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Abstract

Rationale High levels of impulsivity are a core symptom of
psychiatric disorders such as ADHD, mania, personality
disorders and drug addiction. The effectiveness of drugs
targeting dopamine (DA), noradrenaline (NA) and/or
serotonin (5-HT) in the treatment of impulse control
disorders emphasizes the role of monoaminergic neuro-
transmission in impulsivity. However, impulsive behavior is
behaviorally and neurally heterogeneous, and several
caveats remain in our understanding of the role of mono-
amines in impulse control.

Objectives This study aims to investigate the role of DA,
NA and 5-HT in two main behavioral dimensions of
impulsivity.

Methods The effects of selective DA (GBR12909; 2.5-
10 mg/kg), NA (atomoxetine; 0.3-3.0 mg/kg) and 5-HT
(citalopram; 0.3-3.0 mg/kg) reuptake inhibitors as well as
amphetamine (0.25-1.0 mg/kg) were evaluated on impulsive
action in the five-choice serial reaction time task (5-CSRTT)
and impulsive choice in the delayed reward task (DRT). In the
5-CSRTT, neuropharmacological challenges were performed
under baseline and long intertrial interval (ITI) conditions to
enhance impulsive behavior in the task.
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Results Amphetamine and GBR12909 increased impulsive
action and perseverative responding and decreased accura-
cy and response latency in the 5-CSRTT. Atomoxetine
increased errors of omission and response latency under
baseline conditions in the 5-CSRTT. Under a long ITIL,
atomoxetine also reduced premature and perseverative
responding and increased accuracy. Citalopram improved
impulse control in the 5-CSRTT. Amphetamine and
GBR12909, but not citalopram or atomoxetine, reduced
impulsive choice in the DRT.

Conclusions Elevation of DA neurotransmission increases
impulsive action and reduces impulsive choice. Increasing
NA or 5-HT neurotransmission reduces impulsive action.

Keywords Impulsivity - Delayed reward - Five-choice serial
reaction time task - Dopamine - Serotonin - Noradrenaline

Introduction

Exaggerated impulsive behavior very often has undesirable
consequences. As such, impulsivity is prominent in the
symptomatology of a variety of psychiatric disorders such as
attention deficit/hyperactivity disorder (ADHD), drug addic-
tion, problem gambling, mania and personality disorders
(American Psychiatric Association 2000; Chamberlain and
Sahakian 2007; Moeller et al. 2001). Moreover, impulsivity
may be a behavioral marker for enhanced vulnerability to
drug addiction. Poor response inhibition or enhanced impul-
sive decision making predisposes adolescents for smoking,
alcoholism and substance abuse (Audrain-McGovern et al.
2009; Nigg et al. 2006). Consistently, animal studies have
shown that high impulsivity predicts the vulnerability to
alcohol consumption, cocaine self-administration and
nicotine-seeking behavior (Dalley et al. 2007; Diergaarde et
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al. 2008; Perry et al. 2005; Poulos et al. 1995). It is now
widely recognized that impulsivity consists of various, mostly
independent behavioral dimensions that can be neuroanatomi-
cally and neuropharmacologically dissociated (Dalley et al.
2011; Eagle and Baunez 2010; Evenden 1999; Pattij and
Vanderschuren 2008; Winstanley 2011). In general, two main
subtypes of impulsive behavior are distinguished, i.e.,
impulsive choice and impulsive action. Impulsive choice
refers to the inability to delay gratification, which is
behaviorally apparent as a preference for a small, immediate
gain over a larger reward that one has to wait for. Impulsive
action comprises behavior resulting from a deficit in the
ability to withhold responding or stop ongoing behavior. Both
behavioral subtypes of impulsivity appear in the patient
population and these can be studied in preclinical models
with high translational value (Evenden 1999; Moeller et al.
2001; Solanto et al. 2001; Winstanley 2011).

Different classes of drugs are used in the treatment of
disorders characterized by disrupted impulse regulation such
as ADHD, personality disorders and problem gambling. The
psychostimulant drugs amphetamine (Adderall™) and meth-
ylphenidate (Ritalin™, Concerta™) are the first-choice
treatment for ADHD, whereas the selective noradrenaline
reuptake inhibitor atomoxetine (Strattera®) is a widely used
alternative (Biederman and Faraone 2005). The therapeutic
use of these drugs has sparked great interest in the role of
monoaminergic neurotransmission in impulsivity. The pri-
mary mode of action of amphetamine is to enhance
monoaminergic neurotransmission by blocking the reuptake
and evoking the release of dopamine (DA), noradrenaline
(NA) and, to a lesser extent, serotonin (5-hydroxytryptamine,
5-HT) (Kuczenski and Segal 1989; Kuczenski et al. 1995;
Ritz and Kuhar 1989; Rothman et al. 2001; Seiden et al.
1993; Sulzer et al. 1995). Administration of amphetamine
has been shown to decrease impulsive choice in delay-
discounting paradigms (Barbelivien et al. 2008; Cardinal et
al. 2000; De Wit et al. 2002; Isles et al. 2003; Richards et al.
1999; Sun et al. 2011; Van Gaalen et al. 2006b; Wade et al.
2000; Winstanley et al. 2003, but see Evenden and Ryan
1996) but to increase premature responding, an index of
impulsive action, in the five-choice serial reaction time task
(5-CSRTT; Cole and Robbins 1987; 1989; Harrison et al.
1997; Murphy et al. 2008; Paterson et al. 2011; Pattij et al.
2007; Sun et al. 2011; Van Gaalen et al. 2006a). Pharmaco-
logical analysis of the effects of amphetamine has indicated
that DA neurotransmission plays an important, opposing role
in the modulation of impulsive action and impulsive choice
(Cole and Robbins 1989; Pattij et al. 2007; van Gaalen et al.
2006a, 2006b, 2009). Atomoxetine is a potent NA reuptake
inhibitor with no appreciable affinity for the DA or 5-HT
transporter (Bolden-Watson and Richelson 1993), which has
been shown to be effective in the treatment of ADHD
(Kratochvil et al. 2006; Simpson and Perry 2003; Spencer et
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al. 2002; Wilens et al. 2006). Although selective inhibition of
NA reuptake has been reported to have beneficial effects on
impulsive action in the 5-CSRTT (Blondeau and Dellu-
Hagedorn 2007; Navarra et al. 2008; Paine et al. 2007;
Paterson et al. 2011; Robinson et al. 2008; Sun et al. 2011;
Van Gaalen et al. 2006a), its effects on impulsive choice are
inconclusive (Robinson et al. 2008; Sun et al. 2011; Van
Gaalen et al. 2006b). Interestingly, 5-HT was the first
neurotransmitter system to be implicated in impulsivity
(Linnoila et al. 1983; Soubrié 1986). Selective 5-HT
reuptake inhibitors (SSRIs) are not regularly prescribed as
therapeutic drugs for ADHD (Biederman and Faraone 2005;
Elia et al. 1999; Fone and Nutt 2005; Kutcher et al. 2004),
although they are used for the treatment of other disorders
associated with poor impulse control such as problem
gambling, sexual addiction, personality disorders and impul-
sive aggression (Coccaro and Kavoussi 1997; Hollander and
Rosen 2000). Remarkably, the effects of SSRIs on different
forms of impulsive behavior have not been characterized in
depth (Bari et al. 2009; Evenden and Ryan 1996).
Although the role of monoamine neurotransmission in
impulsive behavior has been widely investigated, several
caveats remain. First, as mentioned above, the consequen-
ces of selective blockade of the 5-HT transporter for
impulsive behavior are largely unknown. Second, beneficial
effects of selective NA reuptake inhibitors on impulsive
action (as assessed in the 5-CSRTT and stop signal task)
have been consistently reported by different studies, but its
effects on impulsive choice are inconclusive. Third, in
studies on impulsive action using the 5-CSRTT, well-
trained animals are used, which often display very low
levels of impulsivity. This makes it easy to detect impair-
ments in impulse control but leaves relatively little room to
observe reductions in premature responding, which is most
relevant from a therapeutic point of view. The present study
sought to further characterize the role of monoamine
neurotransmission in impulsive behavior, taking these
caveats into account. To that aim, we investigated the
effects of selective inhibitors of the reuptake of DA
(GBR12909), NA (atomoxetine) and 5-HT (citalopram) on
two main behavioral dimensions of impulsivity in rats.
Impulsive action was studied using the 5-CSRTT (Carli et
al. 1983; Robbins 2002), and the delayed reward task
(DRT; Evenden and Ryan 1996) was used to measure
impulsive choice. Amphetamine was also included as its
effects on impulsive behavior have been well described
(Eagle and Baunez 2010; Pattij and Vanderschuren 2008).
To increase the possibility to observe drug-induced reduc-
tions in impulsive action, we performed neuropharmaco-
logical challenges in the 5-CSRTT under both baseline as
well as long intertrial interval (ITI) conditions. The use of a
long ITI, in which the animal unexpectedly has to wait
longer for the instruction signal to appear, enhances levels
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of impulsive action in the 5-CSRTT (Dalley et al. 2002;
Navarra et al. 2008; Paterson et al. 2011). Not only does a
long ITI evoke higher levels of premature responding, it
may also be that performance under baseline conditions
relies on different neural and cognitive processes than
responding under novel, challenging circumstances. For
example, NA neurotransmission appears to be especially
engaged when task contingencies unexpectedly change
(Cole and Robbins 1992; Dalley et al. 2001; Sirvio et al.
1993). Thus, drug effects under baseline and long ITI
conditions in the 5-CSRTT may be qualitatively or
quantitatively different.

