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ABSTRACT To model deviations from selectively neutral genetic variation caused by different forms of selection, it is necessary to first
understand patterns of neutral variation. Best understood is neutral genetic variation at a single locus. But, as is well known, additional
insights can be gained by investigating multiple loci. The resulting patterns reflect the degree of association (linkage) between loci and
provide information about the underlying multilocus gene genealogies. The statistical properties of two-locus gene genealogies have
been intensively studied for populations of constant size, as well as for simple demographic histories such as exponential population
growth and single bottlenecks. By contrast, the combined effect of recombination and sustained demographic fluctuations is poorly
understood. Addressing this issue, we study a two-locus Wright–Fisher model of a population subject to recurrent bottlenecks. We
derive coalescent approximations for the covariance of the times to the most recent common ancestor at two loci in samples of two
chromosomes. This covariance reflects the degree of association and thus linkage disequilibrium between these loci. We find, first, that
an effective population-size approximation describes the numerically observed association between two loci provided that recombi-
nation occurs either much faster or much more slowly than the population-size fluctuations. Second, when recombination occurs
frequently between but rarely within bottlenecks, we observe that the association of gene histories becomes independent of physical
distance over a certain range of distances. Third, we show that in this case, a commonly used measure of linkage disequilibrium, s2

d

(closely related to r̂2), fails to capture the long-range association between two loci. The reason is that constituent terms, each reflecting
the long-range association, cancel. Fourth, we analyze a limiting case in which the long-range association can be described in terms of
a Xi coalescent allowing for simultaneous multiple mergers of ancestral lines.

GENETIC variation at a single neutral locus has been
investigated in great detail for population models under

different demographic processes, such as population expan-
sions, single bottlenecks, or genetic hitchhiking caused by
nearby selective sweeps (see, for example, Eriksson et al.
2008 for a review of such models). Biological populations
exhibit abundance fluctuations on both short and long time-
scales, caused by, e.g., environmental and ecological changes.
Such size fluctuations in the form of repeated bottlenecks
are characteristic of populations expanding into new territo-
ries. Examples include the human out-of-Africa scenario
(Ramachandran et al. 2005; Liu et al. 2006), the accompany-
ing expansion of the parasite Plasmodicum falciparum causing

severe malaria (Tanabe et al. 2010), and the recolonization
by the marine snail Littorina saxatilis of Sweden’s west coast
archipelago (Johannesson 2003). Genetic variation in popu-
lations subject to bottlenecks is now routinely investigated in
the laboratory. England et al. (2003), for example, have stud-
ied genetic variation in Drosophila melanogaster populations
subjected to bottlenecks of different durations and strengths.
Last but not least, bottlenecks can also be due to environmen-
tal fluctuations. Pujolar et al. (2011), for example, have in-
vestigated populations of Salmo marmoratus subject to
weather-induced recurrent bottlenecks.

It is common practice to accommodate such fluctuations
in the theory by using an effective population size instead
of the census population size. See Ewens (1982) for a review
of different measures of the effective population size.

Recent research has highlighted the importance of
two competing timescales in the context of such effective
population-size approximations: the timescale of the
population-size fluctuations and the coalescent timescale
(which reflects the time to the most recent common
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ancestor, MRCA). When demographic fluctuations are much
slower than the coalescent timescale, they can be ignored
and the effective population size can be approximated by the
initial population size (Sjödin et al. 2005). In the opposite
case of rapid demographic fluctuations, it has been argued
(Wright 1938; Crow and Kimura 1970) that genetic varia-
tion is well described in terms of a population with effective
population size Neff, given by the harmonic average of the
population size:

Neff ¼ lim
T/N

 
1
T

XT
t¼0

1
Nt

!21

: (1)

Here Nt is the population size in generation t. See Jagers
and Sagitov (2004), Sjödin et al. (2005), and Wakeley and
Sargsyan (2009) for recent developments of the concept of
an effective population size. In conclusion, for both fast and
slow demographic fluctuations, the statistical properties of
single-locus gene genealogies agree with those of the constant
population-size model. By contrast, when both timescales are
of the same order, it has been shown (Kaj and Krone 2003;
Nordborg and Krone 2002; Sjödin et al. 2005; Eriksson et al.
2010) that the distribution of total branch lengths in samples
of single-locus gene genealogies does not in general agree with
that predicted by the standard coalescent approximation. But
Eriksson et al. (2010) have shown how to compute moments of
the distribution of the total branch lengths of gene genealogies
at a single locus, conditional on a given demographic history
(see also Zivkovic and Wiehe 2008). In summary, the effect of
population-size fluctuations upon genetic variation at a single
locus is well understood.

But how do population-size fluctuations affect multilocus
patterns of genetic variation on the same chromosome?
Such patterns are influenced by recombination. Genetic
recombination introduces a new timescale that is inversely
proportional to r, the probability of recombination between
a pair of loci per generation. As is well known, genetic re-
combination plays an important role in shaping empirically
observed multilocus patterns of genetic variation in biolog-
ical populations. Measures of linkage disequilibrium quan-

tify the degree of association of genetic variation at pairs of
loci on the same chromosome. Common measures of linkage
disequilibrium, such as r̂2 (Hill and Robertson 1968), and its
approximation s2

d (Ohta and Kimura 1971; McVean 2002),
depend upon the allelic frequencies at two loci. These mea-
sures are thus closely related to the covariance of the times
(i.e., the number of generations) to the MRCA of the un-
derlying gene genealogies (McVean 2002).

Figure 1 shows this covariance as a function of genetic
distance between the two loci. The results shown were
obtained by computer simulations of the Wright–Fisher dy-
namics (Fisher 1930, 1999; Wright 1931) of a population
experiencing recurrent bottlenecks, with random durations
of and random separations between bottlenecks. Details of
the model are given in the Model section. In Figure 1, gray
lines show how the covariance of the times to the MRCA for
two chromosomes at two loci (averaged over all pairs of loci
the same distance apart) depends on genetic distance. Each
gray line corresponds to a single realization of the sequence
of bottlenecks. The red lines in Figure 1 are the averages of
the covariances within each panel. Figure 1, A and B, shows
results for two different sets of parameters of the model.
In Figure 1A, the bottlenecks happen frequently and have
short durations. In this case, the single-locus properties are
expected to be in good agreement with those of a population
with effective population size given by Equation 1. For such
populations, the coalescent approximation predicts

cov
h
taðijÞ; tbðijÞ

i
¼ x2eff

Rxeff þ 18�
Rxeff

�2þ13Rxeff þ 18
: (2)

