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Aims

Methods
and results

The Genous™ Bio-engineered R™ stent (GS) aims to promote vascular healing by capture of circulatory endothelial pro-
genitor cells (EPCs) to the surface of the stent struts, resulting in accelerated re-endothelialization. Here, we assessed the
function of the GS in comparison to bare-metal stent (BMS), when exposed to the human and animal circulation.

First, 15 patients undergoing coronary angiography received an extracorporeal femoral arteriovenous (AV) shunt
containing BMS and GS. Macroscopical mural thrombi were observed in BMS, whereas GS remained visibly clean.
Confocal and scanning electron microscopic (SEM) analysis of GS showed an increase in strut coverage. Quantitative
polymerase chain reaction (qPCR) analysis of captured cells on the GS demonstrated increased expression of endo-
thelial markers KDR/VEGFR2 and E-selectin, and a decrease in pro-thrombogenic markers tissue factor pathway
inhibitor and plasminogen activator inhibitor-1 compared with BMS. Secondly, a similar primate AV shunt model
was used to validate these findings and occlusion of BMS was observed, while GS remained patent, as demonstrated
by live imaging of indium-labelled platelets. Thirdly, in an in vitro cell-capture assay, GS struts showed increased cover-
age by EPCs, whereas monocyte coverage remained similar to BMS. Finally, the assessment of re-endothelialization
was studied in a rabbit denudation model. Twenty animals received BMS and GS in the aorta and iliac arteries for
7 days. Scanning electron microscopic analysis showed a trend towards increased strut coverage, confirmed by
gPCR analysis revealing increased levels of endothelial markers (Tie2, CD34, PCD31, and P-selectin) in GS.

Conclusion In this proof-of-concept study, we have demonstrated that the bio-engineered EPC-capture stent, Genous™ R
stent, is effective in EPC capture, resulting in accelerated re-endothelialization and reduced thrombogenicity.
Keywords Bio-engineered stent ® CD34+-capture stent ® Genous stent e Re-endothelialization e Endothelium e
Endothelial progenitor cells e In-stent thrombosis e Gene expression e Endothelial markers
Introduction - vasomotor function, and cell cycle quiescence of the cellular con-
. stituents of the vascular wall." Bone marrow-derived circulating
Vascular homeostasis is maintained by the endothelial cell (EC) . endothelial progenitor cells (EPCs) aid in the regeneration of
layer that is involved in the regulation of platelet adhesion, : damaged and dysfunctional endothelium and therefore play a
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central role in the vascular repair response.””* Recruitment of
EPCs to the site of vascular injury has been proposed to
promote vascular healing and has been shown to inhibit neointimal
proliferation and restenosis associated with percutaneous coron-
ary intervention (PCI).> The Genous™™ Bio-engineered R™ stent
(GS) (OrbusNeich Medical BV, Hoevelaken, The Netherlands)
has been developed to enhance the capture of circulating EPCs
to the stent surface using an immobilized antihuman-CD34 mono-
clonal antibody. CD34 was previously shown to be expressed in
circulating haematopoietic cells in humans.*® The sequestered
EPCs are thought to enhance endothelial healing and thus
protect the stented vascular segment against acute thrombosis
with minimized neointimal hyperplasia.

The safety, feasibility, and efficacy of the GS in human coronary
artery disease (CAD) have been the subject of multiple clinical
studies.”™"" Although the long-term effect of the GS on clinical
outcome has been investigated, the efficacy of the bio-engineered
stent to promote initial endothelial recovery has never been
shown in humans before. Here, we studied early cellular inter-
actions of the GS within the circulation of CAD patients.

