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As increasingly large amounts of data from genome and
other sequencing projects become available, new approaches
are needed to determine the functions of the proteins these
genes encode. We show how large-scale computational anal-
ysis can help to address this challenge by linking functional
information to sequence and structural similarities using
protein similarity networks. Network analyses using three
functionally diverse enzyme superfamilies illustrate the use
of these approaches for facile updating and comparison of
available structures for a large superfamily, for creation of
functional hypotheses for metagenomic sequences, and to
summarize the limits of our functional knowledge about even
well studied superfamilies.

In the post-genomic era, access to large amounts of gene
sequence and protein structure data has become the norm;
by mid-2011, the number of protein sequences in the Uni-
Prot/TrEMBL Database (1) topped 16 million, whereas the
Protein Data Bank (2) contained over 73,000 structures.
Additional millions of sequences are becoming available
from newer types of genome projects, including metag-
enomics projects, with one report for the human gut micro-
biome accounting for an additional 3.3 million microbial
genes (3). Because experimental determination of protein
function lags far behind the rate of sequence and structure
determination, improved computational methods for func-
tion prediction are urgently needed to help bridge the gap
between sequenced genes and functionally characterized
protein products. In response, new methods are rapidly
being developed to address these challenges, and community
efforts are now under way to increase the pace of experimen-
tal and computational prediction of protein function (4,
5). Another large-scale effort (http://www.nigms.nih.gov/
News/Results/gluegrant_051510.htm) aims to develop a
combined experimental/computational strategy for the pre-
diction of the reaction and substrate specificity of enzymes,
the protein class that is the subject of this minireview. Addi-

tionally, community challenges such as the Critical Assess-
ment of Function Annotations (CAFA) (Automated Func-
tion Prediction 2011) have been mounted to assess and
improve the current state of automated prediction of protein
function. Viewing the glass as half-full, progress in sequenc-
ing and annotation over the last decade led one group to
estimate that some functional features can be assigned to as
much as 85% of proteins in completely sequenced genomes
(6). From a more skeptical perspective, more recent assess-
ments of annotation accuracy suggest that computational
approaches are especially prone to misannotation (7, 8),
indicating that significant challenges for functional infer-
ence remain.
This minireview focuses on how new insights about protein

structure-function relationships and functional inference can
be obtained from large-scale analyses of proteins, specifically
for “functionally diverse” enzyme superfamilies. We define
these types of superfamilies as sets of homologous proteins that
conserve structural and active site features that can be explicitly
associated with a conserved partial reaction or other chemical
capability. Within a superfamily and constrained by these
superfamily-common features, many divergent families may
have evolved that exhibit different reaction and/or substrate
specificities (9). (See the Prologue for somedefinitions of super-
families, families, and related terms.)
These types of superfamilies provide a useful context for

inference of functional properties of members of unknown
function (“unknowns”) because the constraints imposed by
the structure-function paradigm unique to each superfamily
restrict the search space for functional inference of their
reaction and substrate specificities, simplifying their func-
tional assignments. Because the number of sequences in
each superfamily is still increasing rapidly, large amounts of
new data are regularly available to inform these investiga-
tions. Moreover, sequence and structural similarities among
all of the members of a superfamily can be associated with
many types of functional information, allowing us to lever-
age what is known to guide inference of functional properties
of unknowns that are similar. (See the minireview by Gerlt et
al. (48) in this thematic series describing strategies for
assigning functions in the enolase superfamily for an exam-
ple.) Furthermore, as our coverage of genome space
increases, new “outlier” functions in superfamilies can be
identified from specialized environmental niches, extending
our estimates of the natural boundaries of functional varia-
tion that a particular superfamily supports.
Below, we describe how the continuing increase in sequence

and structural data can be used to understand better the evolu-
tion of new functions and to improve functional inference
accessed using a relatively new application of network-based
methods, protein similarity networks, an attractive approach
for investigation of functional properties from the context of
sequence and structural similarity. Results from such large-
scale studies are reviewed here using examples from three dif-
ferent superfamilies of enzymes: the eukaryotic protein kinase
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(ePK)2-like superfamily, a large group of acid-sugar dehydrata-
ses from the enolase superfamily, and the glutathione transfer-
ase (GST) superfamily.