(Griffiths 1981; Hudson 1983, 1990). Here ta(ij) and tb(ij)
denote the times to the MRCA of two loci (called a and b)
in a sample of two chromosomes (denoted by i and j). In
Equation 2, R ¼ 2N0r is a scaled recombination rate, and xeff ¼
Neff/N0 is the effective population size relative to the pop-
ulation size at the present time, denoted by N0. Units of time
are chosen so that t ¼ ⌊tN0⌋, and ⌊tN0⌋ is the largest integer
not larger than tN0. In Figure 1 effective population-size
approximations, according to Equation 2, are shown as

Figure 1 Covariance of the
times to the MRCA at two loci,
in a sample of two chromosomes
in a population subject to re-
peated bottlenecks (details in
Model section). (A) Rapid popu-
lation-size fluctuations. Wright–
Fisher simulations are shown for
10 random sequences of bottle-
necks with p ¼ 1023, q ¼ 1023,
N0 ¼ 105, and NB ¼ 104 (gray
lines). Each gray line is obtained
by first generating a random se-

quence of bottlenecks and then averaging over an ensemble of 1000 gene genealogies. The red line shows the covariance averaged over demographic
histories. The dashed line shows the result of the effective population-size approximation (Equation 2). (B) Same as in A, but for the case of severe
reductions of population size during bottlenecks. Wright–Fisher simulations are shown for 15 randomly generated sequences of bottlenecks, with
parameters p ¼ 1025, q ¼ 2 · 1022, N0 ¼ 106, and NB ¼ 5 · 102. Averages are over 100 gene genealogies for each demographic history.
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dashed lines. In Figure 1A we observe good agreement be-
tween Equation 2 and the average covariance of the times to
the MRCA obtained from computer simulations of the
model. However, in Figure 1B, Equation 2 agrees with the
simulated covariance only for short genetic distances. For
large genetic distances, by contrast, Figure 1B shows that
the covariance decreases much more slowly than expected
according to Equation 2. Thus, the results shown in Figure
1B imply long-range association between two loci.

The examples shown in Figure 1 raise many questions.
What are the conditions for the effective population-size
approximation to be valid in the multilocus case? Why does
it fail when these conditions are not met? How significant
are deviations of the exact result from the effective popula-
tion-size approximation? Why does long-range association
between two loci appear in some cases? How large are fluc-
tuations around the covariance of the coalescent times, av-
eraged over an ensemble of gene genealogies and over
different demographic histories? What is the significance
of the fluctuations around such averages for data analysis?

The aim of this article is to provide answers to the above
questions by computing the covariance of the times to the
MRCA for a pair of chromosomes under a model of recurrent
bottlenecks introduced below in theModel section. Our anal-
ysis enables us to qualitatively and quantitatively determine
the effects of fluctuating population size on the two-locus
statistics in terms of the timescales of population-size fluc-
tuations, of coalescence, and of recombination. Using both
analytical (Covariance of the Times to the MRCA) and numer-
ical approaches (Comparison of the Coalescent Calculations to
the Wright–Fisher Simulations), we estimate the range of val-
idity of the effective population-size approximation for the
two-locus case. We find that the effective population-size ap-
proximation inevitably fails for large recombination rates: the
failure is sometimes minor (as in the case shown in Figure
1A) and sometimes significant (as in the case shown in Figure
1B). By taking different limits of the parameters of the model,
we provide both a qualitative and a quantitative understand-
ing of how the effective population-size approximation may
fail in predicting the long-range association between two
loci. We demonstrate in The Effect of Recurrent Bottlenecks
upon s2

d that the long-range association has a surprisingly
small effect upon s2

d. In the Discussion we review our results.
In particular, in the limit where bottlenecks correspond to
severe reductions of population size during bottlenecks, we
show that gene genealogies in our model can be described in
terms of the so-called Xi coalescent (Schweinsberg 2000;
Möhle and Sagitov 2001; Sagitov 2003), which allows for
simultaneous multiple coalescent events (called multiple
mergers below).

In summary we describe in this article how sustained
population-size variations in the form of sequences of
bottlenecks influence two-locus patterns of genetic varia-
tion. We conclude this Introduction by briefly commenting
on related models. The effect of recurrent bottlenecks on
single-locus statistics was investigated by Sjödin et al.

(2005) and also by Eriksson et al. (2010). The model in-
troduced by Sargsyan and Wakeley (2008) contains a recur-
rent bottleneck model for a single locus as a special case.
Sargsyan and Wakeley (2008) show under which conditions
single-locus gene genealogies in their model can be approx-
imated by either Kingman’s coalescent or the Xi coalescent.
Eldon and Wakeley (2008), finally, have analyzed two-locus
gene genealogies under a population model allowing for
skewed reproduction. We discuss the connection between
the results of Eldon and Wakeley (2008) and our results
in the Discussion (see Equation 14).

Model

Using a Wright–Fisher model of a population of gametes, we
trace the ancestry of two loci on a pair of gametes backward
in time, until the MRCA of both loci is found. In each gen-
eration t we perform two steps. In the first step, each gam-
ete is independently subjected to recombination such that,
with probability r, the two loci segregate onto two different
gametes (corresponding to different parents). We assume
that r is approximately proportional to the physical distance
between the given loci (see McPeek and Speed 1995 for
a review of the general relation between recombination rate
and physical distance). Because of this step, the ancestors of
the original loci may be spread over up to four different
gametes in any given generation in the past (if recombina-
tion leads to a gamete where neither locus is ancestral to the
original sample, that gamete is dropped from further con-
sideration). In the second step, the parent of each gamete is
chosen randomly from the gametes in the parental genera-
tion. Whenever a pair of gametes have the same parent, the
ancestries of these gametes are the same, and the number of
gametes to be traced is reduced.

To investigate the effect of population-size fluctuations
on genetic variation, we consider a model of recurrent
bottlenecks in which the population size can take one of two
values, N0 or NB. Here NB denotes the population size in the
bottlenecks, and N0 stands for the population size between
bottlenecks. We write NB = xN0, with 0 , x , 1. The prob-
ability of changing the population size, going one generation
back in time, depends on the population size at the current
time. The switching probabilities are denoted by p and q
when the current population sizes are N0 and NB, respec-
tively. Hence, the expected durations of the high and the low
population-size phases are 1/p and 1/q generations, respec-
tively. The population size in the first generation is taken to
be N0. For a single locus, as mentioned above, such a model
has been investigated by Sjödin et al. (2005) and Eriksson
et al. (2010); see also Sargsyan and Wakeley (2008).

