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ABSTRACT Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because
changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little
concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and
phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have
been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for
many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial wine-
making. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic
networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their
consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can
be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to
modify transcription networks to achieve desirable outcomes.

SACCHAROMYCES cerevisiae is the yeast species most
widely used in the fermentation industry (oenology, bread

making, and brewing). Most genetic studies of S. cerevisiae
have been carried out using a handful of strains (Mortimer
et al. 1957; Mortimer and Johnston 1986) that were selected
for their ease of use under laboratory conditions.

By contrast, industrial yeast strains are geno- and
phenotypically highly diverse (Frezier and Dubourdieu
1992; Schütz and Gafner1994; Rossouw et al. 2009), having
adapted to the ecological niches provided by industrial or
semi-industrial environments. In the wine industry a large
number of such strains are commercially produced, most of
which were originally isolated from spontaneous wine fer-
mentations (Johnston et al. 2000). Although the original or
natural ecological niche of S. cerevisiae is subject to conjec-
ture, industrial environments have undoubtedly sculpted

the recent evolution of the strains currently used in industry,
offering an excellent opportunity for comparative studies to
investigate evolutionary relationships and the molecular
mechanisms underlying phenotypic differentiation.

Wine yeast strains were primarily selected for their ability
to completely ferment (to ferment to dryness) very high
levels (.200 g/liter) of sugars in a largely anaerobic envi-
ronment. Beyond this fundamental trait, strains have been
selected for specific and diverse purposes, for example to
support the production of different styles of wine or to pro-
duce different aroma profiles. These strains therefore repre-
sent a wide range of phenotypic traits, which is a reflection
of significant genetic diversity.

A number of studies have focused on evolutionary
adaptations of wine yeast strains. It has been suggested
that the diploid status of most wine yeast strains may confer
an advantage in terms of rapid adaptation to variable
external environments and provide a way to increase the
dosage of genes important for fermentation (Bakalinsky and
Snow 1990; Salmon 1997). Furthermore, subtelomeric
chromosomal regions are subject to duplications and rear-
rangements via ectopic exchanges (Bidenne et al. 1992;
Rachidi et al. 1999). Another reported mode of evolution
of Saccharomyces is the formation of interspecific hybrids.
The resulting genome plasticity promotes faster adaptation
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in response to environmental changes (Puig and Perez-Ortin
2000; Libkind et al. 2011) by providing the genetic diversity
upon which natural selection operates.

Adaptations of these strains to the specific oenological
environment and their selection for specific biotechnological
purposes are also reflected in global transcriptomic, proteo-
mic, and metabolomic profiles. Studies of wine yeast strains
have correlated differences in fermentation phenotypes to
gene expression, protein levels, and metabolic regulation
(Rossouw et al. 2008, 2009, 2010). These studies focused on
the aroma-relevant exometabolome as produced by different
wine yeast strains, since this metabolome largely determines
the aromatic perception of fruitiness and complexity of
wines, and is therefore of particular interest to winemakers.

It has been proposed that some of the primary evolutionary
targets of strain diversification are transcription factors and
their binding sites (Dermitzakis and Clark 2002). Data show
that although S. cerevisiae and S. mikatae have similar genome
sequences, they are significantly different in their transcription-
factor binding profiles (Borneman et al., 2007a,b). It has been
hypothesized that the extensive binding site differences ob-
served between the different species reflect rapid specialization
of Saccharomyces for distinct ecological environments (Borne-
man et al. 2007a,b).

For this study, the production of volatile aroma com-
pounds was correlated to previously established transcrip-
tional profiles of five different wine yeast strains under
simulated winemaking conditions. We were able to identify
transcription factors (TFs) whose expression profiles may
contribute to the different metabolism-related phenotypes
observed in different strains. In particular, we assessed
whether the metabolic phenotype of one strain could be
engineered to more closely resemble that of another strain
by adjusting the expression of key transcription factors. This
would support the hypothesis that changes in expression of
specific transcription factors are responsible for the evolu-
tionary adaptation of different Saccharomyces strains. The
identification of such key TFs promises targeted improve-
ment of fermentation performance (Hou et al. 2009).

