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Abstract
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention
and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and
differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance
for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary
compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects
of many dietary components have been reported for both in vitro and in vivo studies. Recently, a
number of studies have found that several dietary compounds can directly or indirectly affect
cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common
natural dietary compounds for their impact on self-renewal pathways and potential effect against
cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for
their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin,
sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and
vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways.
Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane
has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These
studies provide a basis for preclinical and clinical evaluation of dietary compounds for
chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies
for cancer management by reducing cancer resistance and recurrence and improving patient
survival.
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1. Introduction
Cancer is the second leading cause of death in the United States. The first use of
chemotherapeutic agents to treat cancer was in the early twentieth century, which became
the basis of discovery and development of most current anti-cancer drugs (1, 2). Although a
large majority of chemotherapeutic drugs can considerably shrink tumor sizes (3), they often
fail to eradicate tumors. The cancer may eventually develop drug resistance and recurrence
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(3–7). In recent years, a great deal of research has demonstrated the existence of cancer stem
cells (CSCs) or tumor-initiating cells (TICs) in several human cancers (8–14). However,
most currently available therapeutic approaches, including chemotherapy and radiotherapy,
lack the ability to effectively kill these CSCs (3, 15–17). Therefore, this CSC population has
become a target for cancer prevention and therapy (7).

Since a large number of epidemiological studies have demonstrated an association between
consumption of fruits and vegetables and the reduced risk of various cancers, naturally-
occurring dietary compounds have received increasing attention for their efficacy in cancer
chemoprevention (18). The anti-cancer effects of many dietary components have been
reported for both in vitro and in vivo studies (19–26). This review aims to summarize the
potential impact of natural dietary compounds on CSC self-renewal based on CSC theory
and self-renewal signaling pathways.

2. Cancer Stem Cells
The CSC theory asserts that many types of cancer are initiated from and maintained by a
minor population of tumorigenic cells that are capable of continuous self-renewal and
differentiation (15, 27) (Figure 1A). This cell population undergoes unlimited proliferation
and gives rise to differentiated cells, developing new tumors phenotypically recapitulating
the original tumors (7) (Figure 1B). In addition, recent studies indicate that CSCs may be
responsible for tumor relapse and resistance to therapy (28, 29).

Evidence supporting the CSC model was initially obtained from acute myeloid leukemia
(AML) (30, 31). Dick et al. isolated a cell subpopulation with surface marker CD34+CD38−,
which was able to recapitulate the phenotypes of the original patient neoplasms along serial
passaging through multiple NOD/SCID recipient mice (8, 30, 32). Subsequent studies
support that solid tumors, including breast (9, 33), pancreatic (12, 34), brain (10, 35), colon
(11, 36, 37), liver (14), head/neck (38), ovarian (39, 40), and melanoma (13, 41) are also
driven and sustained by CSCs (31). The first work in isolation and characterization of CSCs
in solid tumors was conducted by Al-Hajj et al. (9). A breast cancer cell population
expressing the surface marker, CD44+CD24−/lowLin−, was able to initiate tumors with the
same heterogeneity as the primary tumor from 100 cells (9). Similarly, enzymatic activity of
aldehyde dehydrogenase 1 (ALDH) was also demonstrated to be a selective marker to enrich
for breast cancer stem/progenitor cells (33). These two phenotypes, ALDH-positive and
CD44+CD24−/lowLin−, were identified as possessing a small overlap that has the highest
tumorigenic capacity, generating tumors from as few as 20 cells (33). Recently, the
CD44+CD24+ESA+ and CD133+ subpopulations were found to harbor putative pancreatic
CSCs (12, 34), and an overlap was suggested to exist between these two populations (34).
These cell markers have been widely used to evaluate the ability of drugs to target cancer
stem/progenitor cells (42–44).

Another technique that has been developed to isolate and characterize cancer stem/
progenitor cells is tumorsphere culture (45–48). This is based on the ability of stem/
progenitor cells to grow in serum-free, non-adherent suspension as spherical clusters, while
differentiated cells fail to survive under the same condition (45, 46). Cancer stem/progenitor
cells are capable of yielding secondary spheres and differentiating along multiple lineages
(45). Decreases in tumorsphere formation in primary culture in the presence of drug
treatment and in subsequent passages that are cultured in the absence of drugs indicate an
inhibitory effect of the drug on self-renewal capacity of cancer stem/progenitor cells (42,
45).