Figure 2, A and B, illustrates population-size fluctuations
in this recurrent bottleneck model. In Figure 2, C and D,
examples of gene genealogies of two loci (called a and b)
in a sample of two chromosomes are shown. In Figure 2, C
and D, generations with low population size (NB) are
marked yellow, and otherwise the population size is N0.
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Each chromosome is represented by a pair of lines (red and
blue lines correspond to loci a and b, respectively). In gen-
erations where a common ancestor is found for a pair of
ancestral lines or recombination between two loci occurs,
the chromosomes are represented by circles instead of lines.
MRCAs are shown as solid circles. In some cases recombina-
tion causes the ancestry of one locus to become associated
with a chromosome that lacks direct descendants in the
sample (open gray circles). The ancestries of such segments
of DNA are irrelevant to the gene genealogy of the sample,
and these ancestral lines are not traced further.

Covariance of the Times to the MRCA

Consider a sample of two chromosomes (denoted by i and j)
and two loci (called a and b). As in the Introduction, the
time to the MRCA at locus a is denoted by ta(ij) [and tb(ij) at
locus b]. Consider covD [ta(ij), tb(ij)], the covariance condi-
tional on a particular demographic history D. Taking the
average of the conditional covariance over random demo-
graphic histories, we haveD

covD  
h
taðijÞ; tbðijÞ

iE
¼
DD

taðijÞtbðijÞjD
E
2
D
taðijÞjD

ED
tbðijÞjD

EE
¼
D
taðijÞtbðijÞ

E
2
DD

taðijÞjD
E2E

:

(3)

Here h. . . |Di denotes the expectation conditional on a par-
ticular demographic history D. In the second equality we
have used that the expected times to the MRCA are the same
for both loci. Note that the averaged conditional covariance
is not the same as the unconditional covariance of the times
to the MRCA for the full process. The latter is given by

D
taðijÞtbðijÞ

E
2
D
taðijÞ

E2
[
D
covD

h
taðijÞ; tbðijÞ

iE
þ var

hD
taðijÞjD

Ei
:

(4)

We remark that biological data correspond to a particular
individual realization D. The additional term in Equation 4
reflects the variance over different demographic histories of
the average time to the MRCA at a single locus and is thus
irrelevant to analyzing the covariance of the times to the
MRCA in a particular empirical data set.

We now derive an approximate expression for hcovD[ta(ij), tb(ij)]i,
Equation 3. The method we employ requires the typical
timescales of coalescence, of population-size fluctuations,
and of recombination to be large. We require that

N0?1;  NB?1;  p>1;  q>1;  and r>1: (5)

The first two conditions allow us to employ the standard
coalescent approximation (Kingman 1982). The first four con-
ditions allow us to neglect events involving simultaneous
changes of population size and coalescence. Similarly, as a con-
sequence of combining the first two conditions with the fifth
one, we may omit events involving simultaneous coalescence
and recombination. Finally, combining conditions three to five
allows us to neglect simultaneous occurrences of population-
size changes and recombination. Assuming large population
sizes allows us to approximate the discrete generation index
t ¼ 0, 1, 2, . . . by a continuous-time variable t. As mentioned
in the Introduction, we choose the units of time such that t ¼
⌊tN0⌋. We denote the population size at time t by N(t).

Under the conditions summarized above, we find the
following expression for the term hhta(ij)|Dihtb(ij)|Dii [
hhta(ij)|Di2i occurring in Equation 3:

DD
taðijÞjD

E2E ¼ lBð2xlþ lB þ 3Þ þ xlðxlþ x þ 2Þ þ 2
ðlþ lB þ 1Þðlþ lB þ 2Þ :

(6)

This equation follows from Equation 20 in Eriksson et al.
(2010). The parameters l and lB in Equation 6 are given
by l ¼ pN0 and lB ¼ qNB.

Figure 2 (A and B) Two realizations of the pop-
ulation-size curve, N(t), backward in time (t ¼
0 denotes the present time). Initially, the pop-
ulation size is N0. Going backward in time, the
population size randomly jumps between two
values, N0 and NB, with transition rates pN0

(from N0 to NB) and qN0 (from NB to N0). (C
and D) Examples of ancestral histories of two
loci (blue and red open circles correspond to
two loci, called a and b) subject to genetic re-
combination in a sample of two chromosomes.
Times at which the population was subject to a
bottleneck are shaded yellow. Two joint circles
depict two loci in the same chromosome. The
numbers 1, . . . , 5 denote the possible states of
the system (they are explained in detail in Figure
3). Gray circles denote genetic material not an-
cestral to the sampled loci. Blue and red solid
circles indicate that the corresponding loci have

found their most recent common ancestor. Note that bottlenecks can host more than one coalescent event. In the case of severe reductions of
population size during bottlenecks, such multiple coalescences appear as simultaneous multiple mergers on the timescale of the gene genealogy. An
example is shown in D: an almost instantaneous transition from state 3 to state 5.
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To evaluate the remaining term in Equation 3, hta(ij)tb(ij)i,
we adapt the method described by Eriksson and Mehlig
(2004) for calculating the covariance of the times to the
MRCA at two loci. As can be seen in Figure 2, C and D, there
are only a small number of possible combinations of ances-
tral lines in gene genealogies of two loci for two chromo-
somes. Thus, we can write down a Markov process for how
states of the ancestral lines change along a gene genealogy.
The corresponding graph is shown in Figure 3, where the
vertices represent states (combinations of ancestral lines),
and the edges represent transitions between the states (the
transition rates are shown along the edges. The vertices
labeled by a prime correspond to states with population size
NB (bottlenecks). The expected value hta(ij)tb(ij)i is deter-
mined by a subgraph of the graph shown in Figure 3, con-
sisting of the vertices 1, 2, 3, 19, 29, and 39. Let M be
the corresponding 6 · 6 transition matrix. Its off-diagonal
elements Mmn, m 6¼ n, are given by the transition rates wmn.
The diagonal elements Mnn are equal to the negative sum
of the rates of all edges leaving node n in the graph,
Mnn ¼ 2

P
m 6¼nMmn. In terms of M we can write

D
taðijÞtbðijÞ

E
¼
Z N

0
dt1   t21u  e

M  t1v þ
Z N

0
dt1

Z N

t1
dt2  t1  t2   c eKðt22t1ÞQ  eM  t1v

(7)

(Eriksson and Mehlig 2004). The vectors u, v, and c and the
matrices Q and K in Equation 7 are given by

v ¼ ½ 1 0 0 0 0 0 �T ; u ¼ � 1 0 0 x21 0 0
�
;

c ¼ � 1 x21
�
;