Emerging Roles for Large-scale Computational Analysis
of Protein Superfamilies

Asmethods formanaging and analyzing sequence and struc-
tural data have improved, computational studies can more
effectively address broad issues in large-scalemapping of struc-
ture-function relationships and deduction of the patterns by
which natural evolution has led to the divergence ofmany func-
tions from an ancestral structural scaffold. For example, for
protein kinases, one of the largest and most important enzyme
superfamilies, the seminal Manning tree (10) provided a foun-
dation for classification of human kinases and those from other
eukaryotes. Likewise, a large-scale study of redox proteins gen-
erated a census of sequence, structural, and functional charac-
teristics of the divergent superfamilies of the thioredoxin fold
class that are represented in nature (11).
Large-scale analyses have the additional advantage of reveal-

ing patterns not easily observable when smaller data sets are
examined. For example, comparison of sequence and structural
features conserved in the active sites of the members of the
large and functionally diverse enolase superfamily allowed the
prediction of the specific partial reaction uniting the entire
superfamily, the abstraction of an�-proton of a carboxylic acid,
thereby restricting the functional prediction problem for the
thousands of sequences now identified as superfamilymembers
to consideration of only the overall reactions and substrates
consistent with that paradigm (12). Using that structure-func-
tion mapping as a foundation, more detailed computational
and experimental studies have identified differences among
superfamily members that distinguish the reaction and sub-
strate specificities of the �20 constituent families whose func-
tions can now be assigned (see the minireview by Gerlt et al.
(48) for a listing). Other notable studies linking structural and
mechanistic features across large enzyme superfamilies include
analyses of the amidohydrolase (13, 14), enoyl-CoA hydratase
(15), nudix (16), haloalkanoic acid dehalogenase (17), and two
dinucleotide-binding domain flavoprotein (18) superfamilies,
to name a few.
As more powerful tools and computers have been created,

the ease of mounting such studies has enabled new types of
analyses that provide context for interpreting functional char-
acteristics across homologousmembers of superfamilies. These
include sophisticated algorithms for multiple alignment and
phylogenetic inference, both of which have long been used
to examine evolutionary relationships among groups of
sequences. Especially relevant to this minireview, phylog-
enomic approaches, first described over a decade ago (19), com-
bine phylogenetic reconstruction with functional assignment
of unknowns based on their placement in the tree relative to
knowns. Phylogenomic approaches have now been applied
extensively to improve the accuracy of homology-based anno-

tation and to distinguish divergent families within enzyme
superfamilies (see Ref. 20 for an example). Additionally, search-
able online databases such as BRENDA (21) provide access to a
large store of enzyme function information, whereas others
provide online curation and computational tools created to link
enzyme sequence and structural information with functional
characteristics and mechanistic properties (22–25).

Network-based Approaches for Large-scale Analysis of
Protein Superfamilies

Although large-scale analyses indeed provide a “big picture”
perspective that adds much to our understanding of genomic
and chemical biology, the growing size of the data sets and their
associated metadata continue to raise significant challenges for
analysis and dissemination. Network-based analysis represents
one approach used to capture biological context, with genetic
or protein interaction networks using computational and/or
experimental data being among the most common. Sequence
and structure similarity networks have also been used for the
analysis and visualization of structure-function relationships
(26–28). This technique allows users to efficiently and quickly
examine similarities of much larger sets of proteins than is gen-
erally possible using traditional methods such as phylogenetic
trees and multiple alignments. For example, one such study
mounted a comparison of over 145,000 sequences to create a
map in which proteins are positioned according to sequence
relationships and gene functions (29). The recent development
of software platforms such as Cytoscape (30) facilitates the use
of network methods and algorithms of several types, enabling
access to these types of tools by non-experts.
Although they are not a substitute for phylogenetic infer-

ence, networks generated from even such simple metrics as
all-by-all pairwise comparisons of a large number of divergent
sequences have been shown to track well with known relation-
ships and with the clustering provided by trees. Furthermore,
they support facilemapping ofmany types of orthogonal data to
proteins clustered by similarity (31). Types of information such
as genome/operon context, interaction networks and path-
ways, and organism-specific information have been shown to
enhance the accuracy of functional inference (see Refs. 32 and
33 for relevant reviews). In analogy to phylogenomics, func-
tional information of many types can be associated with nodes
(e.g. protein sequences or structures) in a similarity network to
improve functional inference and insight. Because protein sim-
ilarity networks can be quickly generated in interactive formats,
users can easily explore these associations by coloring nodes
with different combinations of sequence/structural properties
and functional information.
Examples illustrating the application of large-scale analysis

of structure-function relationships using protein similarity net-
works are described below. Interactive versions of these net-
works are available from the authors and can be viewed using
the freely available Cytoscape software (30).