In the first part of the study, a temporary ex vivo arteriovenous
(AV) shunt was established by cannulation of the femoral artery
and vein and connection of the two via a synthetic tube comprising
the bare-metal stent (BMS) and the GS. The stents were exposed
to the human circulation under continuous flow. Endothelial pro-
genitor cell capture and subsequent EPC differentiation were ana-
lysed using conventional ultrastructural analysis as well as by
quantifying surrogate endothelial markers on the captured stent
by quantitative polymerase chain reaction (qPCR) analysis. In the
second part of the study, the validation of accelerated endothelia-
lization was further conducted in a well-established primate model
for stent-related thrombogenicity. In the third part, CD34+ cell-
capture specificity was evaluated in an in vitro capture model. In
the final part of the study, long-term effects of the GS on the
vascular endothelium were evaluated in a rabbit model of arterial
balloon injury and vascular repair.

Methods

Study population

The study was performed in 15 patients undergoing elective heart
catheterization, followed in 11 cases by PCI. Informed written
consent was obtained prior to the procedure for all patients. The
study was reviewed and approved by the institution’s ethics review
committee. The baseline characteristics of included patients are
shown in Table 1.

Ex vivo human arteriovenous shunt

The GS (OrbusNeich) is coated with an immobilized murine mono-
clonal antibodies directed against human CD34, a known antigen
expressed on EPCs. It is designed to capture circulating EPCs to
promote vascular healing. Patients received an extracorporeal AV
shunt containing two GSs and two BMSs (non-coated, stainless steel
R-stent). From each patient, one randomized stent of each group
(BMS or GS) was used for qPCR analysis and one was used for scan-
ning electron microscopic (SEM) assessment. The positions of the
stents in the shunt were equally alternated in the studied patient

Table I Characteristics of the patients

Patients characteristics n Per cent
Male 10 66.67
Age 69.4 +7
PCI 1" 73.33
Hypertension 8 53.33
Diabetes mellitus 0 0
Dyslipidaemia 5 3333
Smoking 6 40
Clinical pattern
Stable angina pectoris 10 66.67
Unstable angina pectoris 4 26.67
Syncope 1 6.667
Peripheral vascular disease 3 20
Stroke 2 13.33
Heart failure 3 20
Previous myocardial infarction 4 26.67
Previous PCI 7 46.67
Previous CABG 2 13.33
Use of:
Statin 14 93.33
Aspirin 13 86.67
Clopidogrel 13 86.67
Warfarin 2 1333
B-Blockers 3 20

PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting.

group to prevent location bias (see Supplementary material online,
Figure S2). For a detailed description of the protocol, see Supplemen-
tary material online.

Rabbit model of arterial balloon injury

The early effects of Genous in accelerated re-endothelialization were
further assessed in a rabbit endothelial denudation model.'* Stents
were implanted in 20 New Zealand white adult male rabbits. One
BMS and one GS were implanted per rabbit in the aorta (for gPCR
analysis, n = 11) and iliac artery (for SEM analysis, n=9). For the
aorta, the stents were alternated in order. All stents were deployed
at nominal pressure (9 atm) for 30 s. Angiography was performed to
confirm appropriate stent placement and vessel diameter post-
deployment. At 7 days post-stenting, follow-up angiography was
performed. To obtain stent samples for SEM analysis, the rabbits
were perfusion fixed in 10% formalin and the stented arteries were
harvested. For gPCR analysis, the vessels were isolated without in
situ fixation, and the stents were removed and incubated in RNA
isolation buffer (RLT buffer, Qiagen, The Netherlands) and stored at
—80°C until gPCR analysis.

Statistical analysis

Statistical analysis was performed using Graphpad Prism software
(version 4.0b). All data are expressed as means + SEM. Comparisons
between the patients groups are performed using a paired or a non-
paired two-sided Student’s t-test or a linear regression analysis when
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appropriate after normal distribution was validated for the data set. A
P-value of <0.05 is considered statistically significant.

For the SEM protocol, mMRNA processing, baboon AV shunt study,
and in vitro CD344--capture stent validation, see Supplementary
material online, Material and methods.