Q ¼
�
0 2 2 0 0 0
0 0 0 0 2x21 2x21

�
;

K ¼
�
2 ðlþ 1Þ lBx21

l 2 ðlB þ 1Þx21

�
:

Here T denotes the transpose, while t1 ¼min(ta(ij), tb(ij)) and
t2 ¼ max(ta(ij), tb(ij)) are the times to the first and second
coalescent events, respectively. The first term in Equation 7
corresponds to a common MRCA of the loci a and b (i.e., to
a transition from state 1 or 19 to state 5). The second term in
Equation 7 corresponds to a different MRCA (transition from
state 2 or 3 to state 4 or from state 29 or 39 to state 49,
followed by a transition to state 5). At the present time
the system is assumed to be in state 1, represented by the
vector v. The elements of the vector u correspond to the
transition rates from the states 1, 2, 3, 19, 29, and 39 to 5.
The two rows in the matrix Q contain the transition rates
from 1, 2, 3 and 19, 29, 39 to 4 and 49, respectively. The
matrix K contains the transition rates between states 4
and 49, whereas the vector c contains the coalescent rates
in each population-size regime. Both M and K have negative
real eigenvalues. Hence, the integrals in Equation 7 can be
evaluated in terms of matrix inverses (Eriksson and Mehlig
2004). We find

D
taðijÞtbðijÞ

E
¼ 2uð2MÞ23   v

þ 2cð2KÞ22
n
ð2KÞ21QþQð2MÞ21

o
ð2MÞ22   v:

(8)

Combining Equations 6 and 8 yields

D
covD

h
taðijÞ; tbðijÞ

iE
¼ R3C3 þ R2C2 þ RC1 þ C0

R4D4 þ R3D3 þ R2D2 þ RD1 þ D0
:

(9)

The coefficients C0, . . . , C3, and D0, . . . ,D4, are functions of
the parameters x, l, and lB. They are given in Appendix A.

We now discuss three special cases of this result. First, we
consider the case when the time to the first bottleneck is
much longer than the expected time to the MRCA in the
large population-size regime. Second, we discuss the case
when the population-size fluctuations are much faster than
all other processes. Third, we analyze the case of severe
reductions of population size during bottlenecks.

In the first case one has p>N21
0 . This implies that the

time to the first bottleneck is much larger than the time to
the MRCA, and as a consequence all bottlenecks are irrele-
vant to the mean covariance of the times to the MRCA.
Formally, this case is obtained from Equation 9 by taking
the limit l / 0. In this limit we obtain Equation 2 with
xeff = 1, which is the expression that is valid in the case of
constant population size.

The second case is described by the conditions p?N21
0

and q?N21
B . Formally, this case corresponds to taking the

limit l / N, and lB / N in Equation 9, in such a way that
the ratio l/lB is kept constant. In this limit we obtain

Figure 3 (Left) Graph showing the states and transition rates determin-
ing the ancestral history of two loci in a sample of two chromosomes,
under the population model introduced in the Model section. States
where the population is in a bottleneck are marked with a prime. The
final state is denoted by 5 (in this state it does not matter whether the
population is in a bottleneck or not). Arrows indicate transitions between
states. The corresponding transition rates from state n to m, wmn, are
displayed next to the lines. For notational convenience we have used the
abbreviations x ¼ NB/N0, l ¼ pN0, and l9 ¼ qN0. While x and l are
referred to in the main text, l9 is not. (Right) Table of possible states of
the system. The two loci are denoted by a and b, and the corresponding
chromosomes by i and j. Open circles denote genetic material not ances-
tral to sampled loci, and solid circles denote the MRCA.
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Equation 2, with xeff = (x + lB/l)/(1 + lB/l). This dem-
onstrates that in this limit the resulting two-locus gene ge-
nealogies are described by the effective population-size
approximation.

Third is the case of severe reductions of population size
during bottlenecks, described by the condition NB > N0.
Such demographic histories can occur during range expan-
sions, where small groups of animals repeatedly colonize
new areas [as mentioned in the Introduction, examples
are the human out-of-Africa scenario (Ramachandran et al.
2005; Liu et al. 2006), the accompanying expansion of the
parasite P. falciparum causing severe malaria (Tanabe et al.
2010), and the recolonization by the marine snail L. saxatilis
of Sweden’s west coast archipelago (Johannesson 2003)]. This
case can be treated analytically by taking the limit x / 0 in
Equation 9, keeping l and lB fixed. In this limit we find

�
covD½taðijÞ; tbðijÞ�

	
� R2A2 þ RA1 þ A0

R2B2 þ RB1 þ B0
: (10)

Here the coefficients A0, A1, A2, B0, B1, and B2 are functions
of the parameters l and lB. They are given in Appendix A.
Note that Equation 10 reaches a plateau for large values
of R:
D
covD

h
taðijÞ; tbðijÞ

iE
� 2lBð1þ lBÞl

ð1þ lB þ lÞð2þ lB þ lÞð9ð2þ lÞ þ lBð27þ 8lþ lBð10þ lB þ lÞÞÞ:
(11)

This expression implies long-range association between the
two loci.

Comparison of the Coalescent Calculations to the
Wright–Fisher Simulations

To further illustrate the role of the relevant timescales of
genetic drift and recombination in shaping genetic associa-
tion between two loci, we compare the full coalescent result,
Equation 9, and the different limiting cases considered in
Covariance of the Times to the MRCA, to the average covari-
ance calculated from the Wright–Fisher simulations. These
comparisons are shown in Figure 4.

The parameters used in Figure 4A correspond to rapid
population-size fluctuations (the second case described in
the previous section). As can be seen in Figure 4A, the agree-
ment between the numerical result (red line) and the ap-
proximation (Equation 2) (dashed line) is good for a wide
range of recombination rates. A small disagreement appears
at large values of R, more precisely at R � 100 for the
parameters chosen in Figure 4A. This discrepancy is
expected, as at such large recombination rates the popula-
tion-size fluctuations are no longer rapid compared to the
process of recombination. But the corresponding deviations
from the effective population-size approximation are very
small. In summary, in the case of rapid population-size
fluctuations, the results of the Wright–Fisher simulations
are well approximated by the effective population-size
approximation.