Methods

Strains, media, and culture conditions

The yeast strains used in this study are listed in Table1. All
are diploid Saccharomyces cerevisiae strains used in indus-
trial wine fermentations. Yeast cells (inoculated from single,
characterized colonies) were cultivated at 30� in YPD syn-
thetic media 1% yeast extract (Biolab, South Africa), 2%
peptone (Fluka, Germany), 2% glucose (Sigma, Germany).
Solid medium was supplemented with 2% agar (Biolab).

Fermentation media

Fermentation experiments were carried out with synthetic
must MS300, which approximates a natural must as pre-
viously described (Bely et al. 1990). The medium contained

125 g/liter glucose and 125 g/liter fructose, and the pH was
adjusted to 3.3 with NaOH.

Fermentation conditions

All fermentations were carried out under microaerobic
conditions in 100-ml glass bottles (containing 80 ml of the
medium) sealed with rubber stoppers with a CO2 outlet. All
fermentations were carried out in triplicate, i.e., indepen-
dent biological repeats. The fermentation temperature was
approximately 22� and no continuous stirring was per-
formed during the course of the fermentation. Fermentation
bottles were inoculated with YPD cultures in the logarithmic
growth phase (around OD600 = 1) to an OD600 of 0.1 (i.e.,
a final cell density of approximately 106 cfu/ml). The cells
from the YPD precultures were briefly centrifuged and resus-
pended in MS300 to avoid carryover of YPD to the fermen-
tation media. The fermentations followed a time course of
14 days and the bottles were weighed daily to assess the
progress of fermentation. Samples of the fermentation
media and cells were taken at days 2, 5, and 14 as repre-
sentative of the exponential, early logarithmic, and late log-
arithmic growth phases, respectively.

Growth measurement

Cell proliferation (i.e., growth) was determined spectropho-
tometrically (PowerwaveX, Bio-Tek Instruments) by measur-
ing the optical density (at 600 nm) of 200-ml samples of the
suspensions over the 14-day experimental period.

Analytical methods High-performance liquid
chromatography (HPLC):

Culture supernatants were obtained from the cell-free upper
layers of the fermentation media. For the purposes of
glucose determination and carbon recovery, culture super-
natants and starting media were analyzed by HPLC on an
AMINEX HPX-87H ion exchange column using 5 mM H2SO4

as the mobile phase. Agilent RID and UV detectors were
used in tandem for peak detection and quantification. Anal-
ysis was carried out using the HPChemstation software
package.

Gas chromatograph–flame ionization detector (GC-FID):
Each 5-ml sample of synthetic must taken during fermenta-
tion was spiked with an internal standard of 4-methyl-2-
pentanol to a final concentration of 10 mg/liter. To each of
these samples 1 ml of solvent (diethyl ether) was added and
the tubes sonicated for 5 min. The top layer in each tube was

Table 1 Strains used in this study

Strain Source

VIN13 Anchor Yeast, South Africa
BM45 Lallemand, Inc., Montréal, Canada
DV10 Lallemand, Inc., Montréal, Canada
SOK2-VIN13 This study
RAP1-VIN13 This study
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separated by centrifugation at 3000 rpm for 5 min and the
extract analyzed. Three microliters of each sample was
injected into the GC. All extractions were done in triplicate.

The analysis of volatile compounds was carried out on
a Hewlett Packard 5890 Series II GC coupled to an HP 7673
auto-sampler and injector and an HP 3396A integrator. The
column used was a Lab Alliance organic-coated, fused silica
capillary with dimensions of 60 m · 0.32 mm internal
diameter with a 0.5-mm coating thickness. The injector tem-
perature was set to 200�, the split ratio to 20:1, and the flow
rate to 15 ml/min, with hydrogen used as the carrier gas for
a flame ionization detector held at 250�. The oven temper-
ature was increased from 35� to 230� at a ramp of 3�/min.