Materials and methods
Subjects

Male Lister Hooded rats (Harlan CPB, Horst, The Nether-
lands), weighing 200-250 g at the beginning of the
experiment, were housed two per cage under reversed
lighting conditions (lights on from 19.00 to 07.00 h). After
2 weeks of habituation, rats were placed on a restricted diet
of 14 g of standard rat chow per day and body weights were
monitored on a weekly basis. Feeding occurred in the rats'
home cages at the end of the experimental day. All
experiments were approved by the Animal Ethics Committee
of Utrecht University and were conducted in agreement with
Dutch laws (Wet op de Dierproeven, 1996) and European
regulations (Guideline 86/609/EEC).

Behavioral apparatus

Behavioral testing for all experiments was conducted in 16
identical operant conditioning chambers (30.5%x24x21 cm;
Med Associates, St. Albans, VT, USA) enclosed in sound
attenuating boxes. The boxes were equipped with a fan to
provide ventilation and to mask extraneous noise. Set in the
curved wall of each box was an array of five holes. Each nose
poke unit was equipped with an infrared detector and a yellow
light-emitting diode stimulus light. Food pellets (45 mg,
Formula P; Bio-Serv) could be delivered at the opposite wall
via a dispenser. The chamber could be illuminated by a white
house light mounted in the center of the roof. Online control of
the apparatus and data collection were performed using MED-
PC version 1.17 (Med Associates).

Behavioral procedures

A detailed description of the 5-CSRTT and DRT procedure
has been provided previously (Van Gaalen et al. 2006a; Van
Gaalen et al. 2006b, respectively). Separate groups of
animals were trained for each experiment. For both

behavioral paradigms, similar habituation and magazine
training protocols were followed. This protocol consisted of
a habituation exposure to the operant chambers for two
daily 30-min sessions, during which sucrose pellets were
placed in the response holes and food magazine. Subse-
quently, in the next two sessions, a total of 75 pellets were
delivered with a random interval to allow the animals to
associate the sound of pellet delivery with reward. This
procedure was followed by magazine shaping, in which
animals were trained to make a nose poke into an
illuminated response hole to earn reward. The spatial
location of the stimulus lights was adjusted according to
the experimental paradigm. Each session of magazine
training consisted of 100 trials and lasted approximately
30 min. Five sessions were scheduled per week (one
session per day, Monday—Friday) during the dark phase of
the light/dark cycle.

Five-choice serial reaction time task

Rats were trained to detect and respond to a brief visual
stimulus presented randomly in one of the five nose poke
units to obtain a food reward. A trial started with an ITI of
5 s, followed by 1-s illumination of one of the five
apertures and 2-s limited hold. Following a nose poke in
the illuminated aperture, i.e., a correct response, animals
were rewarded with the delivery of one food pellet (45 mg,
Formula P, Research Diets) in the food magazine. During
the training session, stimulus duration was set at 32 s and
was gradually decreased over sessions to 1 s until animals
reached stable baseline performance (accuracy, >80%
correct choice and <20% errors of omission). Each daily
session consisted of 100 discrete trials or 30 min, which-
ever occurred first. A nose-poke response into a non-
illuminated aperture, i.e., an incorrect response as well as
failure to respond within 5 s after the onset of the stimulus,
i.e., an error of omission, resulted in no food delivery and a
time-out period with the house light extinguished for 5 s.
Nose pokes made during the ITIL i.e., before the onset of the
stimulus (premature responses) were recorded as a measure of
impulsivity and resulted in a 5 s time-out and no food reward.
Perseverative responses, i.c., repeated responding during the
presentation of the stimulus, were measured but did not have
any programmed consequences. The following behavioral
measures were recorded: (1) premature responses, i.e., number
of responses into one of the holes during the ITI preceding
stimulus presentation; (2) accuracy, i.e., percentage of correct
responses [(number correct responses) / (correct+incorrect
responses)x 100]; (3) latency of correct responses, i.e., the
mean time between stimulus onset and nose poke in the
illuminated unit; (4) omission errors, i.e., the total number of
omitted trials during a session; and (5) perseverative responses
after correct choice.
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Following acute drug administration under baseline
conditions, a cohort of rats was used for pharmacological
manipulation under long ITI conditions. During these
sessions, the ITI was extended to 7 s to provoke impulsive
behavior (Dalley et al. 2002). The long ITI session
consisted of 100 trials (ITT 7 s, stimulus duration 0.5 s)
per session and was repeated once a week. The long ITI
days were at all times preceded and followed by two
baseline days (ITI 5 s, stimulus duration 0.5 s) to avoid
habituation to the long ITL

Delayed reward paradigm

Rats were faced with a choice between a small, immediate
food reward and a larger but delayed food reward.
Ultimately, the delayed option is more beneficial, but the
subjective value of the large food reward declines with
increasing delay to its delivery (Logue 1988).

In the final stage of the task, a session was divided into
five blocks of 12 trials. Each block started with two forced
trials in which, after initiating the trial by a nose poke into
the center hole, either the left or the right hole was
illuminated in a counterbalanced fashion. For the next 10
trials, the animals had a free choice and both the left and
right units were illuminated. Nose poking into one position
resulted in the immediate delivery of a small reinforcer (one
food pellet), whereas a nose poke into the other position
resulted in the delivery of a large, but delayed, reinforcer
(four food pellets). Over sessions, the delays for the large
reinforcer were progressively increased within a session
from 0 to 10, 20, 40 and 60 s per block. After delivery of
the reinforcer or the choice phase time elapsed, an ITI
commenced until the next trial started. As the trial time was
fixed, the ITI duration depended on the duration of the
delay. The positions associated with the small and large
reinforcers were always the same for each individual but
counterbalanced for the group. The behavioral measure to
assess task performance, i.e., the percentage preference for
the large reinforcer as a function of delay, was calculated as
the [(number of choices for the large reinforcer) / (number
choices large+small reinforcers)x 100]. Furthermore, no
response during the choice phase within 10 s was counted
as an omission and the total number of omitted choice trials
per block of 10 trials within a session was calculated.

Drugs

(+)-Amphetamine sulphate was purchased from O.P.G.
(Utrecht, The Netherlands). GBR12909 dihydrochloride,
atomoxetine hydrochloride and citalopram hydrobromide
were obtained from Tocris Bioscience (UK). All drug doses
were calculated as salt, dissolved in 0.9% saline (amphet-
amine, atomoxetine, and citalopram) or sterile water
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(GBR12909). Drugs were freshly prepared each day before
testing and injected intraperitoneally (i.p.) in a volume of 1 ml/
kg body weight. Drug tests were conducted on Tuesdays and
Fridays with baseline training sessions on the other weekdays.
Before the first test day, all animals had been habituated twice
to i.p. saline injections. Drugs were administered according to
a Latin square design and each animal received a maximum of
two different drugs. In addition, in a subgroup of rats
pharmacological manipulations were tested in the 5S-CSRTT
under a long ITI of 7 s once a week according to a Latin square
design with baseline training sessions (intertrial interval of 5 s)
in between.

Statistical analysis

All data are presented as means and standard errors of the
mean and analyzed using SPSS for Windows, version 15.0.
The data of the delayed reward task were subjected to an
arcsin transformation before statistical analysis (McDonald
2009). In the DRT, animals that did not show a delay-
dependent curve in their choice behavior (0% choice for
large reward at 0 s delay, 100% choice for large reward at 40
and 60 s delay) were excluded from the experiment. Data
were analyzed by one- (5-CSRTT) or two-factor (DRT)
repeated-measures ANOVAs with drug treatment (5-CSRTT,
DRT) and delay to large reinforcer (DRT) as within-subjects
variables. If the outcome of the repeated-measures ANOVA
yielded significant effects of dose or dosexdelay at p<0.05
level, further post-hoc analysis was performed using paired
samples #-tests. Pharmacological effects on 5-CSRTT perfor-
mance under a long ITI were analyzed using paired samples
t-tests (vehicle versus drug treatment).

