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Abstract
Vision provides information about the properties and identity of objects. The ease with which we
make such judgments belies the difficulty of the information-processing task that accomplishes it.
In the case of object color, retinal information about object reflectance is confounded with
information about the illumination as well as about the object’s shape and pose. Because of these
factors, there is no obvious rule that allows transformation of the retinal images of an object to a
color representation that depends primarily on the object’s surface reflectance properties. Despite
the difficulty of this task, however, under many circumstances object color appearance is
remarkably stable across scenes in which the object is viewed.

Here we review experiments and theory that aim to understand how the visual system stabilizes
the color appearance of object surfaces. Our emphasis is on a class of models derived from explicit
analysis of the computational problem of estimating the physical properties of illuminants and
surfaces from the information available in the retinal image and experiments that test these
models. We argue that this approach has considerable promise for allowing generalization from
simplified laboratory experiments to richer scenes that more closely approximate natural viewing.
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Introduction
Vision provides information about the properties and identity of objects – a glance at Figure
1, for example, leads effortlessly to the impression of a blue mug. The ease with which we
make this judgment, however, belies the difficulty of the information-processing task that
accomplishes it. In the case of the mug’s color, examination of the image pixel-by-pixel
reveals enormous variation in the spectral properties of the reflected light across the mug’s
surface. This variation occurs because the reflected light depends not only on the intrinsic
reflectance of the mug but also the spectral and geometric properties of illumination that
impinges upon it, the object’s shape, and the viewpoint of the observer. Because of these
factors, there is no obvious rule that allows transformation of the retinal images of an object
to a stable perceptual representation of its surface reflectance properties. More generally,
object recognition is difficult precisely because the same object or class of objects
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corresponds to a vast number of images. Processing the retinal images to produce
representations that are invariant to object-extrinsic variation is a fundamental task of visual
information processing (Ullman, 1989; DiCarlo & Cox, 2007; Rust & Stocker, 2010).

The same considerations that make object perception a difficult information-processing
problem also make it difficult to study. There are simply too many image configurations to
allow direct measurement of what we might see for every possible image. To make progress,
it is necessary to choose a restricted domain that enables laboratory study but to formulate
theories that can be readily generalized to more complex domains. In this paper, we review
how computational models clarify the perception of object surface properties.

The rest of this review is organized as follows. First we introduce a simplified description of
a subset of possible scenes, which we refer to as flat-matte-diffuse conditions, and specify
the computational problem of recovering descriptions of illuminant and surface properties
from photoreceptor responses for these scenes. Although such recovery cannot be performed
with complete accuracy, we show how the structure of the computational analysis leads to a
class of candidate models for human performance. We call these equivalent illumination
models (EIMs). We show that such models provide a compact description of how changing
the spectrum of the illumination affects perceived color appearance for human observers.

We then turn to more complex viewing conditions, ones that include variations in depth, and
show that the same principles that allowed model development for flat-matte-diffuse
conditions also allow generation of models for this case. Indeed, the major theme of this
article is that the principles underlying equivalent illumination models provide a fruitful
recipe for generalization as we extend our measurements and analysis to progressively more
realistic viewing conditions.

Flat-Matte-Diffuse
The most commonly employed laboratory model for studying object surface perception
consists of a collection of flat matte objects arranged in a plane, illuminated by spatially
diffuse illumination (Figure 2; Helson & Jeffers, 1940; McCann, McKee, & Taylor, 1976;
Arend & Reeves, 1986; Brainard & Wandell, 1992; Brainard, 1998). We refer to such
stimulus configurations as flat-matte-diffuse.

Under these viewing conditions, a simple imaging model describes the interaction between
object surface reflectance, the illuminant, and the retinal image. A matte surface’s
reflectance is characterized by its spectral power distribution, S(λ), which specifies the
fraction of incident illumination reflected at each wavelength in the visible spectrum. The
spatially diffuse illuminant is characterized by its spectral power distribution, E(λ), which
specifies the illuminant power at each wavelength. The spectrum of the light reflected from
the surface, C(λ), is given as the wavelength-by-wavelength product

(1)

C(λ) is proportional the light that reaches the human retina and is called the color signal
(Buchsbaum, 1980). For our purposes, we can set the constant of proportionality to 1. The
color signal is encoded by the excitations of three classes of cone photoreceptors present in a
trichromatic human retina. These are the L, M, and S cones and we denote the excitation of
each cone class by the symbol ρκ, K = 1,2,3, where the subscript K indexes the cone class.
The excitation of a cone is computed from the color signal as
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(2)

where Rκ (lambda;) is the spectral sensitivity of the Kth cone class. For a typical trichromatic
human observer, k ranges from one to three. The cone excitation vector ρ = (ρ1 ρ2 ρ3)
provides the information about surface reflectance and illumination available at one retinal
location, corresponding to one surface patch in the flat-matte-diffuse environment. We will
use superscripts to distinguish cone excitation vectors corresponding to different retinal
locations (or to surfaces at different locations in the scene). For flat-matte-diffuse
conditions, the cone excitation vectors {ρ1, mldr;, ρn} across all retinal locations carry the
information available to the visual system about illuminant and surface properties.

Naturally occurring illuminant spectral power distributions and surface reflectance functions
exhibit considerable regularity (Judd, MacAdam, & Wyszecki, 1964; Cohen, 1964;
Maloney, 1986; Jaaskelainen, Parkkinen, & Toyooka, 1990; DiCarlo & Wandell, 2000).
Contemporary methods for estimating illuminant and surface properties from cone
excitation vectors (or from camera sensor responses) incorporate models of this regularity
(Maloney, 1999). Rather than specifying the full spectral function for each surface and
illuminant, one can instead use a low-dimensional vector (see Maloney, 1986, 1999). For
surfaces, we denote the resulting vector by σ and for illuminants, ε. We refer to these as the
surface/illuminant coordinates. Any choice of surface coordinates σ specifies a particular
surface reflectance function Sσ (lambda;) within the constrained class of reflectance spectra,
and any choice of illuminant coordinates ε specifies a particular illuminant spectral power
distribution, Eε(λ), within the constrained class of illuminant spectral power distributions.

Once we have selected surface and illuminant coordinates, we can rewrite Equations 1 and 2
schematically as

(3)

We refer to Equation 3 as the rendering equation for a single surface and illuminant, since it
converts a description of physical scene parameters, here ε and σ, into the information
available to the visual system, the cone excitation vector ρ.1 The key point preserved by the
abstract notation of Equation 3 is that the initial retinal information available to the visual
system depends both on the illuminant and on the properties of each surface.