Internal standards (Merck, Cape Town) were used to
calibrate the machine for each of the compounds measured.

Microarray analysis: Sampling of cells from fermentation
and total RNA extraction was performed as described by
Abbott et al. (2007). Samples were taken from independent
fermentations in triplicate on days 2, 5, and 14. For a com-
plete description of the hybridization conditions refer to
Rossouw et al. (2008). Transcript data can be downloaded
from the GEO repository under the following accession num-
bers: GSE11651 (for the original VIN13, BM45, EC1118,
285, and DV10 data sets analyzed in Rossouw et al. 2009)
and GSE26929 (for the SOK2-overexpressing strain and
VIN13 control data sets).

Transcriptomics data analysis: The microarray data were
background corrected and normalized with robust multichip
average (Irizarry et al. 2003) and the resultant log2 trans-
formed data were mean centered for each probe set. Determi-
nation of differential gene expression between experimental
parameters was conducted using SAM (significance analysis of
microarrays) version 2 (Tusher et al. 2001). The two-class,
unpaired setting was used and genes with a Q-value ,0.5
(P , 0.0005) and a fold change greater than 2 (positive or
negative) were taken into consideration as differentially
expressed genes.

The sequences for each of the individual probes of the
Affymetrix Yeast 2.0 Genechip were mapped to the yeast
genome by the use of blastn (Altschul et al. 1990). A Perl
program was written to perform the following tasks: (1)
100% identity matches (over the full length of the probe)
were extracted from the blastn results; (2) the probes were
subsequently assembled into probe sets and the resultant
probe set to gene relationships modeled as a graph; (3)
ambiguous probe sets, i.e., those that were found to map
to more than one gene (node degree .1), were removed
from the input gene list for the subsequent random forest
analyses.

Random forest analysis (Breiman 2001) was carried out
on the normalized and mean centered expression data by
the use of the randomForest R package (Liaw and Wiener
2002). A random forest classification model was created
using the strains as classes, regardless of time point. Fifteen

thousand trees were generated in the creation of the model
with 73 randomly selected variables (probe sets) used at
each split. The out-of-bag (OOB) estimate of error rate
was 4.65%. The mean decrease of accuracy measure of vari-
able importance was extracted from the random forest
model and used to rank the contribution of all probe sets
according to their ability to discriminate between different
strains. The probe sets occurring within the 200 most im-
portant variables from the random forest model described
above were selected for further in depth analysis and
evaluation.

Gene expression profiles were clustered using the short
time series expression miner (STEM; Ernst and Bar-Joseph
2006).

Multivariate data analysis: The patterns within the differ-
ent sets of data were investigated by principal-component
analysis (PCA; Qlucore Omics Explorer v. 2.2). PCA is
a bilinear modeling method, which gives a visually interpret-
able overview of the main information in large, multidi-
mensional data sets. By plotting the principal components it
is possible to view statistical relationships between different
variables in complex data sets and detect and interpret
sample groupings, similarities, or differences, as well as the
relationships between the different variables (Mardia et al.
1979).

Univariate statistics and visualization: The levels of aroma
compounds from target strains and transcription factor over-
expression strains were compared to their respective control
strains and the statistical significance of the changes evalu-
ated with a t-test at a 95% confidence interval. To better
visualize the statistical relationships in the data set the fol-
lowing algorithm was implemented in Perl: a mathematical
graph was created with a node for each control strain (VIN13
or BM45). Subsequently, those compounds that showed a sta-
tistically significant difference from the control in either the
target or the overexpression strain were added as a node to
the graph and an edge created to the control strain node. For
each strain showing a significant change a node was added to
the graph and an edge created between it and the previously
mentioned compound node. Fold change was calculated for
each compound in each strain as a simple ratio between the
compound level in the strain and that of its control. If the
ratio was less than one its negative reciprocal was taken. This
fold change information as well as descriptive information for
each node was then written into an annotation file. Cytoscape
v. 2.8.1 (Smoot et al. 2011) was used to visualize the resulting
graph and annotation. The nodes were shaded according to
fold change on a red (positive) or blue (negative) color scale.