Tracking Growth of Structural Coverage: ePK-like
Superfamily

The ePK-like superfamily is a large and diverse group of
homologous enzymes that share a common protein kinase-like

2 The abbreviations used are: ePK, eukaryotic protein kinase; GST, glutathione
transferase; HMM, hidden Markov model; SFLD, Structure-Function Link-
age Database; r.m.s.d., root mean square deviation.
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fold (34) and conserved residues associated with ATP-depen-
dent phosphorylation of proteins and smallmolecules. ePK-like
enzymesmediate many important cellular processes, including
signal transduction (10). Theymake up almost 2% of eukaryotic
genes and, although present as a smaller percentage of bacterial
genes, may be at least as important in bacterial cellular regula-
tion as the structurally unrelated histidine kinases (35).
The size and diversity of the ePK-like superfamily make it

hard to generate a global overview of their sequence and struc-
tural relationships. As a result, only a small number of groups
have attempted the time-consuming task of generating large-
scale classifications of the kinases. In one of these studies, Kan-
nan et al. (35) used a library of hiddenMarkovmodels (HMMs)
to identify �45,000 ePK-like sequences from the NCBI non-
redundant database (36) and the Global Ocean Sampling data
set (37) and to classify them into 20 families. Examination of
this diverse sequence set allowed the identification of 10 resi-
dues conserved across most families. Six of these residues were
known to be involved in ATP and substrate binding and catal-
ysis, whereas the functional role of the remaining residues had
not been established. This study also showed that all but one of
these well conserved residues had been lost over the course of
evolution in one or more families (in some cases, substituted
with changes in other regions of the protein), illustrating the
plasticity of the ePK-like fold. Although profile-profile align-
ments and alignments of conserved motifs could be used to
group some families into related clusters, the size and diversity
of the superfamily have continued to challenge the construc-
tion of a more detailed evolutionary history.
Scheeff and Bourne (38) were able to surmount the problem

of low sequence identity across the superfamily by combining
sequence and structural information into a single phylogenetic
analysis. The results suggested that the tree constructed by this
method had some advantages and was more reliable than trees
produced using either sequence or structural data alone.
In addition to these types of global analyses, many thousands

of detailed studies have been published describing properties of
smaller groups and of individual enzymes. However, the sheer
number of sequences and structures in this superfamily, cou-
pledwith the rate of growth of the sequence and structure data-
bases, makes keeping an up-to-date record of kinase relation-
ships increasingly difficult, even without the inclusion of linked
functional information. (The Pfam (39) PKinase clan currently
includes nearly 85,000 sequences.) Here, we illustrate the use of
similarity networks to keep track of relationships between
enzymes in large superfamilies. In this example, networks gen-
erated from pairwise structural comparisons provide a current
update of the structural coverage of the superfamily.
Fig. 1 shows structure similarity networks for the ePK-like

superfamily,3 colored by Pfam classifications, with Fig. 1A indi-
cating the differences in structural coverage in the years

between when the study by Scheeff and Bourne (38) was pub-
lished (October 2005) and May 2011, respectively. As is clear
from these summaries, the structure space has filled out signif-
icantly over this 6-year span. Most strikingly, the fructosamine
kinase family defined by Pfam, Fructosamin_kin (red oval in
Fig. 1A, lower panel), was not represented at all in the network
from 2005. Fig. 1B shows the same network as in Fig. 1A (lower
panel), but thresholded at a higher stringency scoring cutoff
(achieved by increasing the score threshold required for draw-
ing edges between two nodes), enabling amore detailed view of
the same structural relationships. Fig. 1B provides a different
and somewhat more detailed view of the growth of structural
coverage between these two time points. Although these net-
works use a set of structures that is larger and somewhat differ-
ent from that used by Scheeff andBourne, they track reasonably
well with those trees (data not shown). Some exceptions
include structures for which the position was labeled as uncer-
tain in the Scheeff and Bourne tree. Alternative versions of
these networks colored by theManning classification (10), with
the addition of the atypical kinase class used in Ref. 38, are
provided in Fig. 2.
As shown in this example, similarity networks can be used