Results

Part 1: Human arteriovenous shunt study
reveals evidence of accelerated capture
of endothelial progenitor cells and
protection against in-stent thrombosis
and inflammation in Genous vs.
bare-metal stent

The GS has been tested extensively in animal models,13 but direct
evidence of the in vivo EPC-capture capability of this stent in the
human circulation has not been presented. In the first part of
the study, we investigated the acute effect of the GS in patients
undergoing coronary angiography. In addition, assessment of the
GS in a CAD patient setting provides relevant evaluation of bioac-
tivity of the CD34-capture antibody that was raised specifically
against human CD34 antigen (Supplementary material online,
Figure S1). In this study, the EPC-capture capacity of the GS was
compared with that of uncoated, stainless steel R-stents (BMSs).

The GS and the BMS that were tested in the human AV shunt
model were exposed to the circulation for up to 120 min. Stents
selected for SEM analysis revealed marked increase in strut cell cov-
erage in the GS when compared with BMS (Figure 1A and C: BMS,
Figure 1B and D: GS). Average stent-strut coverage was visually
rated by a blinded (core-lab) technician on a 0—3 scale (correspond-
ing to 0—-25, 25-50, 50—-75, and 75—-100% stent coverage). Cell
deposition on the struts was enhanced by 32.5% (P = 0.006,
n=29) in GSs when compared with BMS in paired analysis
(Figure 1E). High-resolution assessment of the SEM data revealed cel-
lular deposits present on both stents that could be distinguished into
a population of cells with a rounded and flattened morphology, cells
with a more monocyte-like appearance, and blood platelets. To
further elucidate the identity of this mixed population, we performed
by gPCR the cellular substrate. Macroscopical comparison of GS and
BMS also revealed the substantial presence of mural thrombi in the
two BMSs, whereas all of the GSs remained free of thrombogenic
material (Figure 1F and G). This observation led us to further
examine markers of thrombogenicity and coagulation by qPCR.

For gPCR analysis, cells were directly lysed from the stents and
subsequently analysed by qPCR using the housekeeping genes
GAPDH and B-actin to normalize for cell content and quality of
total RNA. Quantitative polymerase chain reaction analysis of
the attached cells showed no significant difference in CD34
expression between the GS and BMS groups (data not shown).
However, evaluation of endothelial markers revealed a marked
increase in KDR/VEGFR2 (P <0.001) and E-selectin RNA
expression (P < 0.045) with the GSs, when compared with BMS
(Figure 2A). However, the expression of another endothelial
specific marker Plvap (Figure 2A) showed no significant increase
in the GS group (P =10.21).

An equivalent CD34 transcript content, with enhanced
expression of endothelial markers would suggest accelerated
ongoing differentiation into the endothelial lineage concomitant
with down-regulation of CD34 expression.

Quantitative polymerase chain reaction evaluation of markers of
thrombosis and coagulation (Figure 2B) revealed a significant
decrease in expression of tissue factor pathway inhibitor (TFPI)
and plasminogen activator inhibitor-1 (PAI-1) in GS compared
with BMS (P=0.04 and 0.02, for TFPI and TF, respectively),
suggestive of a less pro-thrombotic state of the cells attached to
the GS and thus a reduced risk for stent thrombogenicity.

To assess the potency of the GS to protect the vascular wall
against inflammation, inflammatory markers were also included in
the study. CD16 is an established neutrophil expression marker.
Cells sequestered to the GS presented lower expression levels
of CD16 over time (R*=0.7641, P<0.002), whereas the
BMS showed persistent CD16+4 expression in attached cells
(R*=0.0013, P < 0.932), suggesting that adhesion of CD16+
inflammatory cells was prevented by accelerated capture of
CD34+ endothelial progenitors and subsequent coverage of the
stent struts (Figure 2C). Moreover, the inflammatory markers for
immune cell subpopulations were not significantly different
between the stents, including CD68, CD14, monocyte chemoat-
tractant protein-1, CXCR-1, and VCAM1 (data not shown).