Overexpression constructs and transformation: The two
plasmids constructed for use in this study are pDM-PhR-RAP1
(genotype, 2m LEU2 TEF1P PhR322 TEF1T PGKP RAP1 PGKT)
and pDM-PhR-SOK2 (genotype, 2m LEU2 TEF1P PhR322
TEF1T PGKP SOK2 PGKT). Primers used for amplification of
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transcription factor encoding genes are listed in Supporting
Information, Table S1. Standard procedures for the isolation
of DNA were used throughout this study (Ausubel et al.
1994). Standard DNA techniques were also carried out as
described by Sambrook et al. (1989). All enzymes for cloning,
restriction digest, and ligation reactions were obtained from
Roche Diagnostics (Randburg, South Africa) and used accord-
ing to supplier specifications. Sequencing of all plasmids was
carried out on an ABI PRISM automated sequencer. All plas-
mids contain the dominant marker PhR conferring phleomi-
cin resistance (PhR) and were transformed into host VIN13
and BM45 cells via electroporation (Wenzel et al. 1992; Lilly
et al. 2006).

Quantitative real-time PCR analysis (QRT-PCR): RNA
extractions from fermenting yeasts were carried out as per
the microarray analyses. Primer design for QRT-PCR anal-
ysis was performed using the Primer Express software v. 3
(Applied Biosystems) and reagents were purchased from
KAPA Biosystems. Spectral data were captured by the 7500
cycler (Applied Biosystems). Data analyses were conducted
using Signal Detection Software (SDS) v. 1.3.1. (Applied
Biosystems) to determine the corresponding Ct values and
PCR efficiencies, respectively, for the samples analyzed
(Ramakers et al. 2003). The genes selected for QRT-PCR,
as well as the primer sequences used for amplification are
described in Table S2.

Transcriptomic analysis of overexpressing strains: Fer-
mentations of the SOK2-overexpressing strain as well as the
VIN13 control were carried out in triplicate in synthetic
must as described previously. Samples for transcriptomic
analysis were taken from three independent biological
repeats at day 2 of fermentation, during the exponential
growth phase. The microarray data can be viewed at the
GEO repository under the accession number (GSE26929).

Results

Transcription factor enrichment

In our previous work (Rossouw et al. 2008), the transcrip-
tome of five distinct industrial wine yeast strains was ana-
lyzed at three time points in synthetic wine must
fermentations, day 2 (exponential growth phase), day 5
(early stationary growth phase), and day 14 (late station-
ary-growth phase). Strains were also monitored for sugar
utilization and production of ethanol, glycerol, and 32 vol-
atile aroma compounds (Rossouw et al. 2008, 2009).

Normalized expression values for the different strains
and time points were analyzed by random forest analysis
(Breiman 2001), and the top 200 strain discriminatory
genes were ranked according to their ability to differentiate
between the different strains. These genes were subse-
quently subjected to transcription factor enrichment as
described by Teixeira et al. (2006) to identify the main reg-

ulatory structures present in the data. Transcription factors
that reportedly regulate most of the highly discriminatory
genes from the random forest outputs were thus identified
and ranked according to the percentage of genes identified
by the random forest, which are regulated by these tran-
scription factors. Enrichment of transcription factors was
performed on the total set of 200 genes, as well as on
a smaller subset of 42 genes from the random forest output,
which are thought to be involved in metabolism based on
GO functional annotations. From Table 2 it is clear that
a few key transcription factors may account for the majority
of genes responsible for the differential transcriptional
response between strains.