Cancer stem cells are able to generate the diverse cells that comprise the tumor through
continuous self-renewal and differentiation (49). There is a reliable in vivo model often used
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to evaluate the drug efficacy against cancer stem cells (9, 49, 50). Immune-deficient mice
are first implanted with human cancer cells or human primary tumors. After treatment, the
dissociated tumor cells are analyzed for cancer stem cell population based on their specific
cell markers, and living tumor cells are re-implanted to a second group of mice which do not
receive any treatment (15). Tumorigenicity is then monitored in the recipient mice. For
example, the ability of breast cancer cells from the primary NOD/SCID xenografts to re-
generate tumors upon re-implantation in the mammary fat pads of secondary mice reflects
the inhibitory effect of the treatment on cancer stem cells (15). Failure of tumor initiation
indicates the effectiveness of the treatment against breast cancer stem cells.

3. Self-renewal Pathways of Cancer Stem Cells
CSCs produce the tumor mass through continuous self-renewal and differentiation, which
may be regulated by similar signaling pathways occurring in normal stem cells (3, 27).
Understanding the mechanisms that underlie the self-renewal behavior of CSCs is of
greatest importance for discovery and development of anti-cancer drugs targeting CSCs. So
far, several major pathways including Wnt/β-catenin, Hedgehog, and Notch have been
identified to play pivotal roles in CSC self-renewal (51–53).

3.1. Wnt/β-catenin Pathway
Wnt/β-catenin pathway was demonstrated to modulate cell proliferation, migration,
apoptosis, differentiation, and stem cell self-renewal (54–57). It has been shown that Wnt/β-
catenin signaling is implicated in the maintenance of CSCs of leukemia (58–60), melanoma
(61), breast (62, 63), colon (64), liver (65), lung (66) cancers. For example, over-expression
of β-catenin in stem cell survival pathway was shown to mediate the resistance of mouse
mammary stem/progenitor cells to radiation (63). Yang and his colleagues reported that
Wnt/β-catenin signaling promoted expansion of the hepatic progenitor cell population when
it is over-expressed in transplanted rat oval cells and when it is transiently expressed in adult
mice (65). Elimination of β-catenin abrogated the chemo-resistant cell population endowed
with progenitor-like features (65).

β-Catenin, the essential mediator of canonical Wnt signaling, participates in two distinct
functions in the cell, depending on its cellular localization. Membrane-localized β-catenin is
sequestered by the epithelial cell-cell adhesion protein E-cadherin to maintain cell-cell
adhesion (67). On the other hand, cytoplasmic accumulation of β-catenin and its subsequent
nuclear translocation, followed by cooperation with the transcription factors T cell factor/
lymphoid enhancer factor (TCF/LEF) as a transcription activator, eventually leads to
activation of Wnt target genes such as c-Jun, c-Myc, fibronectin, and cyclin D1 (27, 68–73).
Binding of Wnt proteins, a family of secreted proteins, to Frizzled receptors results in the
cytoplasmic accumulation of β-catenin (74). In the absence of Wnt signaling, β-catenin
forms a multi-protein complex with glycogen synthase kinase 3β (GSK3β), adenomatous
polyposis coli, casein kinase1α, and axin (75). When β-catenin is phosphorylated at Ser33/
Ser37/Thr41 by GSK3β, it is immediately subject to ubiquitin-proteasome degradation (75,
76).

The link between Wnt/β-catenin and PI3K/Akt pathway has been established by several
studies. Activated Akt (i.e., phospho-Akt Ser473) was shown to be able to phosphorylate
Ser9 on GSK3β, which may decrease the activity of GSK3β, thereby stabilizing β-catenin
(77–79). Furthermore, Korkaya et al. demonstrated that PI3K/Akt pathway is important in
regulating the mammary stem/progenitor cells by promoting β-catenin downstream events
through phosphorylation of GSK3β (15).
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3.2. Hedgehog Pathway
Another major pathway that is involved in stem cell self-renewal is hedgehog signaling
pathway (46, 51, 80, 81). For instance, Liu et al. have demonstrated that the hedgehog
pathway plays a crucial role in regulating self-renewal of normal and malignant human
mammary stem cells by utilizing both in vitro and mouse model systems (51). Another
recent study revealed the essential role of hedgehog-Gli signaling in controlling the self-
renewal behavior of human glioma CSCs and tumorigenicity (81).