effectively to update relationships among proteins in a super-
family as new structures become available, if, as for the ePK-like
superfamily, its structural coverage is good. Sequence networks
can also be used to summarize relationships among proteins on
a large scale (11), as described below. Although the scale at
which networks can easily query such data is still much larger
than can generally be accommodated using multiple align-
ments and trees, the size of networks that can be viewed and
manipulated by software such as Cytoscape is limited by the
number of edges they contain. In practice, for a superfamily as
large as the kinases, only a small proportion of the available
sequences can be represented in a single network, typically
requiring the use of representative sequences to cover the
divergence space. Additionally, because of the diversity ofmany
superfamilies, including the ePK-like superfamily, it is not pos-
sible to connect the whole set of sequences at statistically sig-
nificant scores.

Prediction of New Carbon Sources in Human Gut
Microbiome from Comparisons with Acid-sugar
Dehydratases of Enolase Superfamily

Microbes residing in the gut have a significant influence on
human health. In addition to aiding in energy harvest from food
and synthesizing essential vitamins, changes in the gut micro-
bial population are associated with medical conditions such as
inflammatory bowel disease and obesity (3). Variations in
microbiome populations have also been observed following
treatment with antibiotics (40). Thus, much interest is now
focused on determining the molecular functions and biological
roles of the gut metaproteome both in healthy individuals and
in those suffering from disease.
One of the most comprehensive studies on the human gut

microbiome to date describes a set of 3.3 million microbial
genes sequenced and assembled from fecal samples of 124 indi-
viduals (3). As expected, the census of protein functions initially
identified in this metagenome includes proteins in many cen-

3 For network analysis for the ePK-like superfamily, structures were chosen to
include only one structure for each unique UniProt ID, with a preference for
1) structures solved October 2005 or previously and 2) wild-type, 3) ligand-
bound, and 4) good resolution structures. Using the FAST algorithm (46),
each structure in the set was used as a query against a database containing
all structures in the set. Networks were created at various N-score cutoffs
and visualized using Cytoscape.
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tral metabolic pathways such as those involved in carbon utili-
zation pathways. We used the information available in the
Structure-Function Linkage Database (SFLD)4 (25) for a large
set of acid-sugar dehydratases in the enolase superfamily to
probe for additional and possibly unique carbon sources in the
microbiome. This was accomplished by identifying putative
acid-sugar dehydratases in the gutmetagenome that differ from
those that had been previously identified, whether of known or
unknown specificity.
The substrate specificities of 10 acid-sugar dehydratases

have now been biochemically established,5 allowing functional

assignment of specificity to �40% of the �2000 sequences cur-
rently represented in this subgroup of the superfamily in SFLD.
Although the rest can be assignedwith high confidence as likely
acid-sugar dehydratases, their substrate specificities remain
unknown. Using SFLD tools, protein sequences from the
human gut microbiome predicted to be acid-sugar dehydrata-
ses were identified and clustered together with the knowns and
unknowns of the subgroup already annotated in the database.
The results are summarized in the network shown in Fig. 3A.6

This network is thresholded at a relatively permissive cutoff,
wheremost families are found in onemajor cluster. Other reac-
tion families that do not show similarities to any of the nodes in

4 SFLD is a joint project of the Babbitt laboratory (supported by National Insti-
tutes of Health Grant GM60595 and National Science Foundation Grants
DBI-0234768 and DBI-0640476) and the UCSF Resource for Biocomputing,
Visualization, and Informatics (supported by National Institutes of Health
Grant P41 RR001081). Additional support for the creation of networks
available at SFLD is provided by the Enzyme Function Initiative (supported
by National Institutes of Health Grant U54 GM093342).

5 Of 10 acid-sugar dehydratase families of known reaction specificity in SFLD,
only seven are colored in Fig. 3, as two others are not represented in this
analysis. The mandelate racemase family, the namesake of the subgroup, is
also colored. Although mandelate racemase is not an acid-sugar dehydra-
tase, it is a member of this subgroup by sequence and structural similarity
and is therefore included in Fig. 3.