Most of the identified transcription factors are involved in
the synchronization of stress responses, the regulation of
carbon utilization and the modulation of cell membrane and
cell wall properties. Genes in these categories can be directly
linked to the major changes that yeast experience during
fermentation and presumably also reflect the evolutionary
framework of domesticated strains.

The transcriptome data were screened to identify the
transcription factors in Table 2 that showed differences in
either expression level and/or expression pattern between dif-
ferent strains over time. Some of the TF genes did show sig-
nificant differences in expression levels between one or more
strains at particular time points, but overall expression trends
and patterns over time were similar. Importantly, six of the
transcription factor-encoding genes and notably some of the
top-scoring candidates of the TF enrichment, namely YAP1,
YAP6, SOK2, PHD1, STE12, and RAP1, did show significant
differences between strains in terms of relative transcript
abundance and expression patterns over time (Figure 1).

Interestingly, strains with similar physiological properties
regarding metabolite profiles and cell wall properties as
described in Rossouw et al. (2009) (e.g.., EC1118 and
DV10, as well as BM45 and 285) also presented similar pro-
files regarding the expression patterns of these six transcrip-
tional regulators. These transcription factors play important
roles in cellular metabolism and regulation, although their
specific functions are not fully characterized, and information
regarding regulatory networks and specific targets is limited.

Table 2 Top 10 hits for transcription factor enrichment analysis of
random forest outputs (% of total) for strain discriminatory genes
in the total gene list and in the metabolism-specific subset

All genes % Metabolic genes %

Ste12 39 Ste12p 45
Sfp1p 36 Sok2p 29
Yap1p 33 Rap1p 26
Rap1p 26 Yap6p 24
Aft1p 26 Cin5p 24
Sok2p 25 Phd1p 19
Msn2p 24 Skn7p 17
Met4p 24 Tec1p 17
Msn4p 18 Nrg1p 17
Rpn4p 18 Ino4p 17
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Yap1p is induced in response to oxidative stress conditions
(Okazaki et al. 2007) and is believed to regulate the expres-
sion of several genes involved in protein mannosylation as
well as the invasive growth response (Haugen et al. 2004;
Thorsen et al. 2007). Yap6p is involved in a variety of stress-
related programs, including the response to DNA damage and
oxidative, osmotic, and toxic metal stresses (Tan et al. 2008).
Three other key transcription factor encoding genes in the
enrichment analysis, namely SOK2, PHD1, and STE12, show
highly variable expression patterns between strains (Figure
1). Their protein products are all involved in pseudohyphal
growth and regulation of key mannoproteins such as Flo11p

(Gimeno and Fink 1994; Pan and Heitman 2000), as well as
a host of other metabolic processes. Finally, Rap1p is a multi-
purpose DNA-binding protein that functions in transcriptional
activation, silencing, and replication in yeast. Genes contain-
ing Rap1p binding sites include genes encoding proteins in-
volved in amino acid biosynthesis and regulation of carbon
metabolism (Yarragudi et al. 2007).

Overexpression of selected transcription factors

To determine whether the different expression patterns of
these key regulators could be reconciled with the metabolic
and phenotypic differences observed between the strains,

Figure 1 Expression patterns of six genes encoding key transcription factors based on transcription factor enrichment of 200 top-scoring strain-
discriminatory genes from random forest analysis. The expression values are derived from microarray experiments and are the average of three biological
repeats 6SD.

Transcription and Yeast Diversification 255



we selected two of these genes, namely SOK2 and RAP1, for
overexpression analysis. The SOK2 gene was cloned from
the BM45 strain and overexpressed in VIN13, while the
RAP1 gene was cloned from DV10 and overexpressed in
BM45. Our goal was to elevate the expression levels of these
transcription factors in the overexpression strains to more
closely match the expression levels observed in the “donor”
strains.

Figure 2 clearly shows that the expression levels of SOK2
and RAP1 in the transformed strains were successfully and
significantly increased in comparison to their respective con-
trols. To assess whether the overexpression of these factors
had an impact on genes under their control, several known
or suggested target genes of Sok1p and of Rap1p (Table S3)
were selected for expression analysis using real-time PCR,
while two genes, ERG10 and THI3, were included as nega-
tive controls.