Equation 3 is appropriate for flat-matte-diffuse conditions. For these conditions, it is not
necessary to include any specification of object shape, material, illuminant geometry, or
observer viewpoint. Later, as we extend to richer viewing conditions and incorporate
knowledge of the human visual system, we will generalize the rendering equation.

Although flat-matte-diffuse scenes are simple, Equation 3 makes clear that they incorporate
the invariance problem described in the introduction. Even when constraints on natural
illuminants and surfaces are imposed, the same surface reflectance, parameterized by σ, can
produce different retinal excitations ρ as the illumination, parameterized by ε, varies. Indeed,
for realistic constraints on natural spectra there are typically many combinations of ε and σ
that produce the same retinal excitations ρ. Starting with only photoreceptor excitations ρj at
a set of locations (indexed by j) across the retina, estimating surface reflectance at each

1For purposes of this overview, we do not need to develop in detail the computational details implicit in Equation 3 (see Maloney,
1999).
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location in the scene under conditions where the scene illumination is unknown is an
underdetermined problem. At the same time, Equation 3 satisfies an important constraint
that we refer to as surface-illuminant duality.

Surface-Illuminant Duality
From Equation 3, we see that given the coordinates of illumination and surface σ we can
compute the information available to the visual system ρ. However, for typical choices of
surface and illuminant coordinate systems, we can do more. The following two properties
emerge from analyses of the type of low-dimensional linear model surface/illuminant
coordinate systems used in many computational analyses of color constancy (Maloney,
1984; D’Zmura & Iverson, 1993a; D’Zmura & Iverson, 1993b) and are valid for flat-matte-
diffuse conditions (Maloney, 1984; D’Zmura & Iverson, 1993a; D’Zmura & Iverson,
1993b). Such coordinate systems provide accurate approximations to natural surfaces
illuminated by daylight (Judd, MacAdam, & Wyszecki, 1964; Cohen, 1964; Maloney, 1986;
Jaaskelainen, Parkkinen, & Toyooka, 1990).

Surface-Illuminant Duality Property 1: Given the illumination coordinates ε and
retinal information ρj corresponding to any illuminated surface, we can solve for
that surface’s coordinates σj.

Consequently, there are a wide range of color constancy algorithms that first estimate the
coordinates of the scene illuminant and then use this information in conjunction with retinal
information to estimate surface reflectance (for a review see Maloney, 1999). These are
referred to as two-stage algorithms (D’Zmura & Iverson, 1993a). If the estimate of the
illuminant coordinates is correct, then so are the estimates of the surface coordinates.

Moreover, we can reverse the roles of illuminant and surface.

Surface-Illuminant Duality Property 2: If we know the coordinates of a sufficient
number of surfaces {σj; j = 1,…, n} and the corresponding retinal information {σj; j
= 1,…, n}, then we can solve for ε. The number of surfaces needed depends on the
complexity of the lighting model.

The key idea embodied in both properties is that, given the illuminant and retinal
excitations, we know the surfaces and vice versa. Demonstrating the precise conditions on
choice of surface/illuminant coordinates for which these properties hold exactly is a
complex mathematical problem (Maloney, 1984; D’Zmura & Iverson, 1993a; D’Zmura &
Iverson, 1993b; D’Zmura & Iverson, 1994) that need not concern us here.

For the illuminant and surface coordinates we employ for flat-matte-diffuse conditions, the
requisite number of surfaces for Property 2 to hold is one (n = 1). In our consideration of a
wider range of possible scenes later in the paper, information about more than one surface is
required to determine the illuminant coordinates from the retinal information and surface
coordinates.

Human Color Constancy
We turn now to consider human color vision and to understand how we can exploit surface-
illuminant duality to develop and test models of human performance. A priori,
computational estimates of the coordinates of illuminants and surfaces need have little or
nothing to do with human color vision. After all, our subjective experience of color is not in
the form of spectral functions or coordinate vectors. Rather, we associate a percept of color
appearance with object surfaces. This percept is often described in terms of its “hue,”
“colorfulness” and “lightness,” and these terms do not immediately connect to the constructs
used in computations. A natural link between perception of color and computational
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estimation arises, however, when we consider stability of representation across scene
changes.

As Helmholtz emphasized over a century ago, an important value of color appearance is to
represent the physical properties of objects and to aid in identification: “Colors have their
greatest significance for us in so far as they are properties of bodies and can be used as
marks of identification of bodies (Helmholtz, 1896, p. 286).” For color appearance to be
useful in this manner, the appearance of any given object must remain stable across changes
in the scene in which it is viewed. To the extent that visual processing assigns the same
surface color percept to a given physical surface, independent of the illuminant and the other
surfaces in the scene, we say that the visual system is color constant.

A long history of research on color constancy for flat-matte-diffuse and closely related
viewing conditions has provided us with a mature empirical characterization within the
bounds of these conditions (Katz, 1935; Helson & Jeffers, 1940; McCann, McKee, &
Taylor, 1976; Arend & Reeves, 1986; Brainard & Wandell, 1992; Brainard, Brunt, &
Speigle, 1997; Brainard, 1998; Kraft & Brainard, 1999; Delahunt & Brainard, 2004;
Granzier, Brenner, Cornelissen, & Smeets, 2005; Olkkonen, Hansen, & Gegenfurtner,
2009). This work may be summarized by two broad empirical generalizations (Brainard,
2004; Brainard, 2009). First, when the collection of surface reflectances in the scene are held
fixed and only the spectral power distribution of the illuminant is varied, human color
constancy is often quite good (see e.g., Brainard, 1998). Maloney (1984) referred to this case
as scene color constancy, to distinguish it from the more general case where both the
illumination and surrounding surfaces change. Gilchrist (2006) refers to it as illumination-
independent color constancy and we follow his terminology here. A visual system can be
illumination-independent color constant without being color constant in general.

Because of the conceptual prominence of illuminant changes in the formulation of the
constancy problem, the bulk of research on human color constancy has focused on
illumination-independent color constancy. The well-known retinex algorithms of Land and
McCann (1971; Land, 1986; see Brainard & Wandell, 1986), for example, achieve
approximate illumination-independent constancy; the work on ‘relational color constancy’
by Foster and Nascimento (1994) also focuses on this special case.

However, if both the surfaces surrounding a test surface and the illumination change (as
when an object is moved to a different scene under different lighting), human color
constancy can be greatly reduced (see e.g., Brainard, 1998; Kraft & Brainard, 1999). What
such results drive home is that we must seek models that predict in detail how surface color
appearance depends on both the illumination of the scene and on the surrounding surfaces in
the scene.