In the absence of hedgehog ligands (Sonic Hedgehog, Desert Hedgehog, and Indian
Hedgehog), their transmembrane receptor Patched (Ptch) associates with Smoothened (Smo)
and blocks Smo function (27, 80, 82). When secreted hedgehog ligands bind to Ptch, Smo is
released, triggering dissociation of transcription factors, Gli1, Gli2, and Gli3 from Fused
(Fu) and suppressor of Fused (SuFu), leading to transcription of an array of genes, such as
cyclin D, cyclin E, Myc, and elements of EGF pathway (27, 80, 82, 83).

Sonic hedgehog pathway is also linked to transcription factor NF-κB signaling. It was
suggested that over-expression of sonic hedgehog is activated by NF-κB in pancreatic
cancer and pancreatic cancer cell proliferation is accelerated by NF-κB in part through sonic
hedgehog over-expression (84). Kasperczyk et al. further characterized sonic hedgehog as a
novel NF-κB target gene and mapped minimal NF-κB consensus site to position +139 of
sonic hedgehog promoter (85).

3.3. Notch Pathway
Notch signaling is known to control cell proliferation and apoptosis to modulate the
development of many organs (86). A number of recent studies have demonstrated that
Notch-activated genes and pathways can drive tumor growth through the expansion of CSCs
(46, 86–91). Notch pathway is believed to be dysregulated in CSCs, ultimately leading to
uncontrolled CSC self-renewal (86). For example, Notch pathway was shown to play an
important role in the self-renewal function of malignant breast cancer CSCs (52, 92).

Five Notch proteins, Notch-1 to Notch-4, have been identified to express as transmembrane
receptors in a variety of stem/progenitor cells (93). Binding of surface-bound ligands
(Jagged1, Jagged2, Delta-like1, Delta-like3, and Delta-like4) triggers serial cleavage events
at the Notch proteins by ADAM protease family and γ-secretase (93–95). Subsequently, the
intracellular domain of Notch is released and translocates into the nucleus, where it acts as a
transcription co-activator of recombination signal sequence-binding protein Jκ (RBP-J) to
activate downstream target genes, e.g., c-Myc, cyclin D1, p21, NF-κB (95–101).

Notch1 has been reported to cross-talk with NF-κB pathway in diverse cellular situations
(101–108). Specifically, Notch-1 is necessary for expression of several NF-κB subunits
(102, 109) and stimulates NF-κB promoter activity (102).

4. Targeting Self-renewal Pathways of Cancer Stem Cells by Natural Dietary
Compounds

The existence of CSCs has profound implications for cancer chemoprevention and therapy
(3). Since CSCs are more resistant to conventional therapies in comparison with
differentiated cells constituting the tumor bulk, combination of drugs that are directed
against CSCs and conventional chemotherapy would have the potential to overcome tumor
resistance, reduce relapse (27), and eventually improve patient survival. It was suggested
that targeting CSCs could be achieved by several strategies including sensitizing them to
chemotherapeutic agents, induction of differentiation, and inhibition of self-renewal
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signaling (7, 110). A plethora of naturally-occurring dietary compounds have been proven to
be promising chemoprevention agents against various types of cancer. A number of studies
have found that some dietary compounds can directly or indirectly affect CSC self-renewal
pathways (110). Herein, we review the current knowledge of some natural dietary
compounds with a focus upon their potential impact on CSC self-renewal pathways and
CSC survival (summarized in Table 1).

4.1. Curcumin
Curcumin is a well-known dietary polyphenol present in an Indian spice, turmeric, which is
usually used in preparation of mustard and curry (111). Curcumin possesses anti-
inflammatory and anti-oxidant activities (111, 112), and has been studied as a
chemoprevention agent in several cancer models (24, 113).