6 For network analysis for the gut metagenome, the sequence set consists of
1) the subgroup from SFLD containing acid-sugar dehydratases (named
the mandelate racemase subgroup), filtered to 90% identity, aside from
experimentally characterized members, all of which are present, and 2) all
gut metagenome sequences that matched either this SFLD subgroup
HMM or an SFLD family HMM from a family within the subgroup with an
e-value cutoff of at least 1e�2 and that did not better match any other
enolase superfamily SFLD HMMs. These sequences were filtered to 90%
identity and to remove fragments under 150 amino acids. BLAST analysis
(47) was performed using each sequence in the set as a query against a
database containing all sequences in the set. Networks were created at
two different e-value cutoffs and visualized as described in Footnote 3.

FIGURE 1. Structure similarity networks of ePK-like superfamily generated from pairwise comparisons using FAST algorithm. Each node represents a
structure. Each edge represents a connection with a FAST N-score better than a given threshold. A, FAST N-score cutoff � 11, colored by Pfam family. Upper
panel, structures available as of October 2005 (97 nodes). At this cutoff, the average root mean square deviation (r.m.s.d.) is �2.81 Å with �213 C� atoms
aligned. Lower panel, structures available as of May 2011 (295 nodes). At this cutoff, the average r.m.s.d. is �2.98 Å with �207 C� atoms aligned. B, FAST N-score
cutoff � 23. At this cutoff, the average r.m.s.d. is �1.97 with �247 C� atoms aligned. Nodes colored green represent structures available in the Protein Data
Bank as of October 2005; those colored blue represent structures added to the Protein Data Bank between October 2005 and May 2011 (total of 295 nodes).
Nodes were arranged using the yFiles organic layout provided with Cytoscape version 2.7. Lengths of edges are not meaningful except that sequences in
tightly clustered groups are relatively more similar to each other than sequences with few connections.
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this large cluster at a threshold better than the cutoff form
smaller clusters arranged randomly at the bottom of Fig. 3A.
Simple examination reveals a few emerging clusters in themain
cluster and also in the separated clusters (e.g. the circled group
in Fig. 3A) that are populated primarily or exclusively by gut
metagenomic sequences. Because these sequences are some-
what distant from those with characterized functions (desig-
nated by different colors), they may indeed represent unique
acid-sugar dehydratases and, hence, new carbon sources not
previously associated with the superfamily.
A more detailed examination of this hypothesis can be

obtained by visualization of the network at the more stringent
e-value cutoff, shown in Fig. 3B. In this view, most of the char-
acterized familieswithin the subgrouphave separated into indi-
vidual clusters, suggesting that this threshold cutoff may be
useful for hypothesizing the boundaries of at least some of the
functionally distinct families within it. From this view, we can
predict the specificity of some of the metagenomic sequences
that cluster closelywith known families, e.g. fuconate and galac-
tonate dehydratases. The perspective provided in Fig. 3B also
lends support to the hypothesis that the separated clusters pop-
ulated only by gut metagenomic sequences and other unchar-
acterized sequences from the GenBankTM Data Bank may
indeed represent new carbon sources not previously identified
as members of the enolase superfamily. Finally, the addition of
these metagenomic sequences to the networks helps to fill out
the sequence space representing the acid-sugar dehydratases

and illustrates more fully the breadth of their natural diversity.
It is also interesting that some clusters containing members of
characterized families in Fig. 3B have no representatives from
the gutmicrobiome, suggesting that these functionsmay not be
represented in themicroorganisms that live in the gut (or those
functions are supplied by enzymes from a different evolution-
ary background).

What We Do Not Know About Cytosolic GST Superfamily

GSTs constitute a large class of enzymes that play important
biological roles in cell signaling andmetabolism of endogenous
compounds, drugs, and other xenobiotics. They are ubiquitous
in nature (except for archaea) and may represent as much as
0.01% of the enzyme universe.7 Based on sequence similarities,
GSTs have historically been organized into major classes using
the names of Greek letters (e.g. Alpha, Pi, Omega, Theta, etc.)
(41). Within each major class, subclasses designate functional
and other properties. Although a number of GSTs have been
experimentally characterized in terms of their general substrate
profiles, the physiological substrates and reaction specificities
of only a small minority are known. Still, because of their
importance to human biology and health, GSTs are among the
best studied of enzyme superfamilies, with thousands of publi-
cations detailing their biological roles and structural and func-
tional properties.