Both negative controls (THI3 and ERG10) showed no
change in expression for the transformants, while most of
the known or suggested target genes of the two transcrip-
tion factors, such as ERG13, BAT2, and ALD4, were increased
in expression (Figure 2). Of these suggested targets, only
ARO10 did not show any increase in both the RAP1 and
SOK2 overexpression strains. Considering that the identifi-
cation of target genes in databases is not always based on
direct biological evidence (Li et al. 2008), these data provide
strong evidence that the transformed strains show expres-
sion patterns that indeed reflect increased levels of the two
transcription factors.

Fermentation properties of the overexpressing strains

The three original strains (DV10, VIN13, and BM45), as well
as the two transformants were inoculated into synthetic
wine must and the fermentations monitored over the 14-day
fermentation period. All fermentations completed to dryness
and the levels of ethanol and glycerol production were

similar for the two transformed strains and their respective
controls (data not shown).

The impact of changes in transcription factor expression
levels on the wine aroma-relevant metabolite profile produced
by the different strains was assessed. For this purpose, the
concentrations of 22 exometabolites were measured at days 2,
5, and 14 of fermentation, in keeping with our original
sampling scheme (Rossouw et al. 2008). The results are sum-
marized in Table S4, Table S5, Table S6, and Figure 3.

Clearly, significant differences in the production of
volatile aroma compounds at all three stages of fermenta-
tion when transformed and untransformed parental strains
are compared. The differences were most pronounced for
the SOK2 transformant, but significant differences were also
evident for the RAP1-overexpressing strain. By the end of
fermentation, more than half of the aroma compounds mea-
sured were present at substantially different concentrations
in the SOK2-overexpressing strain in comparison to the pa-
rental VIN13 strain, similar to the BM45 target strain. In the
case of the RAP1 transformant, four compounds were signif-
icantly increased, and two compounds decreased with ref-
erence to the control BM45 strain (Table S6 and Figure 3).
For certain volatiles (such as propanol and isoamyl alcohol)
the increased concentrations observed in the transformed
strains exceeds that of the target strains. Levels of overex-
pression of the transcription factors in our experiments are
not controlled in a precise manner and therefore are not
identical to the levels in the original target strains. The im-
pact of overexpression on individual metabolite levels is thus
likely to differ (being either more or less) from the exact
concentrations determined for the original strains.

Importantly, for the SOK2-overexpressing strain, most of
the specific metabolic changes as shown in Figure 3 can be
directly accounted for by the observed differences in gene
expression as determined by transcriptomic analysis. Al-
though we did not assess the transcriptional response of

Figure 2 Relative gene expression (normalized to PDA1 expression) of RAP1, SOK2, and selected target genes. Values are the average of three
biological repeats 6SD.
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the RAP1-overexpressing strain, changes in metabolite levels
in this strain also correlate well with known targets of
Rap1p and the enzymatic activities of these enzymes. For
example, one of the target genes, ERG13 (Kasahara et al.
2007), is involved in the production of diethyl succinate,
which is present at much higher concentrations at the end
of fermentation in the transformed strain compared to the
BM45 reference strain (Table S6 and Figure 3).

Transcriptomic analysis of a SOK2-overexpressing strain

Samples from the SOK2 overexpression fermentations were
taken for transcriptomic analysis at day 2 of fermentation,
during the exponential growth phase. Close to 1000 tran-
scripts were found to be significantly differentially expressed
with a fold change of .2 or ,22. Of these, 258 transcripts
were upregulated and 677 downregulated. In terms of align-
ment with the real-time data, the trends for the 13 transcripts
quantified in the real-time analysis were similar to the data
derived from the transcriptome analysis, but for ILV3, ALD4,
and BAT2, where the significant increases in expression evi-
dent in the real-time data (Figure 2) were not reflected in the
microarray data. This difference may be explained by differ-
ent SOK2 expression levels in the two experiments, i.e., a six-
fold increase in the real-time experiments vs. a twofold
increase in themicroarray data. It is well established that such

differences are commonly seen when 2m-based multiple copy
plasmids are used to amplify gene expression and that many
targets of transcription factors are responsive to the precise
concentration of the activator (Sauer and Jäckle 1991; Ni
et al. 2009; Zheng et al. 2010).