Results

Effect of amphetamine and monoamine reuptake inhibitors
on 5-CSRTT performance under baseline conditions

As depicted in Fig. la and Table 1, amphetamine
significantly increased the number of premature responses
and perseverative responses in the 5-CSRTT [F(3,45)=
13.12, p<0.001 and F(3,45)=3.64, p<0.05, respectively].
Post-hoc analysis revealed that the increase of premature
and perseverative responses was significant at all tested
doses (p<0.01 and p<0.05, respectively). In addition to the
effect on impulsivity, systemic administration of amphet-
amine reduced accuracy, i.e., percentage of correct
responses at all doses [F(3,45)=8.82, p<0.001], whereas
the response latency was only reduced at a dose of 0.5 mg/
kg (Table 1) [F(3,45)=3.37, p<0.05]. Errors of omission
were differentially affected by amphetamine; as 0.25 mg/kg
of amphetamine reduced the amount of errors of omission,
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no effect was found at the intermediate dose of 0.5 mg/kg
and 1 mg/kg of amphetamine resulted in a significant
increase (Table 1) [F(3,45)=10.49, p<0.001].

Systemic administration of the selective DA reuptake
inhibitor GBR12909 resulted in enhanced premature and
perseverative responses at a dose of 10 mg/kg (Fig. 1b
and Table 1) [F(3,45)=8.46, p<0.007 and F(3,45)=10.26,
p<0.004, respectively]. At this dose, the percentage of
correct responses and response latency were reduced
(Table 1) [F(3,45)=6.02, p<0.01 and F(3,45)=3.93,
p=0.01, respectively]. GBR12909 had no effect on errors
of omission [F(3,45)=2.23, NS].

Atomoxetine, the selective NA reuptake inhibitor,
enhanced the errors of omission and slowed response
latency at all tested doses without affecting impulsive
behavior (Fig. 1c and Table 1) [F(3,45)=26.43, p<0.001,
F(3,45)=23.22, p<0.001, F(3,45)=2.54, NS, respectively].
The other parameters of 5-CSRTT performance were
unaffected by atomoxetine treatment under baseline con-
ditions [correct responses: F(3,45)=2.23, NS and persever-
ative responses: £(3,45)=0.8, NS].

Premature responding was decreased after treatment with
the selective 5-HT reuptake inhibitor citalopram at the
intermediate dose of 1.0 mg/kg (Fig. 1d) [F(3,45)=2.98,
p<0.05], whereas the response latency was increased at a
dose of 1.0 mg/kg and 3.0 mg/kg [F(3,45)=2.79, p=0.05].
Further comparisons indicated that accuracy, errors of
omissions and perseverative responses were unaffected by

1.0

3.0 0 0.3 1.0 3.0

citalopram (mg/kg)

citalopram [F(3,45)=0.23, NS, F(3,45)=0.99, NS, F(3,45)=
1.97, NS, respectively].

Effect of amphetamine and monoamine reuptake inhibitors
on 5-CSRTT performance under long ITI conditions

Under long ITI conditions in the 5-CSRTT, the effects of
monoamine reuptake inhibitors were tested at a dose that
affected impulsive behavior under baseline conditions, i.e.,
10 mg/kg GBR12909 and 1 mg/kg citalopram. For atom-
oxetine, which did not alter impulsive behavior under
baseline conditions, the highest dose was used (i.e., 3 mg/
kg). An intermediate dose of amphetamine (0.5 mg/kg) was
used as this dose had no effect on the errors of omission
under baseline conditions but did markedly increase
impulsive behavior in the S-CSRTT (Table 1).

Similar to baseline conditions, amphetamine (0.5 mg/kg)
and GBR12909 (10 mg/kg) increased the amount of
premature and perseverative responses and attenuated
accuracy under long ITI conditions (Fig. 2a, b) [premature
responses: df=15, t=—4.07, p=0.001 and df=14, t=—3.49,
p=0.01, perseverative responses: df=15, t=—3.21, p<0.01
and df=14, +=—2.50, p<0.05, correct responses: df=15, t=
2.70, p<0.05 and df=14, t=2.52, p<0.05, respectively]. In
addition, GBR12909 (10 mg/kg) decreased response latency,
whereas amphetamine had no effect on this parameter [df=
14, =291, p=0.01 and df=15, t=—0.44, NS, respective-
ly]. No effect of amphetamine and GBR12909 was
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Table 1 Effects of amphetamine, GBR12909, atomoxetine and
citalopram on behavioral performance (accuracy, omissions, prema-
ture and perseverative responses, response latency) under baseline
conditions (visual stimulus presented 5 s after trial initiation) in the 5-

CSRTT. In total, n=16 animals were included in the analysis. *p<0.05
and **p<0.01 compared to vehicle treatment (paired samples #-test).
All data are expressed as mean+SEM

Correct responses Errors of omission

Premature responses

Perseverative responses Response latency (s)

Amphetamine

Veh 90.8+1.4 17.9+1.6 6.3+1.0 13.8+2.4 0.71£0.03
0.25 mg/kg 85.242.2% 12.4+1.3% 18.4+4.4%* 23.7+4.9% 0.66+0.02
0.5 mg/kg 82.9+2.3* 16.242.3 24.0+4.1%* 23.8+5.7* 0.6+0.02*
1.0 mg/kg 79.1£2.3% 32.5£5.2%%* 36.3£6.0%* 29.2+6.6* 0.71+0.03
GBR12909

Veh 90.7+1.1 14.6+£2.1 5.3+0.8 6.7+1.1 0.67+0.02
2.5 mg/kg 91.2+1.2 15.8+2.7 4.8+0.7 5.9+0.7 0.67+0.02
5.0 mg/kg 89.0+1.4 11.6+1.8 8.9+2.4 7.9+1.6 0.64+0.02*
10.0 mg/kg 85.3+2.3%* 10.2+1.9 29.9+£8.2%* 21.4+4.9%* 0.61£0.02%*
Atomoxetine

Veh 91.0+1.5 18.4+2.2 6.4+1.5 14.6+4.2 0.73+0.03
0.3 mg/kg 94.6+1.4 25.8+2.5% 32+1.2 11.0£2.3 0.81+0.04**
1.0 mg/kg 94.3+1.0 33.4 £3.0%* 3.5+0.9 10.9+1.9 0.84+0.04**
3.0 mg/kg 94.5 £1.6 44.3+£2.8** 3.5+0.9 10.2+2.4 0.96+0.04**
Citalopram

Veh 91.7+1.0 12.8+2.1 5.1+0.8 7.0+1.7 0.66+0.02
0.3 mg/kg 91.7+1.3 15.8+2.6 4.8+0.9 7.1+1.1 0.68+0.02
1.0 mg/kg 922+1.2 16.4+2.6 2.6 £0.4%* 41+1.1 0.69+0.02*
3.0 mg/kg 92.5+1.2 16.6+2.2 3.1+0.7 7.4+1.5 0.70+0.02*

observed on errors of omission [df=15, t=—0.65, NS and
df=14, t=0.66, NS].

Atomoxetine (3 mg/kg) reduced premature and persev-
erative responding under long ITI conditions (Fig. 2¢) [df=
15, t=6.0, p<0.001 and df=15, t=4.47, p<0.001, respec-
tively]. Additional comparisons revealed that all other
parameters of 5-CSRTT were enhanced by atomoxetine
under these conditions (Fig. 2¢) [correct responses: df=15,
t=-2.97, p=0.01; omissions: df=15, t=—2.33 p<0.05;
response latency: df=15, t=-2.26, p<0.05].

Premature and perseverative responses were both re-
duced by citalopram (1 mg/kg) pretreatment under long ITI
conditions (Fig. 2d) [premature responses: df=15, t=4.28,
p=0.001, perseverative responses: df=15, t=2.49, p<0.05].
Under these conditions, citalopram did not affect accuracy,
errors of omission and response latency [correct responses:
df=15, t=—-0.22, NS, omissions: df=15, t=—0.19, NS and
response latency: df=15, t=1.26, NS].