Jaiswal et al. suggested that curcumin induced caspase-3-mediated cleavage of β-catenin,
leading to inactivation of Wnt/β-catenin signaling in HCT116 intestinal cancer cells (114).
The work of Park et al. strengthened the point that curcumin decreased β-catenin/TCF
transcription activity in all tested cancer cell lines, including gastric, colon, and intestinal
cancer cells, which was attributed to the reduced amount of nuclear β-catenin and TCF-4
proteins (111). Moreover, analysis of gene transcription profile revealed that the expression
of Wnt receptor Frizzled-1 was potently suppressed by curcumin (115). Curcumin was also
shown to be able to attenuate response of β-catenin to Wnt-3a in colon cancer cells through
down-regulation of p300, a positive regulator of Wnt/β-catenin signaling (116). In addition,
Wang and his colleagues demonstrated that curcumin down-regulated Notch-1 mRNA level
in pancreatic cancer cells, indicating a transcriptional inactivation of Notch-1 by curcumin
(117). Curcumin-induced inactivation of NF-κB DNA-binding activity was potentially
mediated by Notch-1 signaling pathway (117).

Very recently, Kakarala et al. demonstrated that curcumin was able to target breast stem/
progenitor cells, as evidenced by suppressed mammosphere formation along serial passage
and by a decrease in the percent of ALDH-positive cells (118). On the contrary, curcumin
had little impact on differentiated cells (118). By utilizing a TCF-LEF reporter assay system
in MCF7 cells, these authors confirmed that the effect of curcumin on breast cancer stem/
progenitor cells was mediated through its potent inhibitory effect on Wnt/β-catenin signaling
(118).

4.2. Sulforaphane
An extensive amount of studies have substantiated the chemoprevention property of high
consumption of cruciferous vegetables (e.g., broccoli and broccoli sprouts), which has been
mostly attributed to the activity of isothiocyanates that are enzymatically hydrolyzed from
glucosinolates contained in these vegetables (119, 120). In particular, sulforaphane, which is
converted from a major glucosinolate in broccoli/broccoli sprouts (121), has been
demonstrated to be not only effective in preventing chemically induced cancers in animal
models (121–124), but also in inhibiting the growth of established tumors (125, 126).

In a very recent report, Kallifatidis et al. suggested that sulforaphane could abrogate the
resistance of pancreatic TICs to TRAIL (tumor necrosis factor-related apoptosis-inducing
ligand) by interfering with TRAIL-activated NF-κB signaling (127). Hence, they concluded
that combination of sulforaphane with TRAIL would be a promising strategy for targeting
pancreatic TICs (127). The down-regulation of NF-κB function by sulforaphane treatment
has been reported in prostate and colon cancer cells as well (128–130). In addition,
expression of Wnt-9a was shown to be significantly suppressed in ApcMin/+ mouse
adenomas treated with sulforaphane (131).
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Sulforaphane was previously shown to induce down-regulation of β-catenin in human
cervical carcinoma HeLa and hepatocarcinoma HepG2 cells (132). On the other hand,
several studies have reported the activity of sulforaphane to down-regulate Akt pathway in
ovarian, prostate, and colorectal cancers (133–135). Very recently, PI3K/Akt pathway was
demonstrated to play an important role in regulating breast stem/progenitor cells by
promoting β-catenin down-stream events through phosphorylation of GSK3β (15).

In our studies, we have shown that sulforaphane is effective in targeting breast cancer stem/
progenitor cells in vitro and in vivo (42). Sulforaphane inhibits breast CSCs at
concentrations (0.5 – 5 μM) approximately 10-fold lower of that exhibiting anti-proliferative
effect on cancer cell culture. Our studies have demonstrated that sulforaphane can inhibit
breast CSCs in vivo. The data showed that recipient NOD/SCID mice inoculated with tumor
cells derived from sulforaphane-treated primary xenografts failed to develop tumor re-
growth up to 33 days, whereas control tumor cells quickly gave rise to large tumors. We also
observed a down-regulation of Wnt/β-catenin self-renewal pathway in sulforaphane-treated
breast cancer cells.