Equivalent Illumination Models
For flat-matte-diffuse conditions, surface-illuminant duality means that if the visual system
had an estimate of the coordinates of the scene illuminant, then it would be straightforward
to use to estimate the coordinates of the surface reflectance function at each location in the
scene from the cone excitation vectors – and vice versa. This observation suggests an
approach to modeling object surface perception, which we call the equivalent illumination
model (EIM) approach (Brainard & Wandell, 1991; Brainard, Wandell, & Chichilnisky,
1993; Speigle & Brainard, 1996; Brainard, Brunt, & Speigle, 1997). The idea is illustrated in
Figure 3. The EIM approach supposes that visual processing proceeds in the same general
two-stage fashion as many computational surface estimation algorithms. First, the visual
system uses the cone excitation vectors from all surfaces in the scene to form an estimate of
the illuminant coordinates, ε̃. We refer to this estimate as the equivalent illuminant. Second,
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the parameters ε̃. are used to set the transformation between the color signal corresponding
to each surface and that surface’s perceived color. Thus in this approach, color appearance at
each location j can be thought of as a function of an implicit estimate of object surface
coordinates, σ̃j. These in turn are generated by processing the color signal in a manner that
depends on the equivalent illuminant.

Of critical importance is that we do not assume that the equivalent illuminant is correct or
even close to correct. Rather, the equivalent illuminant ε̃ is a state variable that, although not
directly observable, characterizes how the color signal is transformed to color appearance
for a particular viewing context. Thus when ε̃ deviates from the coordinates of the physical
scene illuminant, color constancy may fail dramatically. The resulting estimates of surface
coordinates σ̃j will also deviate from their physical counterparts.

This type of state space approach is familiar in color science and was perhaps best
enunciated by W. S. Stiles in discussing retinal adaptation: “… we anticipate that a small
number of variables – adaptation variables – will define the condition of a particular visual
area at a given time, instead of the indefinitely many that would be required to specify the
conditioning stimuli. The adaptation concept – if it works – divides the original problem into
two: what are the values of the adaptational variables corresponding to different stimuli, and
how does adaptation, so defined, modify the visual response to given test stimuli (Stiles,
1961, p. 246).” By adopting the equivalent illuminant approach, we in essence posit that the
adaptation variables may be characterized as an equivalent illuminant, and that the effect of
adaptation is to stabilize object color appearance given the current equivalent illuminant. If
the approach succeeds, then it offers a remarkably parsimonious description of human
perception of matte surface color.

Suppose that a two-stage visual system is viewing a flat-matte-diffuse stimulus array with n
surface patches whose true surface coordinates are σ1 σ2 σn. The true illuminant coordinates
are ε but the visual system’s estimate is ε̃. Based on that estimate the visual system estimates
surface coordinates to be σ̃1, ε̃2,…, ε̃n and some or all of these estimates may be in error.
However, the possible patterns of error that can occur are highly constrained. So although a
two-stage algorithm can grossly misestimate surface coordinates, the resulting errors are
patterned: knowledge of any one of them determines all the others as well as the misestimate
of the illuminant. This constraint allows us to develop experimental tests of two-stage
algorithms as models of human color vision.

Indeed, suppose that we measure the color appearance human vision assigns to surfaces in
several illuminated scenes. Discrepancies between the color appearance of the same physical
surface across scenes can function as a measure of the type of patterned errors that two-stage
algorithms predict. If the pattern of the measured appearance discrepancies is inconsistent
with a particular two-stage algorithm, we can reject this algorithm as model of human
performance. On the other hand, if the discrepancies conform to the predictions of the
algorithm, we can use the data to infer how the visual system’ estimate of the equivalent
illuminant varies from scene to scene.

The EIM Approach In Flat-Matte-Diffuse Scenes
The equivalent illuminant approach separates the modeling problem into two parts (Stiles,
1961; Krantz, 1968; Maloney & Wandell, 1986; Brainard & Wandell, 1992). First, what is
the parametric form of the visual system’s representation of the equivalent illuminant, and
how well does this form account for the effect of changing scene context on color
appearance? Second, how does the equivalent illuminant depend on the information that
arrives at the eyes?
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Brainard et al. (1997; see also Speigle & Brainard, 1996) addressed the first question using
an asymmetric color matching paradigm (see Burnham, Evans, & Newhall, 1957; Arend &
Reeves, 1986; Brainard & Wandell, 1992). Subjects adjusted a test surface so that its
appearance matched to that of a reference surface. The test and reference surfaces were seen
under separate illuminants. Matches were made for a number of different test surfaces.

Figure 4A plots a subset of Brainard et al.’s (1997) measurements. The data are shown as
the CIELAB a* and b* coordinates of the color signal reaching the eye from the reference
and matching test surfaces.2 The open black circles plot the light reflected from the
reference surfaces under the reference illuminant. When the illuminant is changed from
reference to test, the light reflected from these surfaces changes. If the visual system made
no adjustment in response to the change in the illuminant, then matches would have the
same cone excitation vectors as the corresponding reference surfaces, and the data would lie
near the open black circles. These can be considered the predictions for a visual system with
no color constancy.

The closed green circles (connected to the open black circles by solid green lines), on the
other hand, plot the light that would be reflected from the reference surfaces under the test
illuminant. For a color constant visual system, the subjects’ matches would correspond to
these plotted points. That is, constancy predicts that the same physical surface has the same
color appearance across the change in illuminant. Deviations from this prediction in the
asymmetric matches represent discrepancies between the color appearance assigned to the
same physical surface across the change in illuminant.

The closed black circles in Figure 4A plot the subject’s actual matches. For these particular
experimental conditions, the data are intermediate between the predictions of constancy
(green circles) and the predictions of no constancy (open black circles).

Are the actual matches consistent with an equivalent illumination model? If so, then we
should be able to find an equivalent illuminant such that the coordinates of the reference
surfaces, rendered under the equivalent illuminant, lie near the data. Such predictions for
two possible choices of equivalent illuminant are shown as red and blue closed circles in
Figure 4A. There are, of course, infinitely many possible equivalent illuminants but we
show only these two. The closed circles are connected to the open black circles by dashed
lines of the same color.