Figure 4B shows results for parameters corresponding to
the third case analyzed in the previous section, the case of
severe reductions of population size during bottlenecks. As
we noted already in the Introduction, this case exhibits long-
range association (between the two loci in question) that
cannot be accurately described by the effective population-
size approximation (Equation 2). The average covariance
curve obtained by computer simulations (Figure 4B) can
be divided into three regions in which the curve behaves
qualitatively differently. First, at very small recombination
rates, for the parameters chosen in Figure 4B, the covariance
can be approximated using the effective population-size
approximation. This is expected since in this region the
population-size fluctuations are fast compared to the process
of recombination. Second, the effective population-size ap-
proximation breaks down when R � pN0 = 10 for the
parameters chosen in Figure 4B. At recombination rates
larger than this value, such that recombination occurs fre-
quently between bottlenecks but rarely within, we find long-
range association between the two loci. Hence, in this region
the effective population-size approximation fails to describe
the covariance of the times to the MRCA. However, Equation
10 agrees well with the resulting covariance in this region.
We show in Appendix B that Equation 10 can be derived
using the Xi-coalescent approximation, which allows for

Figure 4 Covariance of the
times to the MRCA of two loci
averaged over random popula-
tion-size histories. (A) The red
line shows the average covari-
ance corresponding to p ¼
1023, q ¼ 1023, N0 ¼ 105, and
NB ¼ 104, determined numeri-
cally from Wright–Fisher simula-
tions (same as in Figure 1A).
The solid line shows our exact re-
sult (Equation 9), and the dashed
line shows the effective popula-

tion-size approximation (Equation 2). The numerical result deviates from the effective population-size approximation when the recombination timescale
is the smallest (R. 100). (B) The same as in A, but for the case of severe reductions of population size during bottlenecks: p ¼ 1025, q ¼ 2 · 1022, N0 ¼
106, and NB ¼ 5 · 102. The dashed-dotted line denotes the result of Equation 10, corresponding to the Xi-coalescent approximation.
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simultaneous multiple coalescences of lines. Third, the agree-
ment between Equation 10 and the full coalescent result
breaks down when recombination events in bottlenecks can
no longer be ignored (i.e., when R � qN0, where qN0 is the
rate of leaving a bottleneck). For still larger recombination
rates, only the full coalescent result agrees with the Wright–
Fisher simulations. The slight deviations between the Wright–
Fisher simulations and Equation 9, visible in Figure 4B at
large values of R, are discussed in the concluding section.

The Effect of Recurrent Bottlenecks upon s2
d

In the previous sections we showed how sustained popula-
tion-size fluctuations in the form of recurrent bottlenecks
can give rise to long-range association between loci,
measured by the covariance of the times to the MRCA,
Equation 3. An important question is how such population-
size fluctuations affect common measures of linkage dis-
equilibrium such as, for example, r̂2, and its closely related
measure, s2

d, on the basis of a sample of n chromosomes
(Ohta and Kimura 1971; McVean 2002). In this section,
we discuss the effect of recurrent bottlenecks upon s2

d in
the case n ? 1. In this case, Equation 9 in McVean (2002)
becomes

s2
d ¼

*
covD

h
taðijÞ; tbðijÞ

i
2 2covD

h
taðijÞ; tbðikÞ

i
þ covD

h
taðijÞ; tbðklÞ

i
D
taðijÞjD

E2þcovD
h
taðijÞ; tbðklÞ

i
+
:

(12)

As before, a and b denote two loci, and i, j, k, and l denote
four different chromosomes in the sample. The main prop-
erties of this measure are determined by how the numerator
depends on the recombination rate (McVean 2002). To sim-
plify the analysis, we therefore focus on the expected value
of the numerator:
D
covD

h
taðijÞ; tbðijÞ

iE
2 2
D
covD

h
taðijÞ; tbðikÞ

iE
þ
D
covD

h
taðijÞ; tbðklÞ

iE
: (13)

The mean of the conditional covariance hcovD[ta(ij), tb(ij)]i is
given by Equation 9. The covariances hcovD[ta(ij), tb(ik)]i and
hcovD[ta(ij), tb(kl)]i can be calculated in the same way that
Equation 9 was obtained, but starting from different initial
conditions (McVean 2002; Eriksson and Mehlig 2004). In
our Markov representation, this corresponds to taking v =
[0 1 0 0 0 0]T and v = [0 0 1 0 0 0]T, respectively, in
Equation 7.

Figure 5 shows how the covariances hcovD[ta(ij), tb(ij)]i
(blue lines), hcovD[ta(ij), tb(ik)]i (red lines), and hcovD[ta(ij),
tb(kl)]i (green lines) depend on R. Figure 5 demonstrates
that when R is small, each covariance is well approximated
by the corresponding effective population-size approxima-
tion. In the case shown in Figure 5B, all three covariances
exhibit a plateau at the same level, in approximately the
same range of R values. This demonstrates that all three
covariances show long-range association between loci. But,
in the linear combination (Equation 13) these enhance-
ments cancel. We have checked that this conclusion also
holds for s2

d given by Equation 12. In Figure 6 we show
for two random demographic histories how the covariances
covD[ta(ij), tb(ij)] (blue lines), covD[ta(ij), tb(ik)] (red lines),
and covD[ta(ij), tb(kl)] (green lines) depend on R. Figure 6, A
and B, shows results of two different demographic histories,
but in both cases the parameters p, q, N0, and NB are chosen
to correspond to the case shown in Figures 4B and 5B. In
both examples in Figure 6, a plateau appears in all three
covariances of the times to the MRCA, as expected. These
plateaus cancel in the same way as the three contributions to
Equation 13.

Discussion

The aim of this article was to provide an understanding of
how sustained population-size fluctuations influence the
degree of association between two loci. Our conclusions are
based on both analytical and numerical calculations, which
we find to agree well. Using the population-size model
depicted in Figure 2A, and assuming Wright–Fisher dynam-
ics, we have derived a coalescent result for the covariance of
the times to the MRCA of two loci, Equation 9. We have
discussed three particular cases of our result. First, if the
expected times to the MRCA are much smaller than the
expected time to the most recent bottleneck, our model
reduces to a constant population-size model with effective
population size equal to the population size at the present
time. Second, if the population size fluctuates much faster
than the remaining two processes (coalescence and recom-
bination), the effective population-size approximation works
well with an effective population size given by Equation 1.
Third, if the population size is severely reduced during bot-
tlenecks, the results of our computer simulations depend
on the relation between the timescales of recombination
and of population-size changes. For the parameters chosen

Figure 5 Average covariances hcovD[ta(ij), tb(ij)]i (blue
lines), hcovD[ta(ij), tb(ik)]i (red lines), and hcovD[ta(ij), tb(kl)]i
(green lines). (A and B) Values of the parameters p, q,
N0, and NB are the same as in Figures 1A and 4A. The
parameters in B are the same as in Figures 1B and 4B.
Exact results are shown as solid lines, whereas results
obtained within the effective population-size approxima-
tion are shown as dashed lines.
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in Figure 4B, we find that when recombination is the slowest
process, that is, at very small values of recombination rates,
the effective population-size approximation works well. By
contrast, when recombination is frequent between bottle-
necks but rare within bottlenecks, the effective population-
size approximation fails to describe the covariance of the
times to the MRCA. In this region the covariance is not only
enhanced with respect to the result of the effective popula-
tion-size approximation, but also approximately independent
of R. In this case we say that pairs of distant loci exhibit long-
range association.