Combined, these qPCR analyses corroborate and extend the
ultrastructural analysis by SEM and confirm enhanced attachment
of circulating EPCs to the GS surface. In addition, these data
suggest that the attached cells could undergo rapid endothelial
commitment and differentiation (loss of CD34, increased
expression of KDR1/E-selectin), with reduced thrombogenicity
and inflammatory response of the injured vascular wall.

Part 2: Genous inhibits in-stent
thrombosis in a baboon arteriovenous
shunt model

Based on the differences in thrombogenicity by qPCR and the lack
of mural thrombi in the GS as observed in the clinical study, we
further assessed thrombogenicity of the GS in an established
primate model using a similar AV shunt setup with exclusion of
anti-platelet treatment in the protocol. Live deposition of platelets
and fibrinogen was studied in the AV shunt setup by measuring the
accumulation of indium-labelled platelets with a gamma camera for
up to 2 h. In line with the human data, the GS had a lower throm-
bogenic potential than BMS in the baboon shunt model. Within
65 min after initiation of the experiment, the BMS were occluded
with a flow-limiting thrombus, whereas the GSs remained patent
for at least 2 h (Figure 3A). Further SEM analysis revealed increased
platelet deposition and in-stent thrombus formation in BMS vs. GS
(Figure 3B). Platelet deposition was significantly higher in BMS com-
pared with GS after flow exposure as quantified by gamma camera
(113 + 0.57 x 10° when compared with 0.50 + 0.22 x 10° plate-
lets, in BMS vs. Genous, respectively, P = 0.04; Figure 3C). Although
fibrinogen accumulation seemed less prominent on the GS when
compared with BMS, no statistical difference was found between
the groups. The values were 0.05 + 0.02 and 0.18 + 0.10 mg/
stent for the GS and BMS, respectively.
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Cell Coverage on Stents
in Human AV shunt
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Figure | Scanning electron microscopic analysis of the endothelial progenitor cell capturing stent and bare-metal stent in the human arter-
iovenous shunt model revealed a marked increase in cell strut coverage compared with bare-metal stent. Scanning electron microscopic inspec-
tion of the study stents showed less strut coverage and the presence of thrombus-like structures on bare-metal stent (A) when compared with
Genous stent (B). High-magnification scanning electron microscope revealed more adhesion of cells with a flattened polygonal morphology on
the struts of the Genous stent (D) vs. bare-metal stent (C). Average stent-strut coverage was visually rated by blinded (core lab) technicians
(CV-Path Institute, USA) on a 0—3 virtual scale (corresponding to 0—25, 25-50, 50—75, and 75—100% stent coverage). Bar graph indicates the
level of strut coverage as assessed by scanning electron microscope in the two stent study groups. *P < 0.05, n = 9 (E). Macroscopic appear-
ance of bare-metal stent (F) and Genous (G) stents in the human ex vivo shunt model shows mural thrombi in the bare-metal stent, whereas the
Genous stent remained free of thrombogenic material.
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Figure 2 Quantitative polymerase chain reaction evaluation of cellular markers in cell lysates of captured cells in the human arteriovenous
shunt stent model. Paired comparison of the expression levels of the individual genes revealed a marked increase in endothelial markers, includ-
ing KDR/VEGFR2 (P < 0.001) and E-selectin (P < 0.045) mRNA expression in the stents compared with bare-metal stent (A). Expression of
another endothelial specific marker PLVAP (A) showed no significant increased expression in the stent (P = 0.21). Quantitative polymerase
chain reaction analysis of markers of thrombosis, coagulation, and inflammation. Paired comparison of the expression levels of the individual
genes revealed a marked decrease in tissue factor pathway inhibitor and plasminogen activator inhibitor-1 in the Genous compared with
the bare-metal stent (B) (P = 0.04 and 0.02). Quantitative polymerase chain reaction showed a significant decrease in CD16 marker expression
in the cells captured by the Genous stent over time, whereas the CD16 mRNA levels on bare-metal stent were maintained (C) (*P < 0.05).
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Figure 3 Live imaging of arteriovenous shunt setup using a gamma camera to measure deposition of indium-labelled platelets on the study
stents (A). Line graph shows a typical example of accumulating platelet signal over time. Low-magnification scanning electron microscope images
of the bare-metal stent and the endothelial progenitor cell-capture stent in the baboon arteriovenous shunt model revealed a decrease in mural
thrombus in the Genous vs. bare-metal stent (B). Bar graph showing the quantified number of platelets accumulated on the bare-metal stent and
Genous stent after 2 h of flow exposure (C). Data were acquired from the live imaging of arteriovenous shunt setup, *P < 0.05, n = 3. In vitro
assay to test the CD34+- cell-capture specificity of the Genous stent. Genous and BM stents were deployed in silicon tubing and were exposed
to a cell mixture of PKH26 red fluorescent-labelled human monocytes (1 x 10° cells/mL) and PKH2 green fluorescent-labelled human CD34+
cells (2 x 10° cells/mL), under a constant rotation speed of 0.3 RPM for 2 h. Micrographs show confocal images of strut coverage of bare-metal
stent and Genous stent (D). Bar graph shows the quantified number of CD34+ cells and monocytes per cm? strut area. *P < 0.05, n = 3 (E).
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Part 3: In vitro cell-capture assay
demonstrates specific adhesion of human
peripheral blood-derived CD34+ cells
on Genous CD34-capture stents