In essence, the equivalent illuminant predictions represent the performance of a visual
system which is color constant, up to a mismatch between the equivalent illuminant and the
test illuminant. Each choice of possible equivalent illuminant predicts a precise pattern for
the asymmetric matches across conditions. The actual data lie near the equivalent illuminant
predictions shown in red for the example matches shown, and indeed the predictions shown
in red are those for the equivalent illuminant that best fits the data set. Figure 4B plots the
spectra of the reference illuminant (solid black line), test illuminant (solid green line), and
the two equivalent illuminants (dashed red and blue lines). Figure 4C summarizes the
quality of the equivalent illuminant predictions for the full data set, for one observer and test
illuminant. Brainard et al. (1997) present data for more subjects and a second pair of

2The CIELAB space represents the color signal reaching the eye and is computed from the cone excitation vectors of that light. The
representation also incorporates a simple model of early visual processing. Roughly speaking, variation in the a* direction corresponds
to reddish-greenish perceptual variation, while variation in the b* direction corresponds to bluish-yellowish variation. There is also an
L* coordinate which roughly corresponds to perceptual variation in lightness. In computing CIELAB coordinates, we omitted its
model of retinal adaptation by fixing the reference white used in the transformation. Thus in our use of the space here, the CIELAB
coordinates are in a one-to-one invertible relation to cone excitation vectors.
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reference and test illuminants, and show that in each case the equivalent illumination model
provides a good fit.

The fact that a single equivalent illuminant can simultaneously predict all of the matches
provides evidence that the equivalent illumination model provides a good account of human
surface color perception for these experimental conditions. It also allows a compact
summary of the entire dataset, in the sense that knowing just the equivalent illuminant
coordinates ε̃ allows accurate prediction of an entire matching data set. This description
characterizes human performance in the currency of computational illuminant estimation
algorithms, and enables subsequent research to ask whether such algorithms can predict how
the equivalent illuminant itself depends on the contextual image (see immediately below).

Predicting Equivalent Illuminants
There is an extensive literature on how a computational system can estimate the illuminant
from cone excitation vectors for flat-matte-diffuse conditions (Buchsbaum, 1980; Maloney
& Wandell, 1986; Funt & Drew, 1988; Forsyth, 1990; D’Zmura & Iverson, 1994; Finlayson,
1995; Brainard & Freeman, 1997; Finlayson, Hordley, & Hubel, 2001; for reviews see
Maloney, 1992; Hurlbert, 1998; Maloney, 1999) Building on this computational foundation,
Brainard et al. (2006; see Brainard, 2009) asked the second question central to the EIM
approach: can the illuminant estimates provided by a computational algorithm predict the
visual system’s equivalent illuminants?

Brainard et al. (2006) took advantage of the experimental work described above and
employed a simplified experimental procedure, measurement of achromatic loci, that allows
estimation of the observers’ equivalent illuminant for any contextual scene but that does not
explicitly test the quality of these estimates against a full set of asymmetric matches. The
interested reader is referred to papers that elaborate the link between achromatic loci and
equivalent illuminants (Brainard, 1998) and the link between achromatic loci and
asymmetric matches (Speigle & Brainard, 1999).

Brainard et al. (2006) applied a Bayesian color constancy algorithm (Brainard & Freeman,
1997) to the set of contextual images studied by Delahunt and Brainard (2004). This
provided a computational estimate of the illuminant for each contextual image. Importantly,
the computational estimates often deviated from the actual scene illuminants, depending on
exactly what surfaces were in the scene. Brainard et al. (2006) then compared the
computational estimates of the illuminant to the equivalent illuminants for the same images,
which were obtained from analysis of the measured achromatic loci. For the 17 scenes
studied, the agreement between computed illuminant estimates and measured equivalent
illuminants was very good. Figure 5 shows the comparison for 3 of the 17 conditions.
Brainard et al. (2006) provide a more extensive analysis, as well as a technical discussion of
the illuminant estimation algorithm and how its parameters were adjusted to fit the data.

The key point here is that the Bayesian algorithm provides a method to predict the
equivalent illuminants from the contextual images, both for cases where constancy is good
(comparison between left and center panels of Figure 5) and for cases where constancy is
poor (comparison between left and right panels of Figure 5). Together with the fact that the
equivalent illuminants can predict asymmetric matches, this means that the general
equivalent illuminant approach yields a complete theory of how context affects color
appearance for flat-matte-diffuse conditions. Although this theory still needs to be tested
against more extensive datasets, the results to date suggest that it holds considerable
promise.
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Intermediate Discussion
So far, we have described the EIM approach and shown how it can account for color
constancy and failures thereof under flat-matte-diffuse conditions. Although this success is
exciting in its own right, equally important is that the approach provides a recipe for
generalization to more complex viewing conditions. The EIM recipe may be summarized as
follows.

I. Define the domain of scenes under study. Above, the scenes were defined by the
flat-matte-diffuse assumptions.

II. Choose illuminant and surface coordinates appropriate for the scenes defined in
Step I and develop the rendering equation. Ask whether, for each scene studied,
there is an equivalent illuminant that characterizes performance for all test surfaces
in that scene. Above, the choice of three-parameter illuminant coordinates allowed
derivation of equivalent illuminants that successfully predicted asymmetric
matches for any reference surface across changes of scene illumination.

III. Develop computational techniques for estimating the illuminant from the
information in the retinal image, for the class of scenes studied. Ask whether these
techniques successfully predict the visual system’s equivalent illuminants for any
scene. Above, a Bayesian illuminant estimation algorithm successfully predicted
equivalent illuminants derived from achromatic loci for scenes that conformed
closely to flat-matte-diffuse conditions.

Of course, there is no a priori guarantee that this EIM recipe will prove successful for
conditions other than flat-matte-diffuse. We may discover that human performance is not
consistent with any choice of equivalent illuminant, correct or misestimated. None-the-less,
the fact that it has been possible to elaborate Steps I, II, and III above into a promising
model for flat-matte-diffuse conditions motivates asking whether the same recipe can be
extended to richer viewing conditions. We turn to this question below, and show that an
affirmative answer is possible with respect to Steps I and II. Whether similar success will be
possible for Step III awaits future research.

The EIM Approach In More Complex Scenes
Figure 6 shows a photograph of the same matte surface at two different orientations, and
illustrates a physical effect that is introduced when we relax the restriction that the
illuminant be diffuse and the assumptions that all surfaces lie in a single plane. The surface
was embedded in the same scene for each of the two photographs, so that the location and
intensity of the light source was the same. The photographs show that there is large effect of
orientation on the intensity of the light reflected from the surface. This occurs because the
light source in the scene is largely directional, and for a directional light source the intensity
of the light reflected from a even a matte surface varies the angle between the incident light
and the surface normal (Pharr & Humphreys, 2004).