These conclusions rely on analyzing covariances averaged
over different demographic histories. This raises the question
of how typical such averages are. In other words, how large
are the fluctuations around the average? We observe that in
the case shown in Figure 1B the fluctuations around the mean
covariance are much higher than in the case shown in Figure
1A. However, in both cases shown, the averages represent the
qualitative behavior of individual realizations.

The coalescent approximations employed in this article
assume large population sizes. While we generally find very
good agreement between the coalescent approximations
and the Wright–Fisher simulations, we observe some devia-
tions, in particular for large recombination rates in the case
shown in Figure 1B. As expected, when we increase the
parameter N0 in our computer simulations, the deviations
become smaller (results not shown).

In the remainder of this section, we discuss our result
(Equation 10) in terms of the so-called Xi-coalescent
approximation. Xi coalescents form a broad family of gene-
genealogical models allowing for simultaneous multiple
mergers. The Kingman coalescent is a special case, allowing
only for pairwise mergers. See Schweinsberg (2000) and
Möhle and Sagitov (2001) for detailed descriptions of the
family of Xi coalescents. We show in Appendix B how a Mar-
kov process with simultaneous multiple mergers is obtained
in the case of severe reductions of population size during
bottlenecks and compute the corresponding transition rates.
This not only gives an alternative way of deriving Equation
10, it also provides insight into why a plateau forms. It turns
out that the plateau arises as a direct consequence of simul-
taneous multiple mergers. This implies that long-range as-
sociations between two loci are also expected in other
situations where simultaneous multiple mergers are impor-
tant: Durrett and Schweinsberg (2004) have studied popu-
lations subject to selective sweeps, and Eldon and Wakeley

(2008) have demonstrated the importance of multiple merg-
ers in shaping s2

d in populations with skewed offspring
distributions.

We note that there is a particular case where we can find
a precise correspondence between the model of Eldon and
Wakeley (2008) and the model analyzed in this article. This
is the case of extreme reproductive success where one par-
ent alone gives rise to the next generation. This case is
obtained by setting v ¼ 1 in the notation of Eldon and
Wakeley (2008). In our model this corresponds to a popula-
tion subject to one severe and infinitely strong bottleneck,
that is, to the limit x / 0 and lB / 0. In this limit we find
(averaging numerator and denominator in Equation 12
separately)

s2
d � 10þ Rþ 2l

22þ R2 þ 16lþ 2l2 þ 13Rþ 3lR
: (14)

This result is equivalent to the equation for Y2 on p. 1522 in
Eldon and Wakeley (2008), identifying s2

d ¼ Y2, l ¼ f, R ¼
2h, and setting v ¼ 1, a ¼ 1, and b ¼ 1 in the notation
of Eldon and Wakeley (2008). We remark that for a popula-
tion subject to a bottleneck, s2

d was calculated explicitly by
Eriksson and Mehlig (2004). Eriksson et al. (2009) discuss
corresponding results within the sequential Markov coales-
cent approximation (McVean and Cardin 2005; Marjoram
and Wall 2006).

We conclude with the observation that s2
d, which is a

function of the covariances covD[ta(ij), tb(ij)], covD[ta(ij),
tb(ik)], and covD[ta(ij), tb(kl)], fails to show the plateaus ob-
served in these covariances in Figure 6. This was observed
already in Eriksson and Mehlig (2004) for the case of a sin-
gle, recent bottleneck. Because of the close link between s2

d
and r̂2, a common measure of linkage disequilibrium
(McVean 2002), this casts doubt on the suitability of such
measures for characterizing the degree of association be-
tween two loci [another example is the measure HR2 (Sabatti
and Risch 2002)], in populations that may have been subject
to recent population bottlenecks and range expansions. A
more accurate approach, especially for detecting long-range
association between two loci, may be to estimate the covari-
ance of the times to the MRCA directly. For example, simu-
lations show that the covariance of the number of mutations
in small windows (e.g., a few hundred nucleotides long)
can be used to estimate the covariance of the times to the
MRCA (Eriksson and Mehlig 2004). However, it remains to

Figure 6 Covariances covD[ta(ij), tb(ij)] (blue lines), covD[ta(ij),
tb(ik)] (red lines), and covD[ta(ij), tb(kl)] (green lines) for two
random realizations of population-size history. In both A
and B the parameters are p ¼ 1024, q ¼ 0.2, N0 ¼ 105,
and NB ¼ 50, resulting in the same values of x, l, and lB, as
in Figures 4B and 5B.
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investigate which observables are most suitable for detecting
long-range dependencies in the underlying gene genealogies
for more general demographic histories.
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Appendix A: Coefficients Appearing in Equations 9 and 10

In this Appendix we list the coefficients appearing in Equations 9 and 10.
The coefficients in Equation 9 are

C0 ¼ 36x5ðlB þ lþ 3ÞðlB þ lþ 6ÞðlBðlBðlB þ 2xlþ lþ 4Þ
þ lðxððx þ 2Þlþ x þ 6Þ þ 1Þ þ 5Þ þ xlðxðlþ 1Þðlþ 3Þ þ 2Þ þ 2Þ;

C1 ¼ 2x5ðlBðlBðlBðlBðlB þ 3xðlþ 9Þ þ 2lþ 13Þ þ ð3xðx þ 2Þ þ 1Þl2
þ ðxð55x þ 76Þ þ 29Þlþ 252x þ 59Þ þ x3lðlþ 1Þðlþ 27Þ
þ 2x2lðlð3lþ 58Þ þ 213Þ þ xðlðlð3lþ 80Þ þ 370Þ þ 801Þ þ 2lð8lþ 55Þ þ 119Þ
þ x3lðlþ 1Þðlþ 21Þð2lþ 9Þ þ x2lðlðlð3lþ 76Þ þ 452Þ þ 903Þ
þ xðlðlð31lþ 226Þ þ 647Þ þ 1044Þ þ ð3lþ 4Þð5lþ 27ÞÞ
þ xðlðx2ðlþ 1Þðlþ 3Þðlþ 6Þðlþ 15Þ þ xð5lþ 18Þðlð3lþ 16Þ þ 33Þ
þ 44lþ 270Þ þ 468Þ þ 18ðlþ 2ÞÞ;