4.3. Soy Isoflavone
High consumption of soy-rich food has shown an inverse correlation with the incidence of
breast cancer (136). Increased plasma concentration of genistein (one of the most active soy
isoflavones) due to soy food intake was associated with reduced risk of breast cancer in
recent studies (137, 138). Soy isoflavones, especially genistein, exhibit potent anti-
proliferative effect on various cancers (139).

Soy isoflavones were found to inhibit the phosphorylation of Akt and FOXO3a, enhance the
expression of GSK3β, leading to increased phosphorylation of β-catenin in prostate cancer
cells (140, 141). Genistein was reported to attenuate β-catenin-mediated expression of Wnt
downstream target genes in mammary epithelial cells by up-regulating E-cadherin (142).
Using gene microarray technique, a study revealed that dietary exposure to genistein down-
regulated Wnt signaling through inhibiting Wnt-5a expression and enhancing Sfrp-2
(secreted frizzled-related protein-2, an extracellular Wnt receptor antagonist) expression and
reduced Notch-2 expression in rat mammary epithelial cells in vivo (143). Moreover, Wang
et al. have found that genistein inhibited Notch-1 signaling, thereby down-regulating NF-κB
activity, eventually leading to cell growth inhibition and apoptosis in pancreatic cancer cells
(144, 145). The inactivation of NF-κB by genistein in several cancers (146–148) provides a
basis for further investigation in the impact on hedgehog pathway. Based on all these data,
future studies on the effect of soy isoflavone, particularly genistein, on CSCs is warranted.

4.4. Epigallocatechin-3-Gallate (EGCG)
Green tea is one of the most widely consumed beverages in the world. Epidemiological
studies suggest an association between green tea consumption and cancer prevention effects
(149). The various polyphenolic catechins contained in green tea are thought to largely
account for its chemoprevention activity against certain types of cancer. In particular,
several studies indicate that epigallocatechin-3-gallate (EGCG), the most abundant catechin
in green tea, is a potent chemoprevention agent (150). EGCG has been shown to inhibit NF-
κB activity, MAPK pathway, activator protein-1 (AP-1) activity, and EGFR-mediated
downstream signaling pathways, etc. (151).

EGCG was demonstrated to block Wnt signaling by stabilizing mRNA of HBP1, a
suppressor of Wnt signaling, thereby reducing breast cancer cell tumorigenic proliferation as
well as invasiveness (110, 152). The nuclear import of β-catenin was decreased in adenomas
isolated from EGCG-treated ApcMin/+ mice, a widely used transgenic model recapitulating
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human colon cancer that bears an Adenomatous Polyposis Coli (APC) gene mutation (153,
154). In addition, several studies revealed that EGCG suppressed Akt activation in both
colon cancer cell lines and in vivo mouse models (151, 153–155). In our previous study,
EGCG was shown to inhibit the chaperoning function of heat shock protein 90 (Hsp90) by
impairing the interaction between Hsp90 with its co-chaperones in pancreatic cancer cells,
thereby down-regulating Hsp90 client proteins including Akt (156). Additionally, EGCG
has been found to negatively regulate NF-κB activity and inhibit the ATP- or IL-1β induced
activation of NF-κB (141, 157–160). It is still unknown whether this could have impact on
sonic hedgehog expression and hedgehog signaling pathway. Taken together, these studies
support the further evaluation of EGCG in CSCs.

4.5. Resveratrol
During the last decade, resveratrol, a polyphenol derived from a wide variety of plants such
as grapes, berries, plums, and peanuts (161), has been shown to possess chemopreventive
and chemotherapeutic potential against human cancers (162). Resveratrol exhibited
inhibitory effect on the proliferation of various human cancer cells and on the carcinogenesis
in animal models (162, 163).

Low concentrations of resveratrol were shown to significantly decrease the nuclear
localization of β-catenin in colon cancer cells (164). The inhibitory effects of resveratrol on
Waldenstrom’s macroglobulinemia cells were suggested to be mediated through the down-
regulation of Akt and Wnt signaling pathways (141, 165). Cecchinato and his colleagues
reported that resveratrol inhibited the PI3K/Akt pathway, thereby activating GSK3β in acute
lymphoblastic leukemia cells (166). Furthermore, these authors showed for the first time that
escalating doses of resveratrol led to a progressive decrease in Notch-1 protein level, as well
as the mRNA levels of its downstream effectors (166). Therefore, the potential impact of
resveratrol against CSCs may be warranted for future exploration.