It is well-established that the visual system can, under some circumstances, partially
compensate for variation in surface orientation under directional illumination (Hochberg &
Beck, 1954; Gilchrist, 1980; Bloj & Hurlbert, 2002; but see Epstein, 1961). There are not
currently models that predict the effect of surface azimuth on perceived lightness under
varying illumination geometry. Here we review our work that asks whether the EIM
approach can lead us towards such a model.

The first step is to specify the class of scenes of interest and develop the rendering equation.
To focus on geometric effects, we begin by restricting attention to achromatic scenes. We
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consider scenes illuminated by two light sources, one collimated and the other diffuse. A
collimated light source can be thought of as a distant point light source with intensity εp. The
diffuse source is a non-directional ambient illuminant with intensity εd. Because we are
working only with achromatic lights, the illuminant coordinates are scalars. The theoretical
framework developed here is easily extended to scenes in which illuminants are colored and
illuminant coordinates are three-dimensional (Boyaci, Doerschner & Maloney, 2004).

Let the angle between a normal to a surface and the direction to the collimated light source
be denoted by θ. The light reflected from an achromatic matte surface is then proportional to

(4)

where σa denotes the fraction of light flux incident on the surface. Since we are working
with achromatic surfaces, σa (the surface albedo) and ρ are scalars. The restriction on θ
simply guarantees that the light source is on the side of the surface being viewed.

The value of θ is determined by the orientation of the surface and the direction to the
collimated source. We can specify the orientation of the surface at any point by the azimuth
and elevation3 DS = (ψS, ϕS) of a line perpendicular to the surface at that point, the surface
normal. Similarly we can specify the direction to the collimated light source by azimuth and
elevation DE = (ψE, ϕE). We can compute θ for any choice of surface orientation DS and
direction to the collimated source DE by standard trigonometric identities (Gerhard &
Maloney, 2010): θ = θ(DE, DS)

We re-write Equation 2 (Boyaci, Maloney, & Hersh, 2003; Bloj et al., 2004) as

(5)

where k is a constant that depends on the intensities of the two illumination sources but not
on DE or DS, and π is a measure of the intensity of the diffuse source relative to the
collimated source and is again independent of DE and DS. We refer to π as diffuseness. We
drop the explicit specification of the restriction on the range of θ in Equation 5 and
following, but it is still in force.

The interpretation of Equation 5 is straightforward. The total illumination incident on the
surface arises as a mixture of light from the collimated and diffuse sources. The amount of
the collimated source that is reflected is proportional to the cosine of the difference in angle
between the surface normal and direction to the collimated source. When this angular
difference is 0, the proportion of from the collimated source reaches a maximum. This
occurs when the surface directly faces the collimated source.

The experiments investigating the effect of geometric factors considered below are designed
so that we can normalize the data and neglect any effects of this constant. With such
normalization, we again simplify the rendering equation:

(6)

3Azimuth and elevation can be thought of as latitude and longitude on a terrestrial sphere.

Brainard and Maloney Page 10

J Vis. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Equation 6 is analogous to Equation 3 above. It expresses the information available to the
visual system (ρ) as a function of illuminant and surface coordinates. In Equation 6, the
illuminant coordinates ε are π, DE = (ψE, ϕE) while the surface coordinates σ are σa, DS =
(ψS ϕS).

Experiments and EIM models
In two sets of psychophysical experiments, we measured how the lightness of a test surface
changed as its orientation was varied in azimuth (Boyaci, Maloney, & Hersh, 2003;
Ripamonti et al., 2004), by having observers set asymmetric matches between test surfaces
presented at different orientations and references surfaces presented in a separated fixed
context and oriented fronto-parallel to the observer. The experiments are complementary in
one respect: Boyaci et al. (2003) used rendered stimuli presented binocularly while
Ripamonti et al. (2004) used physical surfaces and lights, also with binocular viewing. In
both, the collimated light sources were directed from behind the observer and out of view.

Boyaci et al. considered only one illumination geometry: the parameters π, ((ψE, ϕE) did not
vary across the variations in test surface orientation. Ripamonti et al. examined human
performance with the collimated illuminant at either of two azimuths and a single elevation.
In both experiments, only the azimuth of the test surface was varied; the parameter ϕS was
held constant. These restrictions is to allow us to further simplify the illuminant/surface
coordinates by folding the effect of ϕE and ϕS into the normalizing and constant k of
Equation 5 and subsequently neglecting them. The theoretical goal of the experiments was
to determine whether (a) observers’ lightness matches systematically affected by changes in
surface azimuth and (b) whether an equivalent illumination model could describe
performance, and if so, what were the coordinates π̃ and ψ̃E of the equivalent illuminant for
each set of experimental conditions.

Because of surface-illuminant duality, each choice of equivalent illuminant parameters π̃ and
ψ̃E leads to a prediction of how the (normalized) equivalent surface albedo estimate, σ̃a,
should vary as a function of surface azimuth ψS. The green solid curve shown in Figure 7A
shows this dependence for the actual illumination parameters π, ψE used in the experiments
of Boyaci et al. This plot represents predictions for the case where the luminance reaching
the observer from the test surface is held fixed across the changes of azimuth, again as was
done in the experiments of Boyaci et al. In addition, because of the normalization procedure
used in the data analysis, the units of albedo are arbitrary and here have been set so that their
minimum is one. We refer to the plot as a matching function. If the observer’s estimates of
albedo were based on a correct physical model with correct estimates of the illuminant, then
his or her normalized matches would fall along this particular matching function.

However, the observer’s equivalent illuminant may differ from the physically correct values.
The red and blue dashed curves in 7A show matching functions for two choices of ψ̃E that
differ from the value of the physical illumination, with π̃ set equal to the physically correct
value. Each equivalent illumiannt matching function reaches its minimum when ψS = ψ̃E,
that is when the surface azimuth agrees with the azimuth of the direction estimated for the
collimated light source. This change is readily interpretable: a higher albedo is required to
predict a constant reflected luminance as the surface normal is rotated away from the
direction of the collimated source.

Figure 7B shows the effect of varying the diffuseness parameter π̃. The solid green curve is
replotted from 7A and again shows the matching function where the observer’s equivalent
illuminant coincides with the physically correct illuminant. The matching functions for two
other values of π̃ are shown as dashed red and blue curves. As π̃ increases, the curve
becomes shallower and as π̃ decreases the curve becomes steeper. These changes are also
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interpretable: in scenes illuminated primarily by diffuse light, the intensity of light reflected
from a surface varies little with surface orientation, while the maximum variation occurs
when the illumination is entirely collimated. In the limiting case where π̃ = 1, the
illumination is purely diffuse and the estimated albedo does not vary with surface azimuth.