C2 ¼ x5ðlBðlBðxlBð3lB þ 2xð4lþ 9Þ þ 4ðlþ 7ÞÞ þ xðx2lð7lþ 39Þ
þ 10xðlðlþ 7Þ þ 9Þ þ lðlþ 25Þ þ 89Þ þ 4lÞ
þ xð2x3lðlþ 1Þðlþ 9Þ þ x2lðlð8lþ 65Þ þ 129Þ
þ 2xðlþ 2Þ2ðlþ 18Þ þ lð9lþ 55Þ þ 116Þ þ 4lÞ
þ xðxðlð2x2ðlþ 1Þðlþ 3Þðlþ 6Þ þ xðlðlðlþ 22Þ þ 83Þ þ 102Þ
þ 4l2 þ 42lþ 96Þ þ 72Þ þ 26ðlþ 2ÞÞÞ;

C3 ¼ x7ðlB þ lþ 2ÞðlBðlB þ 2xlþ 3Þ þ xlðxlþ x þ 2Þ þ 2Þ;

(A1)

D0 ¼ 36x5ðlB þ lþ 1Þ2ðlB þ lþ 2ÞðlB þ lþ 3ÞðlB þ lþ 6Þ;
D1 ¼ 2x5ðlB þ lþ 1ÞðlB þ lþ 2ÞðlBðlBð13lB þ 13ðx þ 2Þlþ 27x þ 130Þ

þ 13ð2x þ 1Þl2 þ 157ðx þ 1Þlþ 9ð19x þ 39ÞÞ
þ 13xðlþ 1Þðlþ 3Þðlþ 6Þ þ 9ðlþ 2Þð3lþ 13ÞÞ;

D2 ¼ x5ðlB þ lþ 1ÞðlB þ lþ 2ÞðlBðlBð2lB þ 4xlþ 39x þ 2lþ 20Þ
þ xð2xðlðlþ 8Þ þ 9Þ þ 4l2 þ 86lþ 247Þ þ 16lþ 54Þ
þ 2x2ðlþ 1Þðlþ 3Þðlþ 6Þ þ 13xðlþ 2Þð3lþ 13Þ þ 18ðlþ 2ÞÞ;

D3 ¼ x6ðlB þ lþ 1ÞðlB þ lþ 2Þ2ð3lB þ xð3lþ 13Þ þ 13Þ;
D4 ¼ x7ðlB þ lþ 1ÞðlB þ lþ 2Þ2:

(A2)

The coefficients in Equation 10 are

A0 ¼ 18ðlB þ 1ÞðlB þ lþ 3ÞðlB þ lþ 6ÞðlBðlB þ lþ 3Þ þ 2Þ;
A1 ¼ ðlB þ 1Þ�lB�lBðl2B þ 2ðlþ 6ÞlB þ lðlþ 27Þ þ 47Þ þ lð15lþ 83Þ þ 72

�þ 18ðlþ 2Þ�;
A2 ¼ 2lBðlB þ 1Þl;
B0 ¼ 18ðlB þ lþ 1Þ2ðlB þ lþ 2ÞðlB þ lþ 3ÞðlB þ lþ 6Þ;
B1 ¼ ðlB þ lþ 1ÞðlB þ lþ 2ÞðlBð13lBðlB þ 2ðlþ 5ÞÞ þ lð13lþ 157Þ þ 351Þ þ 9ðlþ 2Þð3lþ 13ÞÞ;
B2 ¼ ðlB þ lþ 1ÞðlB þ lþ 2ÞðlBðlBðlB þ lþ 10Þ þ 8lþ 27Þ þ 9ðlþ 2ÞÞ:

(A3)

Appendix B: Severe Reductions of Population Size During Bottlenecks: Connection to the Xi coalescent

In this Appendix, we turn our attention to the case of severe reductions of population size during bottlenecks, the third case
discussed in Covariance of the Times to the MRCA. Formally, we describe this case by the following limit: N0 / N, NB / N,
NB/N0 / 0, while l = pN0 and lB = qNB are kept constant. This limit implies the following. First, it is possible that
a bottleneck may host more than one coalescence. How frequently this occurs is determined by the rates l, and lB. We
remark that the probability for two lines to coalesce between two successive bottlenecks is (1 + l)21 and the probability for
two lines to coalesce within a single bottleneck is (1 + lB)21. Second, this limit implies that the duration of a single
bottleneck is negligible compared to the time between two successive bottlenecks, because in this limit one has p/q / 0.
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This not only allows for neglecting the durations of bottlenecks, but also implies that possible coalescences within a single
bottleneck can be considered as a single simultaneous multiple merger. This allows for employing the Xi-coalescent approx-
imation in this case (as was also suggested by Birkner et al. 2009). The corresponding coalescent rates for our Xi-coalescent
approximation show, in terms of the parameters l and lB, how important multiple mergers are for shaping the resulting gene
genealogies in this case.

In what follows we demonstrate how the Xi-coalescent approximation yields Equation 10 for the mean covariance
hcovD[ta(ij), tb(ij)]i. Our method for calculating the term hta(ij)tb(ij)i is described in the main text (Covariance of the Times to the
MRCA). But in the Xi-coalescent approximation employed here, the Markov process differs from the one described in
Covariance of the Times to the MRCA. The corresponding graph is shown in Figure B1. It consists of the same five states
1, . . . , 5 shown in Figure 3, but in Figure B1 the states in bottlenecks are omitted, since the time spent in a bottleneck is short
compared to the time between two successive bottlenecks.

The remainder of this Appendix is organized as follows. First, we show how the transition rates wmn are derived using the
Xi-coalescent approximation. Second, using the Xi-coalescent transition rates we demonstrate how to derive Equation 10.

Formulas for wmn Under the Xi-Coalescent Approximation

Assume that l ancestral lines enter a bottleneck, and that b lines leave this bottleneck. In our Xi-coalescent approximation, we
assume that the l 2 b coalescent events in the bottleneck happen instantaneously.