Effect of amphetamine and monoamine reuptake inhibitors
on impulsive choice in the DRT

Overall, animals showed a delay-dependent decline in their

choice behavior for the large, delayed reward [vehicle, delay:
F(4,48)=31.49, p<0.001]. Amphetamine significantly
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enhanced the preference for the large delayed reward [dose:
F(3,36)=3.11, p<0.05; dosexdelay: F(12,144)=1.33, NS],
and post-hoc analysis revealed that this effect was significant
for all doses of amphetamine at the 40-s delay and for 0.5
and 1 mg/kg amphetamine at a delay of 60 s (Fig. 3a).

The selective DA reuptake inhibitor GBR12909 also
increased the preference for the larger delayed reward
[dose: F(3,39)=11.07, p<0.001; dosexdelay: F(12,156)=
2.29, p=0.01]. Post-hoc analysis of the data showed a
significant effect of 10 mg/kg of GBR12909 on all delays,
ie., 10, 20, 40 and 60 s (Fig. 3b). At a dose of 5 mg/kg,
GBR129009 resulted in an increased preference for the large
reward at the delay of 10 and 20 s (Fig. 3b).

The selective NA reuptake inhibitor atomoxetine did not
alter choice behavior in the DRT at any delay [dose: F(3,39)=
0.31, NS; dosexdelay: F(12,156)=1.64, NS].

The selective 5-HT reuptake inhibitor citalopram also did
not affect choice behavior in the DRT (Fig. 3d) [dose: F(3,39)=
1.27, NS; dosexdelay: F(12,156)=1.11, NS].

Discussion

In order to advance our understanding of the role of
monoamine neurotransmission in impulse control, the



Psychopharmacology (2012) 219:313-326

gﬂ-’ﬁ—a % oo
® s [ 80
E 4 i
g ] i
w
U 40 40
3 20 20
8 o 0 05 L
30 30-_
25 25
g o 4
g 2 2
% 15 ] - ]
b 15 ]_ 15 -
£ 10 10
S ] ]
0= 0
0 0.5
8 100 ai 100 ol
2 ] ]
9 80 80
(2] | 4
L 60 60
9 1 4
3 40 40
m b | PRp—— 4
—_— =
5 27 20
o
o- _
0 05 d 0 10
w
@ 100 - 100
@ 1997 ]
S 80 80
4 ] *k ]
2 : *ok
‘@ 40 40 —
B ]
0- o-
8 0 05 0 10
» 08 0.8
> ]
c 0.7 1 0.7 7
% 1 —E 1 *
— 086 0.6
[1)] d d
L
8 |
Lo 0.5 5 10
amphetamine (mg/kg) GBR12909 (mg/kg)

319
100 -
80—1
el
40 —
20 -
-
3071
25—_
o
15-: 1
10 -
a
9 0 1.0
100 — 100 —
80— 80—
60— 60—
40 40
1 == 1 == *%
20— *k 20 ‘ -—
1 [ oonim -
° 0 3.0 0 1.0
100 100
80 80
60 — 60 -
40 -
20
ol
0.8
0.7
0.6
0.5
o 0 3.0 R 1.0
atomoxetine (mg/kg) citalopram (mg/kg)

Fig. 2 Effects of amphetamine (a), the selective DA reuptake
inhibitor GBR12909 (b), the selective NA reuptake inhibitor atom-
oxetine (¢) and the selective 5-HT reuptake inhibitor citalopram (d) on
5-CSRTT performance under long ITI conditions (visual stimulus

present study investigated the effects of selective mono-
amine reuptake inhibitors on two behavioral dimensions of
impulsivity, i.e., impulsive action in the 5-CSRTT and
impulsive choice in the DRT. Besides comparing three
selective monoamine reuptake inhibitors and amphetamine
in two separate measures of impulsivity within a single
study, we aimed to address several outstanding questions

presented 7 s after trial initiation). In total, n=15 animals were
included in the analysis. Asterisk indicates p<0.05 and two asterisks
indicates p<0.01 compared to vehicle treatment (paired samples z-
test). All data are expressed as mean+SEM

with regard to monoamine neurotransmission and impulsive
behavior. Thus, we have shown that the 5-HT reuptake
blocker citalopram selectively reduces premature respond-
ing in the 5-CSRTT but does not affect impulsive choice in
the DRT. In addition, the NA reuptake inhibitor atom-
oxetine reduced impulsive action primarily when levels of
premature responding were high (i.e., under a long ITI) but
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did not affect impulsive choice. Furthermore, using a long
ITT in the 5-CSRTT, we show that amphetamine and the
DA reuptake blocker GBR12909 enhance, and that atom-
oxetine and citalopram reduce impulsive action. Thus, the
effects of these drugs on impulsive behavior were not
qualitatively different under baseline and long ITI con-
ditions. Consistent with previous findings, we also show
that amphetamine and the selective dopamine reuptake
blocker GBR12909 decreased impulsive choice.
Amphetamine has been consistently reported to disrupt
inhibitory control, i.e., the ability to withhold responding in
the 5-CSRTT (Cole and Robbins 1987; 1989; Harrison et
al. 1997; Murphy et al. 2008; Paterson et al. 2011; Pattij et
al. 2007; Sun et al. 2011; Van Gaalen et al. 2006a). Our
findings confirmed this disinhibitory effect of amphet-
amine, which increased the number of premature responses
in the 5-CSRTT at all doses tested (0.25-1 mg/kg). In
addition to response inhibition, the 5-CSRTT provides
several relatively independent measures of performance
such as task efficiency, motivation and attentional capacity
(Robbins 2002). Alongside its effects on premature
responding, amphetamine also attenuated accuracy, en-
hanced perseverative responding, reduced response latency
(at 0.5 mg/kg only) and had biphasic effects on errors of
omission. The effects of amphetamine were comparable
under baseline and long ITI conditions. Although not
universally reported as effects of amphetamine in the 5-
CSRTT, the present profile of effects is highly comparable

@ Springer

Delay (s) for large reward

to previous reports (reduced accuracy: Cole and Robbins
1989; Harrison et al. 1997; Pattij et al. 2007; Sun et al.
2011; increased omissions: Cole and Robbins 1987; 1989;
Harrison et al. 1997; Murphy et al. 2008; Sun et al. 2011;
Van Gaalen et al. 2006a; and faster response latency: Cole
and Robbins 1987; 1989; Harrison et al. 1997; Pattij et al.
2007).

Amphetamine increases extracellular levels of DA, NA,
and, to a lesser extent, 5-HT by binding to monoamine
transporters on the cell membrane and on intracellular
neurotransmitter storage vesicles as a false substrate thereby
promoting reverse transport of cytosolic transmitter stores
(Seiden et al. 1993; Sulzer et al. 1995). Comparable to
amphetamine, GBR12909 also enhanced premature
responding, reduced accuracy, enhanced perseverative
responding and reduced response latencies under both
baseline and long ITI conditions. This indicates that the
effects of amphetamine in the 5-CSRTT—except for the
increases in errors of omission at the highest dose—are
mediated by DA (Fernando et al. 2011; Seu et al. 2009; Van
Gaalen et al. 2006a). Pharmacological studies have shown
that the amphetamine-induced augmentation of premature
responding in the 5-CSRTT largely depends on DA D2
receptor stimulation in the nucleus accumbens (Cole and
Robbins 1989; Pattij et al. 2007; Van Gaalen et al. 2006a;
2009). Conversely, reducing DA neurotransmission using
DA receptor antagonists or low doses of DA D2 receptor
agonists, which suppress DA neurotransmission by stimu-
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lating presynaptic D2 autoreceptors, has been found to
reduce impulsive action in the 5-CSRTT (Fernando et al.
2011; Koskinen and Sirvio 2001; Lecourtier and Kelly
2005; Passetti et al. 2003; Van Gaalen et al. 2006a;
Winstanley et al. 2010). DA-mediated increases in the
salience of the reward-related cues in the task and/or
increased response vigor by amphetamine may explain its
effects in the 5-CSRTT (Berridge and Robinson 1998;
Cardinal et al. 2002). This results in a higher rate of
performance reflected by a lower amount of errors of
omission and faster response latency, albeit at the expense
of task accuracy and reduced impulse control. This is
consistent with the well-established effect of psychostimu-
lant drugs on behavior, i.e., a general enhancement of the
rate of behavioral performance causing short and simple
behaviors to dominate the behavioral repertoire and cutting
short of complex chains of behavior (Lyon and Robbins
1975). At the highest dose of amphetamine (1 mg/kg), this
results in a more general disruption of task performance in
the 5-CSRTT. Interestingly, the increase in errors of
omission at this highest dose likely relies on NA rather
than DA neurotransmission because this effect was mim-
icked by atomoxetine but not GBR12909. This indicates
that at higher doses, the effects of amphetamine on 5-
CSRTT performance are mediated by increases in both DA
and NA neurotransmission.