The two parameters ψ̃E and π̃ independently affect the location and shape of the matching
function. Given normalized matches obtained psychophysically, parameter search may be
used to find the illuminant coordinates that provide the best fit to the data. Figure 8A shows
an example for one observer from Boyaci et al. (2003) obtained in this manner. The closed
black circles show normalized observer matches, and the dashed red curve shows the
matching function for the best fitting equivalent illuminant coordinates. Figure 8B and C
shows data and fits in the same format for one observer and two collimated source positions
from Ripamonti et al. (2004).

If the observers were lightness constant, the data would fall along the solid green line in
each panel – this line shows the EIM predictions for the case where the equivalent
illuminant parameters match those of the scene illuminant. If the observers were not
sensitive to surface azimuth, on the other hand, the data would lie along a horizontal line at a
normalized value of one. The actual data are intermediate between these two possibilities
and show partial lightness constancy. Moreover, in each case the data are described by an
equivalent illumination model (dashed red line). The original papers (Boyaci, Maloney, &
Hersh, 2003; Ripamonti et al., 2004; Bloj et al., 2004) show fits for more observers, provide
a detailed analysis of the quality of the model fits, and conclude that the EIM provides a
good account of the datasets from both labs.

We emphasize that the observers in both experiments were not color constant or even close.
However, their matching data is highly constrained, indicating that we can predict their
matches as a function of azimuth based on an equivalent illuminant that we could recover
from their data.

As with our EIM analysis of color constancy for flat-matte-diffuse conditions, the EIM
developed here translates the psychophysical data into the currency of illuminant estimation
computations. For example, comparison of panels B and C of Figure 8 shows that when the
physical illuminant is shifted in azimuth, observer’s estimates approximately track this shift.
This pattern was shown by all the observers of Ripamonti et al. (2004). In addition, the
azimuth of the recovered equivalent illuminants was fairly accurate in all of the experiments.

On the other hand, observers’ equivalent illuminants generally underestimated the strength
of the collimated component of the illumination (compare dashed red and solid green lines
in Figure 8). Recently, Morgenstern et al. (2010) reported measurements of the directionality
of natural illumination fields and showed that these were considerably more diffuse than the
stimuli used in the experiments discussed above – perhaps the underestimation is an
appropriate response of an ideal observer armed with good priors. In any case, it will be
interesting to see whether future algorithms can be developed that estimate geometrical
illuminant parameters in a fashion that predicts the empirically derived equivalent illuminant
parameters.

Additional Experiments
In subsequent work, Boyaci et al (2004) were able to use the same EIM principles to account
for measurements of color appearance for surfaces viewed at different orientations in
binocularly-presented rendered scenes with a yellow collimated source and a blue diffuse
source. They varied both the azimuth ψS and elevation θS of a matte test surface and for two
locations of the collimated source. Observers adjusted the test surface at each orientation
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until it appeared achromatic. Their data allowed recovery of equivalent illuminant
parameters π̃ ψ̃E, and θE. Two settings determined the full shape of each EIM prediction, and
the fact that all the settings fell near a single matching function provided evidence that
observers were discounting illumination for a scene much like the physical one, but with
respect to estimates of the illuminant coordinates that deviated from those of the scene
illuminant.

The EIM approach has also been applied to yet more complex lighting conditions.
Doerschner Boyaci & Maloney (2007) explored surface color perception in scenes with two
yellow collimated light sources and a blue diffuse light source and found that observers’
performance was consistent with an EIM that implied that, while they underestimated the
intensity of the collimated sources, they successfully compensated for the presence of two
light sources in the scenes they viewed.

Discussion
Generalizability

An enormous challenge for understanding color and lightness constancy is that as the
complexity of the scenes studied increases, there is an explosion of scene variables that
could affect performance. Once we leave the limited range of scenes consisting of flat,
matte, coplanar objects and venture into the full complexity of 3D scenes, the spatial
distribution of the light field and geometric properties of object surface reflectance must be
considered, along with how they interact with object shape, roughness, and pose within the
scene. Without some principled way to generalize the understanding we gain from simple
scenes, the task of measuring and characterizing the interaction of all the relevant scene
variables in terms of how they affect surface color perception seems so daunting as to be
hopeless.

The success of EIMs in accounting for the parametric structure of surface color perception
for both flat-matte-diffuse and simple three-dimensional scenes is promising. It tells us that
a single set of principles can be used to provide a unified account of constancy across this
range of scenes, and suggests that the same ideas may continue to work as the field moves to
yet richer viewing conditions (for an overview of some recent work, see Maloney &
Brainard, 2010).

The generalization success currently applies to the first step of the EIM program, in which
the modeling is used to account for the parametric form of the effect of manipulations of a
surface (e.g., reflectance, azimuth) within any given context. This step is silent about how
the visual system processes the image data available at the retinas to set the values of the
equivalent illuminant parameters for any scene. That is, formulating and testing an
equivalent illumination model is the first step in a two-step modeling process. The second
step is to understand how the image data determine the equivalent illuminant parameters. A
number of authors have emphasized the usefulness of the general two-step approach in the
context of color vision (Stiles, 1961; Stiles, 1967; Krantz, 1968; Maloney, 1984; Brainard &
Wandell, 1992; Smithson & Zaidi, 2004). We emphasize that the first step of the modeling
approach leads to testable empirical predictions, independent of how the equivalent
illuminant parameters are determined by the image.

Equivalent illumination models also lead to a natural approach for the follow-on second
step. An EIM “operationalizes” (Bridgman, 1927) what it means to estimate the illuminant
as a step in determining surface color, and for this reason it provides a direct connection to
computational algorithms that take image data and estimate properties of the illuminant. As
reviewed above, taking this connection seriously has allowed successful prediction of the
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equivalent illuminants from image data for flat-matte-diffuse conditions (Brainard et al.,
2006; Brainard, 2009). This was possible in large part because there was a considerable
literature on illuminant estimation algorithms for these conditions (Buchsbaum, 1980;
Maloney & Wandell, 1986; Funt & Drew, 1988; Forsyth, 1990; D’Zmura & Iverson, 1994;
Finlayson, 1995; Brainard & Freeman, 1997; Finlayson, Hordley, & Hubel, 2001; for
reviews see Maloney, 1992; Hurlbert, 1998; Maloney, 1999).

