch, β-
catenin), and secondary messenger signaling combined with phosphorylation events (e.g.
NFAT). Upon activation, these transcription factors translocate into the nucleus where they
interact with other transcription factors, including RNFs, to regulate transcription.

As reviewed previously [14,54], a number of direct small-molecule inhibitors have been
developed for LCTFs such as the STATs [54–64] and HIF-1 [65–72]. Small molecules have
been identified that inhibit STAT3 by directly blocking binding to DNA, including the
natural product galiellalactone [54] and the platinum (IV) complex IS3 295 [56] (Figure 3a).
Several small molecules also inhibit the function of the STAT3 SH2 domain, involved in
STAT activation and dimerization (Figure 3a) [57–62]. Structure-based virtual screening
approaches lead to the discovery of STA-21 as an inhibitor of STAT3 DNA-binding [57,58]
as well as S3I-201 and SF-1-066 as inhibitors of STAT3 dimerization [60], each compound
affecting STAT3 function in cells. Berg and coworkers identified Stattic, an inhibitor of
STAT3 activation and dimerization, through a high-throughput fluorescence polarization-
based screen of more than 17,000 compounds [60]. The compound inhibits STAT3
dimerization in vitro with an apparent IC50 of 5.1 µM and with selectivity over other STAT
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family members. Stattic also inhibits translocation of STAT3 into the nucleus of HepG2
liver carcinoma cells and induces apoptosis of STAT3-dependent cancer cell lines. Berg and
coworkers extended this screening approach to identify chromone-based inhibitors of
STAT5b such as nicotinoyl hydrazone 1 (Figure 3a) [64].

Like the STATs, several compounds have been discovered that target binding of HIF-1 to
DNA or HIF-1 dimerization through PAS domains (Figure 3b) [65–72]. The compounds
include the natural product echinomycin [66], a potent yet nonspecific intercalator that
blocks HIF-1 DNA binding and transcription, and NSC 50253 [67], a modest inhibitor of
PAS-A domain interactions involving HIF-1α and HIF-1β. Semenza and coworkers recently
reported that acriflavine, a topical antiseptic and dye, binds directly to HIF-1 and HIF-2,
inhibits HIF-1 dimerization and transcriptional activity with IC50s around 1 µM, and
inhibits tumor xenograft growth [68]. Gardner and colleagues recently reported a crystal
structure of the HIF2α PAS-B domain with THS-044, a novel ligand with a KD of 2 µM that
was identified using an NMR-based ligand binding assay. The crystal structure reveals a
preformed solvent accessible cavity [69] and the same group published a separate study
describing a binding-competent open protein conformation [70••]. Although the functional
consequences of the ligand in cells is not known, the model may assist in virtual screens or
rational design of HIF2 modulators. The epidithiodiketopiperazine (ETP) chetomin [71] was
previously reported to inhibit the interaction of HIF-1α with p300/CBP although it was not
clear whether the compound targeted the LCTF or the coactivator. In a recent report,
Olenyuk and coworkers prepared a dimeric ETP antagonist of the HIF-1α-p300/CBP
interaction called ETP3 [72•]. They demonstrated that both chetomin and ETP3 bind to the
RNF p300 with submicromolar affinity and induce unfolding of p300 at 10 µM. Chetomin
and ETP3 disrupt the HIF-1α-p300/CBP interaction with IC50s of 0.54 µM and 1.5 µM
respectively and inhibit HIF-1a inducible promoter activity at submicromolar concentrations
[72•].