Neurobiological and pharmacological data provide evi-
dence for the hypothesis that NA plays a key role in both
the etiology and treatment of ADHD (Arnsten, 2009;
Biederman and Spencer 1999). Moreover, clinical observa-
tions have shown that a subgroup of patients who do not
respond to psychostimulants, such as amphetamine and
methylphenidate, do respond to atomoxetine (Newcorn et
al. 2008). Selective inhibition of NA reuptake by atom-
oxetine reduced premature responding in the 5-CSRTT
under long ITI conditions. NA neurotransmission has been
implicated in the regulation of behavior under novel or
demanding circumstances (Aston-Jones and Cohen 2005;
Cole and Robbins 1992; Dalley et al. 2001; McGaughy et
al. 2002; Sirvio et al. 1993). In the 5-CSRTT, PFC NA
levels rise when task contingencies are changed (Dalley et
al. 2001), and cortically NA-depleted rats are slower to
adapt to changing task requirements (Milstein et al. 2007).
Our observation that atomoxetine was predominantly
effective under (relatively) novel and challenging, long
ITI conditions corresponds with these findings. Interestingly,
previous studies that reported reduced impulsivity in the 5-
CSRTT under baseline conditions after atomoxetine treatment
used a shorter stimulus duration (0.5 s versus 1 s in the present
study; Blondeau and Dellu-Hagedorn 2007; Robinson et al.
2008; Sun et al. 2011). Under these more demanding test
conditions, levels of premature responses are higher, and
performance may depend on NA signaling to a greater

extent. An alternative, not necessarily inconsistent explana-
tion, is that the absence of an effect of atomoxetine on
impulsivity under baseline conditions in our study was due
to a floor effect so that the increase in premature responses
under long ITI conditions provided a larger window to
observe a decrease in impulsivity. Interestingly, atomoxetine
indeed seems to reduce impulsive action in the 5-CSRTT
primarily in rats characterized by high levels of premature
responses (Blondeau and Dellu-Hagedorn 2007; Fernando et
al. 2011) or high levels of premature responding due to
prolonged ITI durations (Navarra et al. 2008; Paterson et al.
2011). In these studies, no effect of selective blockade of NA
by atomoxetine on impulsive action was observed in low
impulsive rats (Fernando et al. 2011), efficient rats (Blondeau
and Dellu-Hagedorn 2007) or at short intertrial interval
durations (4- and 5-s ITI: Paterson et al. 2011; Navarra et
al. 2008) consistently reflected by low baseline levels of
premature responding.

Atomoxetine also increased errors of omission and
lengthened response latencies, under both baseline and
long ITI conditions, suggesting that this drug somewhat
slowed down the performance in the 5-CSRTT. These
effects of atomoxetine are consistent with previous findings
with noradrenaline reuptake inhibitors, especially at higher
doses (Blondeau and Dellu-Hagedorn 2007; Fernando et al.
2011; Navarra et al. 2008; Paine et al. 2007; Sun et al.
2011; Van Gaalen et al. 2006a). Motivational deficits do not
likely underlie these increased omissions and response
latencies because NA reuptake inhibitors have been shown
to increase reinforcement rates in differential reinforcement
of low responding schedules (O'Donnell et al. 2005).
Interestingly, under the challenging long ITI conditions,
accuracy was improved by systemic atomoxetine (see also
Navarra et al. 2008) supporting the role of NA neurotrans-
mission in behavioral vigilance (Arnsten 2004; Aston-Jones
and Cohen 2005). Together, these data suggest that NA
neurotransmission is particularly involved in the modula-
tion of behavior in the 5-CSRTT under circumstances when
task performance is suboptimal, either as a result of
demanding task requirements or as a result of inherent
individual differences in behavior. Increasing NA neuro-
transmission then leads to a more conservative pattern of
responding whereby task accuracy and impulse control
increase but speed of performance declines somewhat.

The serotonin reuptake inhibitor citalopram resulted in a
decrease in premature responding in the 5-CSRTT at an
intermediate dose of 1 mg/kg. A similar improvement in
impulse control was observed under long ITI conditions. In
contrast to amphetamine, GBR12909 and atomoxetine, the
effect of citalopram on premature responding was quite
selective as accuracy and errors of omission were not
affected. Our finding is in line with the observation that
enhanced 5-HT transmission in 5-HT transporter knockout

@ Springer



322

Psychopharmacology (2012) 219:313-326

rats is associated with reduced premature responding in the
5-CSRTT (Homberg et al. 2007). Conversely, forebrain 5-
HT depletion significantly increases premature responding
in the 5-CSRTT (Harrison et al. 1997; Winstanley et al.
2004). Together, these studies suggest that increasing 5-HT
activity may be a possible mechanism for attenuation of
impulsive action. In vivo microdialysis within the medial
prefrontal cortex has shown a positive relationship between
premature responding and basal 5-HT levels although no
alteration in 5-HT efflux during task performance was
found (Dalley et al. 2002). These results indicate a role for
tonic 5-HT levels in the prefrontal cortex in impulsive
regulation in the 5-CSRTT. However, 5-HT depletion using
5,7-DHT infusion into the medial prefrontal cortex did not
affect impulsive action in the 5-CSRTT (Fletcher et al.
2009). Thus, the role of 5-HT in impulse action is not
straightforward, which is likely related to the great diversity
of 5-HT receptors, and the fact that 5-HT modulates
impulsive action through different brain regions (Eagle
and Baunez 2010; Pattij and Vanderschuren 2008).

In contrast to its effects on impulsive behavior in the
5CSRTT, amphetamine had beneficial effects on impulsive
choice, exemplified by the enhanced ability of the animals to
choose a large, delayed reward instead of a small, immediate
reward. Our finding is in keeping with previous studies in
mice, rats and humans (Barbelivien et al. 2008; De Wit et al.
2002; Isles et al. 2003; Richards et al. 1999; Van Gaalen et
al. 2006b; Wade et al. 2000; Winstanley et al. 2003) although
this effect of amphetamine is found to be dose-, baseline-
and context-dependent (Barbelivien et al. 2008; Cardinal et
al. 2000; Evenden and Ryan 1996; Isles et al. 2003). In this
study, we showed that impulsive choice was decreased after
blockade of DA by GBR12909 but not selective blockade of
NA or 5-HT by atomoxetine or citalopram, respectively. An
important regulatory role of DA in impulsive choice has
been proposed before (Wade et al. 2000; Van Gaalen et al.
2006b) as the improved impulsive choice by amphetamine
was blocked by the DA D2 receptor antagonist eticlopride
(Van Gaalen et al. 2006b).

In the present study, atomoxetine did not affect impulsive
choice. In agreement with our findings, Sun et al. (2011)
found no effect on impulsive choice following atomoxetine
administration. In contrast, Robinson et al. (2008) reported
that atomoxetine reduced impulsive choice whereby the
increase in percentage choice for the large reward after
atomoxetine treatment was most pronounced at the shorter
delays. The somewhat less selective NA reuptake blocker
desipramine had no consistent effect in the DRT (Van Gaalen
et al. 2006b). Together, these data suggest that acute
enhancement of NA neurotransmission has, at best, modest
effects on impulsive choice in a delayed reward task.

In vivo microdialysis experiments have shown that 5-HT
release within the medial prefrontal cortex correlates with
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performance in the DRT (Winstanley et al. 2006) indicating
that 5-HT release is essential for proper delay discounting
judgments. However, inconsistent effects of forebrain 5-HT
depletions on impulsive choice have been found (Bizot et
al. 1999; Mobini et al. 2000; Winstanley et al. 2003; 2004;
Wogar et al. 1993). Likewise, inconsistent effects of 5-HT
depletion have been found in humans as tryptophan depletion
increased delay discounting in healthy volunteers in one
study (Schweighofer et al. 2008) but not another (Crean et al.
2002). In the present study, selective inhibition of 5-HT
reuptake by citalopram did not affect choice behavior in the
delayed reward task. In agreement with our findings,
Evenden and Ryan (1996) found that the tolerance to delay
of gratification was not affected by acute administration of
citalopram or imipramine. Early studies on the neural
mechanisms of impulsive behavior have implicated low
levels of 5-HT in impulsivity (Linnoila et al. 1983; Soubrié¢
1986). Together with previous findings discussed here, our
data indicate that elevation of 5-HT levels by SSRIs has a
beneficial effect on impulsive action but not impulsive choice
suggesting that the early association of 5-HT with impulsivity
relates more to the former than to the latter.