7 H. J. Atkinson and P. C. Babbitt, unpublished data.

FIGURE 2. Alternative view of structure similarity networks of 86 representative structures in ePK-like superfamily (generated as described for Fig. 1).
Nodes are colored according to their Manning/Bourne group classification. Dark gray nodes represent structures that were not classified. A, FAST N-score
cutoff � 4. B, FAST N-score cutoff � 23.
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Only a few studies have focused on the GST superfamily on a
large scale, however (11, 42, 43). The sequence similarity net-
work8 shown in Fig. 4 provides an overviewof the cytosolicGST
superfamily from one of these (42). It compares 622 GSTs rep-
resenting �6000 sequences and shows that they can be divided
into twomajor groups distinguished by sequence and structural
similarity (and also by variations in their active site features).
The majority of the enzymes in the smaller of the two groups
shown in Fig. 4 (Group 1) are from eukaryotic organisms,
whereas those from the larger group (Group 2) aremoremixed,
but with the largest number coming from bacteria.
The summary of sequence relationships and structural cov-

erage provided in Fig. 4 is the first time that similarity relation-
ships across the entire GST superfamily were captured in a
single view. This map shows both the sequences that could be
classified asmembers of one of themajor classes (colored nodes)
as well as those that had not even been assigned to one of these
general classes (light and dark gray nodes) and had thus far only
been identified as belonging to the cytosolic GST superfamily.
Remarkably, despite decades of study, these results reveal that
the huge majority of GSTs have never been functionally char-

acterized at any level. Furthermore, the representation of the
colored nodes in the overall topology suggests that many addi-
tional classes likely remain to be defined. The view provided in
Fig. 4 thus lays a foundation for choosing new sequences for
which functional and structural characterization may be espe-
cially valuable for prediction of new functional classes. Many
additional GST sequences have recently been identified,9 so the
proportion of GSTs for which no functional information is
available continues to increase dramatically.

Challenges for Computational Prediction of Functional
Properties

The examples provided in this minireview suggest the value
of large-scale analyses such as similarity networks for summa-
rizing sequence and structural relationships in large superfami-
lies and for developing hypotheses about how structure- or
sequence-based clustering tracks with functional boundaries.
However, like any other method, similarity networks also have
some significant limitations, a few of which have been
addressed above and others elsewhere (31). Although it is only
by experimental investigation that the in vitro and in vivo func-
tions of unknowns can ultimately be validated, the continual

8 For network analysis for the GST superfamily, the sequence set was gener-
ated, and networks were calculated and visualized as described previously
(42). 9 P. C. Babbitt and D. Stryke, unpublished data.

FIGURE 3. Sequence similarity networks of acid-sugar dehydratases known or predicted to belong to enolase superfamily and human gut micro-
biome. Networks were generated from all-by-all BLAST comparisons of 1578 sequences representing sequences of eight known acid-sugar dehydratase
families and the mandelate racemase family from the mandelate racemase subgroup (see Footnote 5) as defined by SFLD and a filtered set of gut metagenome
sequences that showed significant similarity to the members of the subgroup. Each of the 1578 nodes represents a sequence. Larger square nodes represent
those that have been experimentally characterized, so their reaction and substrate specificities are known. Brown nodes represent sequences from the human
gut metagenome, and white nodes represent SFLD sequences in the subgroup for which the reaction and substrate specificities have not been predicted. The
remainder (small nodes) represent sequences for which specificity can be predicted at high confidence, colored by their SFLD family names (see Footnote 4).
Nodes were arranged using the yFiles organic layout provided with Cytoscape version 2.7. A, each edge in the network represents a BLAST connection with an
e-value of 1e�44 or better. At this cutoff, sequences have a median percent identity and alignment length of �32% and 369, respectively. B, each edge in the
network represents a BLAST connection with an e-value of 1e�84 or better. At this cutoff, sequences have a median percent identity and alignment length of
�44% and 384, respectively. Lengths of edges are not meaningful except that sequences in tightly clustered groups are relatively more similar to each other
than sequences with few connections.
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growth of sequence data makes it increasingly difficult for
either focused or high-throughput experimental studies to keep
up. Even a reasonable fallback position requires the develop-
ment of new strategies for identifying the few experiments that
could bemost useful for validation of large-scale computational
predictions. As illustrated here and elsewhere (44, 45), protein
similarity networks represent one way to generate the context
needed for choosing those experiments and interpreting the
results.
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