4.6. Lycopene
Lycopene, one of the most extensively studied carotenoids in tomatoes, possesses potent
anti-oxidant activity due to its extended conjugated hydrocarbon chain (167). Lycopene has
been shown to induce apoptosis and inhibit cell cycle progression in various cancer cells
(168–174), and the efficacy of lycopene against xenograft tumors was reported in a number
of in vivo studies (172, 175–177).

In colon cancer cells, lycopene suppressed Akt activation and non-phosphorylated β-catenin
protein level, and augmented the phosphorylated form of β-catenin, which were associated
with reduced protein expression of cyclin D1 (178). Hence, lycopene may inhibit Wnt/β-
catenin signaling via the connection along Akt/GSK3β/β-catenin. Further studies on CSCs in
response to lycopene would perhaps be promising.

4.7. Piperine
Piperine, a dietary polyphenol isolated from black and long peppers, has been reported to
reduce cancer incidence in chemical rodent models of lung cancer (118, 179–183). Although
the chemoprevention effect of piperine in breast cancer as a single agent has not been
explored, Kakarala et al. demonstrated that piperine was able to target breast CSCs and
inhibit Wnt/β-catenin signaling pathway (118). In addition, piperine was shown to suppress
the nuclear import and activation of NF-κB (180, 184), the effect of which on sonic
hedgehog signaling is not yet clear.
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4.8. Vitamin D3
Vitamin D3 has been shown to reduce the incidence of human breast, prostate, and colon
cancers (185–187), and induce apoptosis and cell cycle arrest of various cancer cells (188).
In 2001, Palmer et al. demonstrated that vitamin D3 promoted the differentiation of colon
carcinoma cells by the induction of E-cadherin expression and the inhibition of β-catenin
signaling (189). Ligand-activated vitamin D receptor competed with TCF-4 for β-catenin
binding, thereby reducing levels of c-Myc, peroxisome proliferator-activated receptor,
TCF-1, and CD44 (189). These findings would trigger further investigations of vitamin D3
in terms of chemoprevention of CSCs.

5. Conclusions and Future Perspectives
Naturally-occurring dietary compounds are advantageous in several aspects as
chemoprevention agents: (1) they are present in commonly consumed food, which is readily
available to most people in daily life; (2) they usually have very low or no toxicity, in
contrast to most chemotherapy drugs; (3) many of these compounds have shown potential as
an adjunct to chemotherapy drugs in some clinical trials. Although the reports were very
limited for dietary compounds to inhibit CSCs, many of them have been shown to be
involved in modulation of CSC self-renewal pathways. Three dietary components,
sulforaphane, curcumin, and piperine, have been shown to inhibit Wnt/β-catenin signaling
and breast CSCs at relatively low concentrations (42, 43, 190). For instance, our data
showed that sulforaphane inhibited breast CSCs at concentrations of 0.5 to 5 μM (42). The
inhibitory effect on the self-renewal pathway may contribute to the preferential inhibition of
CSCs. Further studies are needed to investigate the underlying mechanisms. For other
dietary compounds of interest, it would be very promising to study their efficacy and
effective concentrations against CSCs. Given that these diet-based compounds are usually
multi-targeted, they may mediate other cellular events, e.g., induction of CSC differentiation
and sensitization of CSCs to chemotherapeutic agents, in addition to their potential impact
on self-renewal signaling.

Investigating the efficacy of the dietary compounds against CSCs will provide rationale for
preclinical and clinical evaluation of these compounds or potentially their native food
extracts for chemoprevention of CSCs. These studies will eventually enable us to discover
more effective strategies for cancer treatment to reduce cancer resistance and recurrence and
to improve patient survival.
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Figure 1.
Cancer stem cell theory. (A) Cancer stem cells are capable of self-renewal and
differentiation. (B) Isolated cancer stem cells are able to phenotypically recapitulate the
parental tumor along serial passaging through multiple recipient mice.
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