The present study aimed to pinpoint the separate roles of
three monoamine neurotransmitters in two forms of
impulsive behavior using selective DA, NA and 5-HT
reuptake blockers. Two limitations to this approach should
be mentioned. First, although GBR12909, atomoxetine and
citalopram display low affinity for the other monoamine
transporters (Fone and Nutt 2005; Rothman et al. 2001),
transporter-selective reuptake inhibitors are not necessarily
transmitter-selective reuptake inhibitors. DA reuptake in the
striatum depends primarily on the DA transporter, whereas
DA reuptake in the prefrontal cortex depends on both the
NA transporter and the DA transporter due to the low
density of the DA transporter in this area (Carboni et al.
2006; Mord6n et al. 2002; Tanda et al. 1997). Atomoxetine,
therefore, indirectly boosts prefrontal cortical DA via its
effects on the NA transporter but it does not modulate DA
levels in the striatum (Bymaster et al. 2002). Thus, a
contribution of prefrontal DA to the effects of atomoxetine
in the 5-CSRTT cannot be excluded. However, the COMT
inhibitor tolcapone that selectively modulates DA, but not
NA, did not attenuate impulsive action in rats that exhibited
suboptimal 5-CSRTT performance suggesting that cortical
DA does not contribute to the effects of atomoxetine on
impulsive action (Paterson et al. 2011). Second, through
their downstream effects, increased synaptic DA, NA and
5-HT levels can indirectly alter the activity of other
neurotransmitter systems (e.g., Di Giovanni et al. 1999;
Vanderschuren et al. 1999) so that coordinated activity of
multiple neurotransmitter systems mediates adaptive behav-
ior. For example, with regard to impulse control, 5S-HT-DA
interactions have been shown to be involved in impulsive
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choice in rats. Thus, forebrain 5-HT lesions attenuated the
ability of amphetamine to decrease impulsive behavior in a
delay-discounting task, particularly in rats with high baseline
levels of impulsivity, but did not themselves alter delay-
discounting performance (Winstanley et al. 2003). Therefore,
involvement of neurotransmitters other than DA, NA and 5-
HT, respectively, in the behavioral effects of GBR12909,
atomoxetine and citalopram cannot be excluded.

In conclusion, the neuropharmacological manipulations
presented here indicate a differential contribution of DA, NA
and 5-HT in the modulation of two dimensions of impulsivity.
Inhibition of the reuptake of DA exerted opposite effects on
impulsive action (increase) and impulsive choice (decrease),
whereas inhibition of NA and 5-HT reuptake reduced
impulsive action but not impulsive choice. The current study,
therefore, supports the well-established notion of the hetero-
genous nature of impulsivity (Dalley et al. 2011; Eagle and
Baunez 2010; Evenden 1999; Pattij and Vanderschuren
2008). The existence of independent processes of impulse
control is exemplified in the psychiatric population, although
it is difficult to relate certain forms of impulsivity with
particular disorders (Moeller et al. 2001; Solanto et al. 2001;
Sonuga-Barke 2003). Nevertheless, deficits in one of the
subtypes of impulsivity or genetic variation in monoamine
signaling (e.g., Colzato et al. 2010; Hamidovic et al. 2009)
may contribute to the differential responsiveness and
effectiveness of drug treatments in impulse control disorders.
As such, understanding the contribution of different neuro-
transmitter systems to distinct forms of impulsivity may
contribute to the development of selectively tailored phar-
macotherapeutic treatments of impulse control disorders.

Acknowledgements This study was supported by the National
Institute on Drug Abuse Grant ROl DA022628 (L.J.M.J.V.). We
thank Tommy Pattij for sharing the program codes for the tasks.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

American Psychiatric Association (2000) Diagnostic and statistical
manual of mental disorders, Ed 4, Text Revision. American
Psychiatric Association, Washington, DC

Arnsten AFT (2004) Adrenergic targets for the treatment of cognitive
deficits in schizophrenia. Psychopharmacology 174:25-31

Aston-Jones G, Cohen JD (2005) An integrative theory of locus
coeruleus—norepinephrine function: adaptive gain and optimal
performance. Annu Rev Neurosci 28:403—450

Audrain-McGovern J, Rodriguez D, Epstein LH, Cuevas J, Rodgers
K, Wileyto EP (2009) Does delay discounting play an etiological
role in smoking or is it a consequence of smoking? Drug Alcohol
Depend 103:99-106

Barbelivien A, Billy E, Lazarus C, Kelche C, Majchrzak M (2008)
Rats with different profiles of impulsive choice behavior exhibit
differences in responses to caffeine and d-amphetamine and in
medial prefrontal cortex 5-HT utilization. Behav Brain Res
187:273-283

Bari A, Eagle DM, Mar AC, Robinson ESJ, Robbins TW (2009)
Dissociable effects of noadrenaline, dopamine and serotonin
uptake blockade on stop task performance in rats. Psychophar-
macology 205:273-283

Berridge KC, Robinson TE (1998) What is the role of dopamine in
reward: hedonic impact, reward learning, or incentive salience?
Brain Res Rev 28:309-369

Biederman J, Faraone SV (2005) Attention-deficit hyperactivity
disorder. Lancet 366:237-248

Biederman J, Spencer T (1999) Attention-deficit/hyperactivity disor-
der (ADHD) as a noradrenergic disorder. Review Biol Psychiatry
46:1234-1242

Bizot JC, Le Bihan C, Puech AJ, Hamon M, Thiébot M (1999)
Serotonin and tolerance to delay of reward in rats. Psychophar-
macology 146:400—412

Blondeau C, Dellu-Hagedorn F (2007) Dimensional analysis of
ADHD subtypes in rats. Biol Psychiatry 61:1340—1350

Bolden-Watson C, Richelson E (1993) Blockade by newly-developed
antidepressants of biogenic amine uptake into rat brain synapto-
somes. Life Sci 52:1023-1029

Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld
PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002)
Atomoxetine increases extracellular levels of norepinephrine and
dopamine in prefrontal cortex of rat: a potential mechanism for
efficacy in attention deficit/hyperactivity disorder. Neuropsycho-
pharmacology 27:699-711

Carboni E, Silvagni A, Vacca C, Di Chiara G (2006) Cumulative
effect of norepinephrine and dopamine carrier blockade on
extracellular dopamine increase in the nucleus accumbens shell,
bed nucleus of stria terminalis and prefrontal cortex. J Neuro-
chem 96:473-481

Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-
amphetamine, chlordiazepoxide, alpha-flupenthixol and behav-
ioural manipulations on choice of signalled and unsignalled
delayed reinforcement in rats. Psychopharmacology 152:362—
375

Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and
motivation: the role of the amygdala, ventral striatum, and
prefrontal cortex. Neurosci Biobehav Rev 26:321-352

Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of
lesions to ascending noradrenergic neurones on performance of a
S-choice serial reaction task in rats; implications for theories of
dorsal noradrenergic bundle function based on selective attention
and arousal. Behav Brain Res 9:361-380

Chamberlain SR, Sahakian BJ (2007) The neuropsychiatry of
impulsivity. Curr Opin Psychiatry 20:255-261

Coccaro EF, Kavoussi RJ (1997) Fluoxetine and impulsive aggressive
behavior in personality-disordered subjects. Arch Gen Psychiatry
54:1081-8

Cole BJ, Robbins TW (1987) Amphetamine impairs the discrimina-
tive performance of rats with dorsal noradrenergic bundle lesions
on a 5-choice serial reaction time task: new evidence for central
dopaminergic—noradrenergic interactions. Psychopharmacology
91:458-466

Cole BJ, Robbins TW (1989) Effects of 6-hydroxydopamine lesions
of the nucleus accumbens septi on performance of a 5-choice
serial reaction time task in rats: implications for theories of
selective attention and arousal. Behav Brain Res 33:165-179

Cole BJ, Robbins TW (1992) Forebrain norepinephrine: role in
controlled information processing in the rat. Neuropsychophar-
macology 7:129-142

@ Springer



324

Psychopharmacology (2012) 219:313-326

Colzato LS, van den Wildenberg WP, Van der Does AJ, Hommel B
(2010) Genetic markers of striatal dopamine predict individual
differences in dysfunctional, but not functional impulsivity.
Neuroscience 170:782-788

Crean J, Richards JB, de Wit H (2002) Effect of tryptophan depletion
on impulsive behavior in men with or without a family history of
alcoholism. Behav Brain Res 136:349-357