In what follows we derive the coalescent rates for our Xi-coalescent approximation. Let l lines be partitioned into b families
(b # l), such that ki families are of sizes i = 1, . . . , l. By construction, the following conditions must be satisfied:

l ¼
Xl
i¼1

iki; b ¼
Xl
i¼1

ki     : (B1)

In our model, the collision rate ffl;k1;...;klg of l lines colliding into a particular partition {l; k1, . . . , kl}, such that Equation B1 is
satisfied, is given by

ffl;k1;...;klg ¼ 1fb¼l21g þ lJfl;k1;...;klg: (B2)

Here the first term stands for the Kingman coalescent outside bottlenecks, and the second term corresponds to the
contribution from (multiple) coalescences during bottlenecks (multiple mergers are obtained in the case b , l21). Bottle-
necks occur at a rate l. Given the probability Clb that during a bottleneck l lines collide into b lines, Jfl;k1;...;klg can be
calculated according to

Jfl;k1;...;klg ¼ Clbpfl;k1;...;klg   ; (B3)

where

Clb ¼
lB


b
2

�
þ lB

Yl
i¼bþ1



i
2

�



i
2

�
þ lB

; (B4)

and pfl;k1;...;klg is the probability of observing a particular partition {l; k1, . . . , kl} of l lines. As shown by Kingman (1982), it is
given by

pfl;k1;...;klg ¼
ðl2 bÞ!b!ðb2 1Þ!

l!ðl2 1Þ!
Yl
i¼1

ði!Þki : (B5)

The rate ffl;k1;...;klg appearing in Equation B2 is conditional on a particular partition. Thus the total collision rate of l lines
into any of partitions of type {l; k1, . . . , kl} is given by

ftot
fl;k1;...;klg ¼



l
2

�
1fb¼l21g þ lClbpfl;k1;...;klgSfl;k1;...;klg: (B6)

Here
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Sfl;k1;...;klg ¼
l!Ql

i¼1ði!Þkiki!
(B7)

denotes the number of possible ways of collisions of l lines into a partition {l; k1, . . . , kl}, such that restrictions in Equation B1 hold.
The graph corresponding to the Markov process in the limit described in this Appendix consists of five states 1, . . . , 5 (see

Figure B1). We now show how the corresponding transition rates between the states 1, . . . , 5 can be derived from Equation B6.
We observe that a collision of type {2; 0, 1} describes a transition from either state 1 or 4 to 5. It follows that

w51 ¼ w54 ¼ ftot
f2;0;1g: (B8)

State 2 consists of three lines. A collision of one particular pair of lines, among the three lines, results in a transition from 2 to
1, while a collision of either of the two remaining pairs of lines results in a transition from 2 to 4. Because a collision of a pair
of lines among three lines is of type {3; 1, 1, 0}, we obtain the following transition rates:

w12 ¼ 1
3
ftot
f3;1;1;0g; w42 ¼ 2

3
ftot
f3;1;1;0g: (B9)

A collision of all three lines of state 2 leads to a transition from state 2 to 5 at the rate

w52 ¼ ftot
f3;0;0;1g: (B10)

Now consider transitions from state 3, consisting of four ancestral lines. We analyze first a collision of a single pair of lines,
that is, a collision of type {4; 2, 1, 0, 0}. There are in total six different ways to pair the four lines entering the bottleneck:
four choices describe a transition from state 3 to 2, and the remaining two lead to a transition from 3 to 4. Thus, we have

w23 ¼ 2
3
ftot
f4;2;1;0;0g: (B11)

Further, there are three possibilities for simultaneous collisions of two pairs of lines. Two possibilities result in a transition
from 3 to 1, and one leads to a transition from 3 to 5 (see Figure 2D). It is also possible to obtain a collision of three lines, in
which case the transition from 3 to 4 is obtained. Further, a collision of all four lines results in a transition from 3 to 5. Thus,
we obtain the following transition rates:

w13 ¼ 2
3
ftot
f4;0;2;0;0g; w43 ¼ 1

3
ftot
f4;2;1;0;0g þ ftot

f4;1;0;1;0g; w53 ¼ 1
3
ftot
f4;0;2;0;0g þ ftot

f4;0;0;0;1g: (B12)

The remaining nonvanishing rates, w21 = R, and w32 = R/2, describe recombination transitions from state 1 to 2 and from
2 to 3. This shows how the transition rates wmn are expressed in terms of the collision rates of the Xi coalescent. Explicit
formulas for the rates wmn in terms of l and lB are given in Figure B1.

Obtaining Equation 10 Under the Xi-Coalescent Approximation

Given the rates wmn, the mean covariance hcovD[ta(ij), tb(ij)]i is computed from

D
taðijÞtbðijÞ

E
¼
Z N

0
dt1   t21   ue

M  t1v þ
Z N

0
dt1

Z N

t1
dt2   t1t2   c eKðt22t1ÞQ eM  t1v: (B13)

Figure B1 (Left) Graph showing the states and possible
transitions corresponding to the limit of severe reductions
of population size during bottlenecks. The states 1, . . . , 5
are explained in Figure 3. The three red arrows in this
graph correspond to simultaneous multiple mergers.
(Right) Transition rates, wmn, from state n to m, in terms
of the parameters l ¼ pN0 and lB ¼ qNB.
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This equation corresponds to Equation 7 given in Covariance of the Times to the MRCA. But the dimensions of the matrices
and vectors in Equation B13 differ from those in Equation 7 because states in the bottleneck are omitted. Here M is a 3 · 3
matrix. Its off-diagonal elements correspond to the rates wmn:

M12 ¼ 1þ llBðð1þ lBÞð3þ lBÞÞ21;

M13 ¼ 4llBðð1þ lBÞð3þ lBÞð6þ lBÞÞ21;

M21 ¼ 2M32 ¼ R;

M23 ¼ 4þ 4llBðð3þ lBÞð6þ lBÞÞ21: (B14)

The diagonal elements of M are given by Mnn ¼ 2
P

m 6¼nMmn for n = 1, 2, 3. The remaining quantities appearing in Equation
B13 are K = 21, c = 1, v = [1, 0, 0]T, and

u ¼

2
64

1þ lð1þ lBÞ21

3lðð1þ lBÞð3þ lBÞÞ21

2lð9þ lBÞðð1þ lBÞð3þ lBÞð6þ lBÞÞ21

3
75
T

;

Q ¼

2
64

0

2
�
1þ llBðð1þ lBÞð3þ lBÞÞ21


2
�
1þ llBð7þ lBÞðð1þ lBÞð3þ lBÞð6þ lBÞÞ21


3
75
T

: (B15)

Combining Equation B13 with Equations B14 and B15 results in Equation 10. This shows that the covariance of the times to
the MRCA in the case of severe reductions of population size can be derived within the Xi-coalescent approximation.
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