It remains to be seen whether generalization success will be possible for the second step as
we consider how image information in three-dimensional scenes sets the parameters of the
equivalent illuminants, that is, what are the “cues” to scene illumination (Maloney, 2002).
Candidate cues to the illumination can be evaluated experimentally and there is some work
along these lines (Yang & Maloney, 2001; Yang & Shevell, 2002; Kraft, Maloney, &
Brainard, 2002; Boyaci, Doerschner, & Maloney, 2006). Further research in this direction is
needed.

Because EIMs translate human performance into parameters that describe the illuminant,
however, any algorithm that estimates these same parameters from the images is
immediately available as a candidate for this step in the modeling step. This potential to
capitalize naturally on developments in the computer vision literature is an important feature
of the general modeling approach.

EIMs and Constancy
A common misconception about the equivalent illuminant approach is that it predicts perfect
constancy. This is a misconception whose origins are unclear to us, but we encounter it
repeatedly when we discuss our work on EIM models. Perhaps it occurs because the
computations required to make predictions with EIMs resemble those required to make the
predictions for color constant performance. Indeed, if the equivalent illuminant coordinates
match those of the actual illumination within the scene, then the EIM computations do
predict constancy. The crucial difference is that EIMs do not require such a match between
equivalent illuminant and scene illuminant coordinates. Indeed, we are excited about
equivalent illumination models in part because they can account quite precisely and
parsimoniously for the way in which observers fail to be constant, for the constraints that
appear in their data, and for individual differences in the degree of constancy failure (see
Gilchrist et al., 1999, for a general discussion of the diagnosticity of accounting for failures
of constancy).

EIMs and Perceptual Judgments of the Illuminant
Human observers are capable of making explicit judgments about the scene illuminant.
Some authors have thus probed EIM-like models by asking whether the explicitly judged
scene illuminant is, in essence, consistent with the equivalent illuminant parameters required
to account for surface perception in the same scene (Beck, 1961; Beck, 1972; Logvinenko &
Menshikova, 1994; Rutherford & Brainard, 2002; Granzier, Brenner, & Smeets, 2009).
Although the number of empirical studies along these lines is limited, the general conclusion
is negative: establishing the equivalent illuminant parameters via explicit judgments of the
illuminant does not appear to be an effective method for understanding surface color
appearance. Because perception of illumination per se has not been extensively studied, it
may be that there are general principles awaiting discovery that will link it to the perception
of surface lightness and color. In the meantime, however, the equivalent illuminant
parameters should be understood as an implicit characterization of the illuminant, a state
variable for perception of surface color, as discussed above. In this sense, the parameters are
an important model construct, but one that need not be represented explicitly in
consciousness or in neural responses.
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EIMs, Evolution, and Mechanism
Although few would deny that evolution has shaped biological vision, there is little
consensus on how this broad observation should shape experiments and theory. One
approach focuses on the fact that evolution generally proceeds in a step-by-step fashion, one
mutation at a time (Leibniz, 1764/1996; Darwin, 1859/1979). The neural mechanisms
underlying biological vision may therefore consist of a series of special purpose neural
computations each of which provided an incremental advantage to the organism at some
point in its evolutionary history. This in turn leads to the view that the mechanisms of neural
processing are best described as a “bag of tricks” (Ramachandran, 1985; Ramachandran,
1990; Cornelissen, Brenner, & Smeets, 2003).

An emphasis on this aspect of evolution has motivated a number of authors to eschew the
development of overarching functional models and instead seek descriptive models for each
specialized mechanism. This is a research gambit, based on the hope that the process of
characterizing individual mechanisms and their interactions will converge, so that at some
point it will be possible to leverage the understanding gained and develop a model that
describes overall performance.

The EIM models we describe, on the other hand, may be understood as motivated by a
different principle of evolution. This is the idea that that natural selection pushes biological
systems towards optimal performance, within some set of environmental constraints (Geisler
& Diehl, 2003).. This observation suggests that, at a minimum, it would be fruitful to
compare the actual performance of biological organisms in visual tasks to normative models
of performance (Geisler, 1989).4 If biological performance approximates normative in a
particular task, the experimentalist can attempt to develop a descriptive model based on the
normative model. There is no a priori guarantee that a normative model will lead to an
accurate descriptive model. The premise that it might do so is also a research gambit.

The apparent conflict between the two approaches is not as severe as it may seem. In terms
of Marr’s (1982) influential taxonomy, EIMs are formulated at the computational level –
they implicitly posit that an important function of color appearance is to provide information
about object surface properties and they seek to describe the functional relation between the
visual stimulus and this perceptual attribute. Mechanistic models are formulated at the
algorithmic and hardware levels.

Thus, there is no fundamental incompatibility between the two modeling approaches – in the
end a successful computational-level model must be accompanied by a hardware-level
neural theory. At the same time, the development of a mechanistic theory of behavior has as
a perquisite a precise functional understanding of that behavior. Without good
characterization of how we perceive surface lightness and color, we cannot hope to explain
such behavior in neural terms. To the extent that equivalent illumination models lead us to
good functional models, they contribute to the elucidation of mechanistic theories.

In this paper, we reviewed progress towards understanding human performance for a
particular visual task, the perceptual representation of surface properties. In particular, we
considered work that takes as its point of departure normative models of object color
perception and argue that this approach holds much promise. Although we restrict attention
to a particular visual task, the general principles we outline apply generally to essentially
any aspect of biological information processing. We close with a prescient remark by

4We have adopted the terminology of normative and descriptive models from the decision making literature, where it is widely used
(see Bell, Raiffa, & Tversky, 1988). In the vision literature, normative models are often referred to as ideal observer models (Green &
Swets, 1966; Geisler, 1989).