To examine whether the CD34 antibody on the GS is also able to
bind the more abundant circulatory inflammatory cells such as
monocytes, an in vitro assay was performed to test the CD34+
cell-capture specificity of the GS. Genous stent and BMS were
deployed in silicon tubing and were exposed to a cell mixture of
PKH26 red fluorescent-labelled human monocytes (1 x 10° cells/
mL) and PKH2 green fluorescent-labelled human CD34+ cells
(2 x 10° cells/mL), under a constant rotation speed of 0.3 RPM
for 2 h. Confocal assessment of the stent struts showed a
greater number of CD34+ cells to adhere to the GS-strut
surface when compared with BMS; cell density for CD34+ cells
was 500 + 158 cells/cm? strut area on the GS vs. 17 + 8 cells/
cm? on the BMS (P = 0.0009; Figure 3D and E). In contrast, mono-
cyte adherence was not significantly different between the two
stent types, although a trend was observed (79 + 44 cells/cm?
when compared with 58 + 39 cells/cmz, GS vs. BMS, respectively,
P = 0.07; Figure 3D and E).

Therefore, the specificity of the GS to capture CD34+ cells was
significantly higher when compared with BMS, as 86% of the
attached cells were CD34+4 when compared with only 26% on
the BMS.

Part 4: Genous stent promotes
re-endothelialization at 7 days in rabbit
endothelial denudation model

Twenty New Zealand white rabbits received stent placement after
endothelial denudation in the aorta, n = 11, and iliac artery, n =9
(left GS and right BMS). From 11 animals, the aortic stents were
harvested after 7 days and the cell lysates were evaluated for EC
markers. Quantitative polymerase chain reaction analysis showed
significant increased levels of endothelial markers in the GS vs.
BMS treated artery including Tie2 (P=0.02) and P-selectin
(P=0.05), whereas CD34 (P=0.08) and CD31 (P=0.07)
levels showed positive trends, indicating that the GS promoted
long-term endothelialization (Figure 4A).

These data support our finding of the AV shunt study in CAD
patients where we propose earlier endothelialization in GS
compare with BMS. In line with these findings, SEM analysis of
nine rabbits that received the Genous (left) or BM (right) in bilat-
eral denudated iliac arteries showed a trend of increased strut cov-
erage at 7 days post-implantation (Figure 4B—D). Together, these
data indicate that the GS efficiently promotes re-endothelialization
in a denudated vessel wall environment as shortly as 7 days after
placement.