Few LCTFs beyond the STATs and HIF-1 have been directly modulated with small
molecules. In one recent example, Schultz and colleagues describe a small molecule named
stauprimide (Figure 3c) that increases the efficiency of directed embryonic stem cell (ESC)
differentiation in conjunction with defined extracellular signaling cues [73••]. The
compound, which resembles known kinase inhibitors staurosporine and UCN-01, was
identified from a collection of 20,000 kinase-biased compounds through a high-content
imaging screen for definitive endoderm. Stauprimide inhibited several kinases at 5 µM but it
only inhibited Flt3 and MLK1 at 500 nM, a concentration close to the EC50 in the endoderm
differentiation assay. Treatment with staurosporine, UCN-01, and Flt3 or MLK inhibitors in
the ESC differentiation assays did not increase differentiation. The authors identified NME2,
an LCTF that is highly expressed in ESCs and that regulates c-Myc expression, as a direct
target of stauprimide using affinity-based target identification methods. shRNA knock down
of NME2 increased differentiation efficiency to levels similar to those observed during
stauprimide treatment. The authors demonstrated that stauprimide inhibits translocation of
NME2 to the nucleus and represses c-Myc expression in ESCs. Targeting NME2 may
provide an alternative strategy to restoring aberrantly overactive c-Myc to normal levels in
selected cancers. This example illustrates an unbiased approach to discovering a small-
molecule modulator of a transcription factor using a phenotypic assay.

Targeting oncogenic translocation fusion proteins
Fusion protein products arising from chromosomal translocations involving transcriptional
regulators are attractive targets for therapeutic development. Translocations that give rise to
gene fusions play an important role in tumorigenesis [74–76]. A recent review noted that at
least 358 gene fusions involving 337 different genes are known and have been described in
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all main subtypes of human neoplasia, accounting for roughly 20% of human cancer
morbidity [76]. More than 50% of acute myeloid leukemia (AML) cases are associated with
non-random translocation events and the resulting fusion proteins often contain a
transcription factor that retains the DNA-binding motif fused to an unrelated protein that
interacts with co-repressor complexes [75]. AML1-ETO is an example of a common
transcription factor translocation (TFT) that functions via repression of myeloid
development genes and differentiation block [77]. Small molecules that selectively target
oncogenic AML1-ETO over the normal full-length AML1 and ETO proteins may provide a
novel therapeutic strategy for AML that may be explored in combination with approved
drugs such as retinoic acid or vorinostat [75,77]. As with the other transcription factor
classes described in this review, TFTs are considered to be ‘undruggable’ proteins and no
selective therapeutics for important TFT targets such as AML1-ETO exist.

Toretsky and colleagues recently published a seminal proof of principle study involving the
oncogenic fusion protein EWS-FLI1 that arises from the t(11;22) translocation characteristic
of Ewing’s sarcoma family tumors (ESFTs) [78••]. The translocation fuses the amino
portion of EWS to the carboxy portion of ets family DNA binding protein FLI1 (Figure 4a).
Like several of the transcription factors previously discussed, EWS-FLI1 is an intrinsically
disordered protein that engages in several protein-protein interactions as part of
transcriptional complexes [29]. Toretsky and coworkers reasoned that the flexible TFT
protein would have a greater potential for small-molecule binding due to higher induced-fit
sampling probabilities and that the sites of interactions with other proteins may serve as
binding sites for small molecules. They used a direct binding assay involving surface
plasmon resonance to screen 3,000 small molecules leading to the discovery of NSC635473
(Figure 4b) as a direct binder to EWS-FLI1. The compound reduced direct binding of
partner protein RNA helicase A (RHA) in vitro. An improved compound, YK-4-279 (Figure
4b), binds to EWS-FLI1 with KD of 9.48 µM and inhibits EWS-FLI1 binding to RHA in
vitro and in ESFT cells at 10 µM. YK-4-279 also exhibits dose-dependent inhibition in a
luciferase reporter assay, induces apoptosis in ESFT cells, and reduces the growth of ESFT
orthotopic xenografts. Current efforts involve medicinal chemistry and pharmacology
studies aimed at advancing an improved analog of YK-4-279 into clinical trials. This study
is a pioneering example of targeting and modulating oncogenic TFTs in cells.