Brainard and Maloney Page 15

J Vis. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Barlow, characterizing the interplay of model and mechanism in the study of biological
function: “A wing would be a most mystifying structure if one did not know that birds flew.
…. [W]ithout understanding something of the principles of flight, a more detailed
examination of the wing itself would probably be unrewarding. I think we may be at an
analogous point in our understanding of the sensory side of the central nervous system. …. It
seems to me vitally important to have in mind possible answers … when investigating these
structures, for if one does not one will get lost in a mass of irrelevant detail and fail to make
the crucial observations (Barlow, 1961).”
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Figure 1. Image formation
Individual locations on a coffee mug can reflect very different spectra. The uniform patches
at the top of the figure show image values from the locations indicated by the arrows. The
mug itself, however, is readily perceived as homogeneous blue. After Figure 1 of Xiao &
Brainard (2008).
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Figure 2. Flat-matte-diffuse conditions
A collection of flat, matte surfaces is illuminated by a diffuse light source with spectral
power distribution E(λ). The color signal Cj(λ) reflected from the jth surface is given by Cj(λ)
= E(λ)Sj (λ), where Sj (&laambda;) is the surface reflectance function of that surface. The
cone excitation vector elicited by Cj (&lambda;) is ρj The set of ρj, across the retinal image,
{ρ1,…,ρn}, is the information available to computational algorithms that seek to estimate
illuminant and surface properties under flat-matte-diffuse conditions. It is also the
information available to the human visual system for producing the perceptual
representation that is color appearance. When we consider the properties (either physical or
perceptual) of a specific surface (denoted the jth surface), we often refer to it as the test
surface and refer to the collection of surfaces making up the rest of the scene together with
the illuminant as the scene context.
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Figure 3. Equivalent illumination models
The information available about the scene (the retinal image {ρ1,…, ρn}) is used to form an
estimate ε̃ of the illuminant coordinates, the equivalent illuminant. This estimate in turn
determines how the color signal reflected from each scene surface is transformed to the
perceptual representation that is color appearance.
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Figure 4. Equivalent illuminants in flat-matte scenes
A. Asymmetric matching data and predictions. Data are shown as the CIELAB a* and b*
coordinates of the color signal reaching the eye from the reference and matching test
surfaces. Open black circles plot the a*b* coordinates of the color signal reflected from a
reference surface. Closed black circles are the asymmetric matches, plotted as the
coordinates of the light reflected from matching test surfaces. Points indicated by closed
green circles (and connected to open black circles by solid green lines) show where the
matches would lie for a color constant visual system. Equivalent illumination model
predictions for two hypothetical choices of equivalent illuminant are shown by closed red
and closed blue circles, connected to black open circles by red and blue dashed lines
respectively. The red closed circles are in fact the predictions of the best fitting equivalent
illuminant. B) Reference illuminant spectrum (solid black line), test illuminant spectrum
(solid green line) and two equivalent illuminant spectra (red and blue dashed lines). These
correspond to the equivalent illuminant predictions shown in Panel A. The equivalent
illuminant shown in red provides the best fit to the data. Spectra shown are all within the
parametric model for illuminant spectra, and therefore differ from the physical spectra used
in the experimental apparatus. C) Quality of equivalent illuminant predictions. The CIELAB
a*, b* and L* components of the predictions are plotted against the corresponding
components of the asymmetric matches. All conversions to CIELAB were done using the
test illuminant’s tristimulus coordinates as the reference white.
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Figure 5.
A) Three scenes studied by Delahunt & Brainard (2004). Subjects viewed renderings of the
scenes in stereo and set the chromaticity of a test patch (location is indicated by black
rectangle) to appear achromatic. Measurements were made for 17 scenes. Across some
scenes, only the illuminant changed (e.g., left to center). Across other scenes, both the
illuminant and the reflectance of the back surface changed (e.g., left to right). This latter
manipulation eliminated local contrast as a cue to the illuminant change. B) The measured
achromatic locus may be interpreted as the visual system’s estimate of the illuminant
(Brainard et al., 2006). This is shown as a red dashed line in all three panels. The
corresponding illuminant estimated by the Bayesian algorithm is shown as a blue dashed
line in each panel. In the left panel, the scene illuminant is shown as a solid black line. This
line is replotted in the middle and right panels for comparison. In those panels, the physical
illuminant is shown as a solid green line. The Bayesian algorithm predicts the human
equivalent illuminants well, both for cases of good constancy (e.g., left to center panel scene
change) and for cases of poor constancy (e.g., left to right panel scene change).
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Figure 6. The effect of surface orientation
Photograph of the same flat-matte surface at two different slants relative to a directional
light source. The figure illustrates that even when the configuration of light sources in a
three-dimensional scene is held fixed, the three-dimensional pose of an object affects the
amount of light reflected to the observer. Reprinted from Figure 1 of Ripamonti et al.
(2004).
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Figure 7. Matching functions
A. The normalized surface albedo of a surface of constant luminance is plotted versus
surface azimuth for a scene illuminated by a combination of collimated and diffuse sources
(solid green curve). We refer to such a curve as a matching function. Surface albedo is
normalized so that its minimum is one. This minimum occurs when the surface azimuth is
identical to the azimuth of the collimated source. When the surface azimuth differs from that
of the punctuate source, the surface must have higher albedo to produce the same luminance.
If a visual system misestimates the azimuth of the collimated light source, but otherwise
computes an estimate of surface albedo correctly, the resulting plot of estimated normalized
surface albedo vs. azimuth will be shifted so that its minimum falls at the estimated azimuth
but is otherwise unchanged. Two examples are shown as dashed red and blue lines. B. If a
visual system misestimates the relative intensity of the collimated source but otherwise
computes an estimate of surface albedo correctly, the resulting plot of relative surface
albedo vs. azimuth will be shallower or steeper as shown but otherwise unchanged. Two
examples are shown as dashed red and blue lines. The solid green curve is replotted from
Panel A.
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Figure 8. Estimates of equivalent illuminants in three-dimensional scenes
A. Data and fit for one observer redrawn from Boyaci et al (2003). Observers viewed
rendered scenes illuminated by a combination of collimated and diffuse light sources and
matched the perceived albedo of a reference surface to a test surface within the scene that
varied in orientation. The luminance rather than the albedo of the test surface was held
constant across orientations. Viewing was binocular. The true azimuth of the punctuate
source is marked by a green vertical line and the true matching function is shown as a solid
green curve. The observer’s fitted matching function has an azimuth estimate close to the
true value but is shallower. The equivalent illuminant has a higher diffuseness value than the
true. The fit matching function (dashed red curve) is in good agreement with the data. In
particular, the observer is sensitive to the effect of surface azimuth on the color signal in
scenes illuminated by a combination of punctuate and diffuse sources. B,C. Data for one
observer in two conditions redrawn from Ripamonti et al. (2004). Observers viewed real
scenes illuminated by a combination of collimated and diffuse light sources and matched the
perceived albedo of a reference surface to a test surface within the scene that varied in
orientation. Viewing was binocular. In this experiment, the luminance of the test surface was
not held constant across orientations, but measurements were made for a number of different
surface albedos. The data here are combined across surface albedos and replotted to show
the effect inferred for constant luminance. Each panel shows a different illuminant
configuration. The two configurations differed primarily in the azimuth of the collimated
source. The format is as in Panel A. Once again, the observer’s settings are consistent with
an equivalent illuminant whose azimuth parameter is close to that of the actual collimated
source but whose diffuseness is higher than that of the physical illuminant.
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