Discussion

In this study, we have demonstrated for the first time that
bio-engineered endothelial progenitor (EPC)-capture stent tech-
nology is successful in EPC capture in the human circulation,

resulting in effective re-endothelialization and decreased
thrombogenicity.

Endothelialization is a critical step in the initiation of vascular
repair following stent implantation. Re-endothelialization of the
damaged area involves activation and migration of resident EC
adjacent to the stent area or by recruitment of blood-derived
EPC. Early presence of a functional endothelial lining after vascular
injury could improves the process of vascular healing and reduces
the risk of restenosis an acute thrombosis.

The stent struts of the bio-engineered R stent (GENOUS®)
incorporate an immuno-affinity surface, consisting of covalently
bound monoclonal antibodies directed against the human CD34
antigen, a cell surface marker found on circulating EPC. Endothelial
progenitor cell capture by the GENOUS® R stent is shown sche-
matically in Figure 1 of Supplementary material online, Figure ST.
The efficacy of EPC capture and re-endothelialization of the GS
has been extensively evaluated in porcine models"? relying on
the cross-reactivity of the monoclonal CD34 antibody against
porcine CD34. Although these studies gave a clear indication of
stent performance, optimal capture efficacy by the human
CD34-directed antibody can only be truly tested under circum-
stances when the stent is exposed to the human circulation.
Here, the performance of the BMS and the bio-engineered GS
was studied in an ex vivo AV shunt construction in which stents
were exposed to the human circulation for up to 2 h. The data
of this study provide for the first time direct evidence of the
capture efficiency of a bio-engineered-capture stent in the
human circulation.

Previous studies have shown that at least in the porcine models,
the efficacy of EPC-capture stent coverage was similar to that of
BMS, with a optimal endothelial coverage of total stented area of
99% in both groups.13 However, it has to be taken into account
that the lack of difference in response could be due to a low cross-
reactivity of the human CD34 antibody on the GS against porcine
CD34 antigen, resulting in a suboptimal EPC capture. The ex vivo
AV shunt data in the patients and primates in the current study
showed that the GS was capable of rapid capture of circulating
progenitor cells within the first hours of exposure. Scanning elec-
tron microscopic and gPCR analysis have subsequently validated
the endothelial phenotype of the adherent population. Taken
together, our data indicate that the EPC-capture stent is capable
of accelerating the re-endothelialization process in exposure to
the human circulation and therefore aid the vascular healing after
vascular injury when compared with the BMS.

The combination of the EPC-capture and drug-elution technol-
ogy has shown thus far to be a promising strategy in the preclinical
se'c'cing.13 In contrast to that type of study, which focuses on late
stent outcome, this study was predominantly designed to
provide first-time proof of efficient EPC capture in human patients.
Therefore, we have chosen to focus on capture efficiency alone
and compare the GS with the BMS. Although we have provided
adequate proof for this cell-capture technology, drug elution may
compromise the cell-capture efficiency and should be investigated
for each of the new generation of combo-devices that are
currently being developed.

A second important finding reported in this study is the effect of
the GS on thrombogenesis. The rapid coverage of the GS by a
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Figure 4 Quantitative polymerase chain reaction analysis of the study stents of 11 New Zealand white rabbits was performed to evaluate
capture of cells and subsequent expression of endothelial cell markers. Paired quantitative polymerase chain reaction analysis showed increased
levels of endothelial markers by the cells captured on the Genous stent vs. bare-metal stent treated arteries, including Tie2 (P = 0.02), CD34
(P =0.07), CD31 (P = 0.08), and P-selectin (P = 0.05). *P < 0.05, ®P < 0.01, n = 11 (A). Scanning electron microscopic analysis of the stents
implanted iliac vessels of 9 New Zealand white rabbits: Low (B)- and high (C)-magnification assessment revealed improved cell coverage
between and above struts in the Genous stent vs. bare-metal stent. Bar graph shows the level of strut coverage as analysed by scanning electron

microscope in the two stent groups. ®P < 0.01, n=9 (D).