Conclusions
Darnell challenged the medical and chemical biology communities to innovate in small-
molecule discovery and development aimed at transcription factors, particularly those that
become overactive in a variety of cancers [2]. Several examples of small molecules that
directly bind and modulate function of transcription factors now exist, including compounds
that modulate protein-protein interactions and protein-DNA interactions [12–14]. These
compounds come from various sources and include small and flat compounds [18•,52] as
well as large and stereochemically complex natural products [66,71] and products of
diversity-oriented synthesis [51,79]. Progress has been made for most classes of recalcitrant
transcription factors including RNFs, LCTFs, and oncogenic TFTs. Novel approaches to
modulating druggable NRs using coactivator binding inhibitors have also been developed. It
should be noted that few of the modulators of transcription factors developed to date achieve
submicromolar potencies. Many of these early modulators stem from high-throughput
screens or in silico screens and may be improved using additional knowledge gained from
structure-activity relationship studies, structural biology efforts, and studies aimed at
mechanism of action in cells. While these examples demonstrate that transcription factors
are indeed chemically tractable, it is important to note that the chemical biology community
has yet to develop general and systematic strategies for identifying modulators for any
transcription factor of interest. Most of the approaches used to date required knowledge
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about structure or function in order to develop assays aimed at preventing or disrupting a
specific interaction or to execute structure-based virtual screens. New technologies that can
be applied to large sets of transcription factors in a general manner will expedite discovery
and provide clues about specificity. Following a similar rationale to that provided by
Toretsky and coworkers, Koehler et al. used high-throughput and direct binding assays
involving small-molecule microarrays (SMMs) to identify a direct modulator of the yeast
transcription factor Hap3p in cells known as haptamide [79]. Unbiased SMM binding assays
involving purified full-length transcription factors can identify multiple types of probes in a
single screen, including compounds that target DNA binding domains and ligand binding
domains. Assay positives may inhibit any number of interactions with partner proteins or
DNA either directly or through allosteric influence of protein conformation. The SMM
approach offers unprecedented scope and throughput for this target class, allowing screens
of various types of factors, including all of the classes described in this review, against a
common collection of diverse compounds using essentially the same protocol [80]. Koehler
and coworkers recently undertook a screen involving 100 structurally and functionally
diverse transcription factors using SMMs containing roughly 20,000 small molecules.
Details about this screen will be provided in a subsequent publication and we hope this
effort increases the number of direct ligands to transcription factors dramatically. Through
the efforts of many labs around the globe, the chemical biology community has already
demonstrated that transcription factors are chemically tractable. By escalating this
community effort, we may develop a small-molecule toolkit to comprehensively study
transcriptional regulation and rise to Darnell’s challenge of developing therapeutics against
overactive, cancer-specific transcription.
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Figure 1.
Novel modulators of nuclear receptors. (a) Recently discovered ligands for HNFα include
endogenous linoleic acid and synthetic nitronapthofuran compound 5. (b) Coactivator
binding inhibitors that target TR-SRC (β-aminoketone 17{3,3,4}), ER-SRC
(guanylhydrazone 23, amphipathic benzene 3c, 6-alkyldiaminopyrimidine 18b), and AR-
SRC interactions (AR-selective diaminopyrimidine 14).
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Figure 2.
Small-molecule modulators of resident nuclear factors. (a) Selected small-molecule
inhibitors of c-Myc function, including inhibitors of c-Myc/Max heterodimer formation and
c-Myc/Max DNA binding. (b) Small-molecule modulators of HOXA13 (lactam
carboxamide 31), E2F (HLM006474), and CBFB-RUNX2 (2-aminothiazole 17).
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Figure 3.
Representative small-molecule modulators of latent cytoplasmic transcription factors. (a)
Direct STAT modulators (b) Direct modulators of HIF-1 or p300/CBP (c) Modulator of
NME2.
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Figure 4.
Targeting the oncogenic EWS-FLI1 transcription factor translocation product with small
molecules. (a) Schematic representation of the EWS-FLI1 fusion protein resulting from the
t(22;11) translocation. The RNA binding domain (RBD), ETS DNA binding domains
(DBD), and transactivation domains (TAD) are indicated. The fusion gene can vary
depending on whether exons 5–9 or 6–9 of FLI1 are involved. (b) Small molecules that
disrupt the EWS-FLI1 interaction with RNA helicase A.
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