Dalley JW, McGaughy J, O'Connell MT, Cardinal RN, Levita L,
Robbins TW (2001) Distinct changes in cortical acetylcholine
and noradrenaline efflux during contingent and noncontingent
performance of a visual attentional task. J Neurosci 21:4908—
4914

Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002)
Deficits in impulse control associated with tonically-elevated
serotonergic function in rat prefrontal cortex. Neuropsychophar-
macology 26:716-728

Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Liéne
K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I,
Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ,
Robbins TW (2007) Nucleus accumbens D2/3 receptors predict
trait impulsivity and cocaine reinforcement. Science 315:1267—
70

Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity,
and top-down cognitive control. Neuron 69:680—-694

De Wit H, Enggasser JL, Richards JB (2002) Acute administration of
d-amphetamine decreases impulsivity in healthy volunteers.
Neuropsychopharmacology 27:813-825

Di Giovanni G, De Deurwaerdére P, Di Mascio M, Di Matteo V,
Esposito E, Spampinato U (1999) Selective blockade of
serotonin-2 C/2B receptors enhances mesolimbic and mesostria-
tal dopaminergic function: a combined in vivo electrophysiolog-
ical and microdialysis study. Neuroscience 91:587-597

Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W,
Schoffelmeer ANM, De Vries TJ (2008) Impulsive choice and
impulsive action predict vulnerability to distinct stages of
nicotine seeking in rats. Biol Psychiatry 63:301-308

Eagle DM, Baunez C (2010) Is there an inhibitory-response-control
system in the rat? Evidence from anatomical and pharmacolog-
ical studies of behavioral inhibition. Neurosci Biobehav Rev
34:50-72

Elia J, Ambrosini PJ, Rapoport JL (1999) Treatment of attention-
deficithyperactivity disorder. N Engl J Med 340:780-788

Evenden JL (1999) Varieties of impulsivity. Psychopharmacology
146:348-361

Evenden JL, Ryan CN (1996) The pharmacology of impulsive
behaviour in rats: the effects of drugs on response choice with
varying delays of reinforcement. Psychopharmacology 128:161—
170

Fernando AB, Economidou D, Theobald DE, Zou MF, Newman AH,
Spoelder M, Caprioli D, Moreno M, Hipdlito L, Aspinall AT,
Robbins TW, Dalley JW (2011) Modulation of high impulsivity
and attentional performance in rats by selective direct and
indirect dopaminergic and noradrenergic receptor agonists.
Psychopharmacology. doi:10.1007/s00213-011-2408-z

Fletcher PJ, Chambers JW, Rizos Z, Chintoh AF (2009) Effects of 5-
HT depletion in the frontal cortex or nucleus accumbens on
response inhibition measured in the 5-choice serial reaction time
test and on a DRL schedule. Behav Brain Res 201:88-98

Fone KC, Nutt DJ (2005) Stimulants: use and abuse in the treatment
of attention deficit hyperactivity disorder. Curr Opin Pharmacol
5:87-93

Hamidovic A, Dlugos A, Skol A, Palmer AA, de Wit H (2009)
Evaluation of genetic variability in the dopamine receptor D2 in
relation to behavioral inhibition and impulsivity/sensation seek-
ing: an exploratory study with d-amphetamine in healthy
participants. Exp Clin Psychopharmacol 17:374-83

@ Springer

Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion
enhances impulsive responding without affecting the accuracy of
attentional performance: interactions with dopaminergic mecha-
nisms. Psychopharmacology 133:329-42

Hollander E, Rosen J (2000) Impulsivity. J Psychopharmacol 14:S39—
44

Homberg JR, Pattij T, Janssen MC, Ronken E, De Boer SF,
Schoffelmeer AN, Cuppen E (2007) Serotonin transporter
deficiency in rats improves inhibitory control but not behavioural
flexibility. Eur J Neurosci 26:2066-2073

Isles AR, Humby T, Wilkinson LS (2003) Measuring impulsivity in
mice using a novel operant delayed reinforcement task: effects of
behavioural manipulations and d-amphetamine. Psychopharma-
cology 170:376-82

Koskinen T, Sirvio J (2001) Studies on the involvement of the
dopaminergic system in the 5-HT2 agonist (DOI)-induced
premature responding in a five-choice serial reaction time task.
Brain Res Bull 54:65-75

Kratochvil CJ, Wilens TE, Greenhill LL, Gao H, Baker KD,
Feldman PD, Gelowitz DL (2006) Effects of long-term
atomoxetine treatment for young children with attention-
deficit/hyperactivity disorder. J Am Acad Child Adolesc
Psychiatry 45:919-927

Kuczenski R, Segal D (1989) Concomitant characterization of
behavioral and striatal neurotransmitter response to amphetamine
using in vivo microdialysis. J Neurosci 9:2051-2065

Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus
norepinephrine, caudate dopamine and serotonin, and behavioral
responses to the stereoisomers of amphetamine and methamphet-
amine. J Neurosci 15:1308-1317

Kutcher S, Aman M, Brooks SJ, Buitelaar J, van Daalen E, Fegert J,
Findling RL, Fisman S, Greenhill LL, Huss M, Kusumakar V,
Pine D, Taylor E, Tyano S (2004) International consensus
statement on attention-deficit/hyperactivity disorder (ADHD)
and disruptive behaviour disorders (DBDs): clinical implications
and treatment practice suggestions. Eur Neuropsychopharmacol
14:11-28

Lecourtier L, Kelly PH (2005) Bilateral lesions of the habenula induce
attentional disturbances in rats. Neuropsychopharmacology
30:484-496

Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin
FK (1983) Low cerebrospinal-fluid 5-hydroxyindoleacetic acid
concentration differentiates impulsive from non-impulsive violent
behavior. Life Sci 33:2609-2614

Logue AW (1988) Research on self-control: an integrating framework.
Behav Brain Sci 11:665-709

Lyon M, Robbins TW (1975) The action of central nervous system
stimulant drugs: a general theory concerning amphetamine
effects. In: Essman WB, Valzelli L (eds) Current developments
in psychopharmacology. Spectrum, New York, pp 79-163

McDonald J (2009) Handbook of biological statistics. Sparky House
Publishing, Baltimore, Ed, 2

McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW
(2002) Selective behavioral and neurochemical effects of
cholinergic lesions produced by intrabasalis infusions of 192
IgG-saporin on attentional performance in a five-choice serial
reaction time task. J Neurosci 22:1905-1913

Milstein JA, Lehmann O, Theobald DE, Dalley JW, Robbins TW
(2007) Selective depletion of cortical noradrenaline by anti-
dopamine beta-hydroxylase-saporin impairs attentional function
and enhances the effects of guanfacine in the rat. Psychophar-
macology 190:51-63

Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000)
Effects of central 5-hydroxytryptamine depletion on sensitivity to
delayed and probabilistic reinforcement. Psychopharmacology
152:390-397


http://dx.doi.org/10.1007/s00213-011-2408-z

Psychopharmacology (2012) 219:313-326

325

Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC
(2001) Psychiatric aspects of impulsivity. Am J Psychiatry
158:1783-1793

Mordn JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002)
Dopamine uptake through the norepinephrine transporter in brain
regions with low levels of the dopamine transporter: evidence
from knock-out mouse lines. J Neurosci 22:389-395

Murphy ER, Robinson ES, Theobald DE, Dalley JW, Robbins TW
(2008) Contrasting effects of selective lesions of nucleus accumbens
core or shell on inhibitory control and amphetamine-induced
impulsive behaviour. Eur J Neurosci 28:353-363

Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M
(2008) Effects of atomoxetine and methylphenidate on attention
and impulsivity in the 5-choice serial reaction time test. Prog
Neuropsychopharmacol Biol Psychiatry 32:34-41

Newcorn JH, Kratochvil CJ, Allen AJ, Casat CD, Ruff DD, Moore RJ,
Michelson D (2008) Atomoxetine and osmotically released
methylphenidate for the treatment of attention deficit hyperactivity
disorder: acute comparison and differential response. Am J
Psychiatry 165:721-730

Nigg JT, Wong MM, Martel MM, Jester JM, Puttler LI, Glass JM,
Adams KM, Fitzgerald HE, Zucker RA (2006) Poor response
inhibition as a predictor of problem drinking and illicit drug use
in adolescents at risk for alcoholism and other substance use
disorders. J] Am Acad Child Adolesc Psychiatry 45:468—475