protective endothelial lining was hypothesized to protect the
stented area from thombogenesis and inflammation, thereby pro-
moting a more efficient healing of the vascular wall. Indeed, macro-
scopic comparison of the GS and BMS revealed the clear presence

of mural thrombi in the BMS of one of the patients, whereas all the
EPC-capture stent remained free of visible thrombi. It should be
mentioned that this particular patient only received ASA (no clopi-
dogrel therapy) before PCI. Although the patient’s blood was
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exposed to both GS and BMS and the GSs showed no signs of
thrombi, the striking difference in thombogenic response between
the two stent types could be related to the absence of anti-platelet
aggregation surface markers. To further elucidate this, biomarkers of
coagulation and thrombosis were further examined in the human
shunt material. We observed significant down-regulation in PAI
and TFPI expression in the lysates of EPC-capture stent when com-
pared with BMS, pointing to platelet aggregation on the stent
struts.'* Similarly, TFPl mRNA enrichment in the attached cells indi-
cates in the BMS a rich platelet environment promoted by recruited
inflammatory cells.”"® Summarized, these data point to active EPC
recruitment as playing a putative role in vascular protection against
stent thrombosis. These findings were further validated in the
baboon shunt experiments. For an extended discussion on this
subject, see Supplementary material online.

The early EC lining on the stent could protect against active
accumulation of inflammatory cells involved in the innate
immune response. However, in line with the in vitro findings,
there was no difference in other inflammatory markers or innate
immunity markers such as CDé68, CD14, MCP1, and CXCR-1.
This could be due to the short exposure time, but, more impor-
tantly, paracrine stimulation by the injured vessel wall is lacking
in the human AV shunt setup. In the absence of cytokine and che-
mokine release to trigger infllmmatory cell activation, the protec-
tive effect of the stent re-endothelializing by circulating EPCs
on the inflammatory response may only be limited. Previously,
Granada et al. performed a comparison study of stents (combining
CD34 capture with the sirolimus-eluting strategy) with conven-
tional drug-eluting stents including Xience and Cypher in a
porcine experimental model. It was demonstrated that the EPC-
capture technology further diminished overall intimal inflammation
and giant cell accumulation after 28 days of implantation in the
coronary arteries when compared with the Cypher and Xience
stents.”> This was associated with a decrease in neointimal
growth. This suggests that active re-endothelialization of
drug-eluting stents could indeed protect the injured vascular wall
from further inflammatory activation, thereby protecting the
stented area from further platelet adhesion and restenosis.’>
Based on these findings, the GS should provide vascular protection
against thrombosis in the patients in short- and long-term
follow-up. Recently, supporting data were presented by the
e-HEALING (Healthy, Endothelial Accelerated Lining inhibits
Neointimal Growth) multicentre registry in which the long-term
effect of the GS was followed in 5000 patients. Indeed, low
levels of in-stent thrombosis and repeat revascularization of 1.1
and 5.7%, respectively, were observed at 12-month post-
intervention.” New clinical trails are currently under evaluation
in which the CD34-capture technology will be combined with sir-
olimus elution to assess novel combination strategies (REMEDEE:
NCT00967902).

In conclusion, we showed in an AV shunt construction in human
CAD patients and baboons that the CD34+ EPC recruitment pro-
motes re-endothelialization and inhibited platelet adhesion. This
specific aspect of the biological behaviour of the GS is especially
promising as it could, combined with a drug-eluting strategy,?
yield safe and efficient therapy against restenosis, while diminishing
the need for dual anti-platelet therapy after stent implantation.

Supplementary material

Supplementary material is available at European Heart Journal
online.
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