O'Donnell JM, Marek GJ, Seiden LS (2005) Antidepressant effects
assessed using behavior maintained under a differential-
reinforcement-of-low-rate (DRL) operant schedule. Neurosci
Biobehav Rev 29:785-798

Paine TA, Tomasiewicz HC, Zhang K, Carlezon WA (2007)
Sensitivity of the five-choice serial reaction time task to the
effects of various psychotropic drugs in Sprague—Dawley rats.
Biol Psychiatry 62:687-93

Passetti F, Levita L, Robbins TW (2003) Sulpiride alleviates the
attentional impairments of rats with medial prefrontal cortex
lesions. Behav Brain Res 138:59-69

Paterson NE, Ricciardi J, Wetzler C, Hanania T (2011) Sub-optimal
performance in the 5-choice serial reaction time task in rats was
sensitive to methylphenidate, atomoxetine and D-amphetamine,
but unaffected by the COMT inhibitor tolcapone. Neurosci Res
69:41-50

Pattij T, Vanderschuren LJMJ (2008) The neuropharmacology of
impulsive behaviour. Trends Pharmacol Sci 29:192—-199

Pattij T, Janssen MCW, Vanderschuren LIMJ, Schoffelmeer ANM,
van Gaalen MM (2007) Involvement of dopamine D(1) and D(2)
receptors in the nucleus accumbens core and shell in inhibitory
response control. Psychopharmacology 191:587-598

Perry JL, Larson EB, German JP, Madden GJ, Carroll ME (2005)
Impulsivity (delay discounting) as a predictor of acquisition of IV
cocaine self-administration in female rats. Psychopharmacology
178:193-201

Poulos CX, Le AD, Parker JL (1995) Impulsivity predicts individual
susceptibility to high levels of alcohol self-administration. Behav
Pharmacol 6:810-814

Richards JB, Sabol KE, de Wit H (1999) Effects of methamphetamine
on the adjusting amount procedure, a model of impulsive
behavior in rats. Psychopharmacology 146:432—439

Ritz MC, Kuhar MJ (1989) Relationship between self-administration
of amphetamine and monoamine receptors in brain: comparison
with cocaine. J Pharmacol Exp Ther 248:1010-1017

Robbins TW (2002) The 5-choice serial reaction time task: behav-
ioural pharmacology and functional neurochemistry. Psychophar-
macology 163:362-380

Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X,
Dalley JW, Robbins TW (2008) Similar effects of the selective
noradrenaline reuptake inhibitor atomoxetine on three distinct

forms of impulsivity in the rat. Neuropsychopharmacology
33:1028-1037

Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC,
Carroll FI, Partilla JS (2001) Amphetamine-type central nervous
system stimulants release norepinephrine more potently than they
release dopamine and serotonin. Synapse 39:32-41

Schweighofer N, Bertin M, Shishida K, Okamoto Y, Tanaka SC,
Yamawaki S, Doya K (2008) Low-serotonin levels increase
delayed reward discounting in humans. J Neurosci 28:4528-4532

Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on
catecholamine systems and behavior. Annu Rev Pharmacol
Toxicol 33:639-677

Seu E, Lang A, Rivera RJ, Jentsch JD (2009) Inhibition of the
norepinephrine transporter improves behavioral flexibility in rats
and monkeys. Psychopharmacology 202:505-519

Simpson D, Perry CM (2003) Atomoxetine. Paediatr Drugs 5:407—
415

Sirvi6 J, Jakala P, Mazurkiewicz M, Haapalinna A, Riekkinen P Jr,
Riekkinen PJ (1993) Dose- and parameter-dependent effects of
atipamezole, an alpha 2-antagonist, on the performance of rats in
a five-choice serial reaction time task. Pharmacol Biochem
Behav 45:123-129

Solanto MV, Abikoff H, Sonuga-Barke E, Schachar R, Logan GD,
Wigal T, Hechtman L, Hinshaw S, Turkel E (2001) The
ecological validity of delay aversion and response inhibition as
measures of impulsivity in AD/HD: a supplement to the NIMH
multi-modal treatment study of AD/HD. J Abnorm Child Psychol
29:215-228

Sonuga-Barke EJS (2003) The dual pathway model of AD/HD: an
elaboration of neurodevelopmental characteristics. Neurosci
Biobehav Rev 27:593-604

Soubri¢ P (1986) Reconciling the role of central serotonin neurons in
human and animal behavior. Behav Brain Sci 9:319-364

Spencer TJ, Biederman J, Wilens TE, Faraone SV (2002) Novel
treatments for attention-deficit/hyperactivity disorder in children.
J Clin Psychiatry 12:16-22

Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A
(1995) Amphetamine redistributes dopamine from synaptic
vesicles to the cytosol and promotes reverse transport. J Neurosci
15:4102-4108

Sun H, Cocker PJ, Zeeb FD, Winstanley CA (2011) Chronic
atomoxetine treatment during adolescence decreases impulsive
choice, but not impulsive action, in adult rats and alters markers of
synaptic plasticity in the orbitofrontal cortex. Psychopharmacology
doi:10.1007/500213-011-2419-9

Tanda G, Pontieri FE, Frau R, Di Chiara G (1997) Contribution of
blockade of the noradrenaline carrier to the increase of
extracellular dopamine in the rat prefrontal cortex by amphet-
amine and cocaine. Eur J Neurosci 9:2077-2085

Van Gaalen MM, Brueggeman RJ, Bronius PFC, Schoffelmeer ANM,
Vanderschuren LIMJ (2006a) Behavioral disinhibition requires
dopamine receptor activation. Psychopharmacology 187:73-85

Van Gaalen MM, van Koten R, Schoffelmeer ANM, Vanderschuren
LIMJ (2006b) Critical involvement of dopaminergic neurotrans-
mission in impulsive decision making. Biol Psychiatry 60:66—73

Van Gaalen MM, Unger L, Jongen-Rélo AL, Schoemaker H, Gross G
(2009) Amphetamine decreases behavioral inhibition by stimu-
lation of dopamine D2, but not D3, receptors. Behav Pharmacol
20:484-491

Vanderschuren LJMJ, Wardeh G, De Vries TJ, Mulder AH, Schoffelmeer
ANM (1999) Opposing role of dopamine D1 and D2 receptors in
modulation of rat nucleus accumbens noradrenaline release. J
Neurosci 19:4123-4131

Wade TR, de Wit H, Richards JB (2000) Effects of dopaminergic
drugs on delayed reward as a measure of impulsive behavior in
rats. Psychopharmacology 150:90-101

@ Springer


http://dx.doi.org/10.1007/s00213-011-2419-9

326

Psychopharmacology (2012) 219:313-326

Wilens TE, Newcorn JH, Kratochvil CJ, Gao H, Thomason CK, Rogers
AK, Feldman PD, Levine LR (2006) Long-term atomoxetine
treatment in adolescents with attention-deficit/hyperactivity disor-
der. J Pediatr 149:112-119

Winstanley CA (2011) The utility of rat models of impulsivity in
developing pharmacotherapies for impulse control disorders. Br J
Pharmacol 164:1301-1321

Winstanley CA, Dalley JW, Theobald DEH, Robbins TW (2003)
Global 5-HT depletion attenuates the ability of amphetamine to
decrease impulsive choice on a delay-discounting task in rats.
Psychopharmacology 170:320-331

Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW
(2004) 5-HT2A and 5-HT2C receptor antagonists have opposing

@ Springer

effects on a measure of impulsivity: interactions with global 5-HT
depletion. Psychopharmacology 176:376-385

Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of
impulsivity in relation to ADHD: translation between clinical and
preclinical studies. Clin Psychol Rev 26:379-395

Winstanley CA, Zeeb FD, Bedard A, Fu K, Lai B, Steele C, Wong AC
(2010) Dopaminergic modulation of the orbitofrontal cortex
affects attention, motivation and impulsive responding in rats
performing the five-choice serial reaction time task. Behav Brain
Res 210:263-272

Wogar MA, Bradshaw CM, Szabadi E (1993) Effect of lesions of the
ascending 5-hydroxytryptaminergic pathways on choice between
delayed reinforcers. Psychopharmacology 111:239-43



	Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Subjects
	Behavioral apparatus
	Behavioral procedures
	Five-choice serial reaction time task
	Delayed reward paradigm

	Drugs
	Statistical analysis

	Results
	Effect of amphetamine and monoamine reuptake inhibitors on 5-CSRTT performance under baseline conditions
	Effect of amphetamine and monoamine reuptake inhibitors on 5-CSRTT performance under long ITI conditions
	Effect of amphetamine and monoamine reuptake inhibitors on impulsive choice in the DRT

	Discussion
	References