Of the differentially expressed transcripts (.2- or ,22-
fold), 20% were targets of Sok2p as previously described in
the literature (Borneman et al. 2006; Borneman et al. 2007a,
b; Horak et al. 2002; Lee et al. 2002). The remaining 80% of
differentially expressed genes may be accounted for by sec-
ondary effects of the overexpression or indeed reflect un-
identified downstream targets of Sok2p.

When comparing the SOK2-overexpressing strain with
the VIN13 control, the upregulated genes showed enrich-
ment for the GO categories of metabolism, specifically
amino acid metabolism (Table S7). This aligns with the
known metabolic regulation of Sok2p. In the case of the
downregulated genes, GO processes such as autophagy
and energy reserve metabolic processes were the most
strongly represented (Table S8).

In the context of the aroma profile changes seen in the
transformed strains, gene expression differences in fer-
mentation pathways and pathways related to amino acid
metabolism are the most important as amino acids are the
precursors for the higher alcohols and esters produced during

Figure 3 Statistically significant changes in aroma compounds among control, target, and transformed strains on day 14 of fermentation. (A) The levels
of aroma compounds from both the target strain (BM45) and the SOK2-overexpression strain that were shown to be statistically significantly different
from the control (VIN13). (B) The levels of aroma compounds from both the target strain (DV10) and the RAP1-overexpression strain that were shown to
be statistically significantly different from the control (BM45). The degree of fold change is represented by red (positive) and blue (negative) color scales.
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alcoholic fermentation. Table S9 shows the fold changes for
genes in these pathways for fold changes .1.5 or ,21.5. A
major increase in expression (fold change .4) is evident for
ATF2 (a known target of Sok2p; Workman et al. 2006). The
Atf2p enzyme is responsible for the production of a number of
volatile esters from their corresponding alcohols, such as
ethyl acetate, isoamyl acetate, and phenylethyl acetate (Ves-
trepen et al. 2003). Isoamyl acetate concentrations in the
overexpression strain were significantly higher at all time
points considered (Table S4, Table S5, and Table S6), corrob-
orating the effect of elevated gene expression on the amount
of a metabolite produced. Likewise, activation of ALD6 by
Sok2p (Borneman et al. 2006; Chua et al. 2006) could explain
the increase in acetic acid concentrations (Table S4, Table S5,
and Table S6) in the SOK2-overexpressing strain as acetate is

the direct product of the reaction catalyzed by the aldehyde
dehydrogenase isomer encoded by ALD6 (Saint-Prix et al.
2004). Increased expression levels of three ILV genes (1, 2,
and 5) involved in branched-chain amino acid metabolism
(Holmberg and Petersen 1988) may account for the dramatic
increase in the two end-products of this pathway, namely iso-
butanol and isobutyric acid. Increased expression of ADH5 and
ADH4 in particular also account for the higher concentrations
of several higher alcohols and esters (such as 2-phenyletha-
nol) as these enzymes carry out key dehydrogenation reac-
tions in the Ehrlich pathway (Dickinson et al. 2002).

Multivariate and univariate analysis

Our original question pertained to whether the metabolic
phenotype of one strain could be shifted in the direction of

Figure 4 Principal component analysis of aroma com-
pound concentrations in strains overexpressing individual
transcription factors as compared to the corresponding
untransformed parental as well as to the strain with nat-
urally higher levels of expression of the same transcription
factor. (A) A PC1 vs. PC2 vs. PC3 plot of the VIN13 SOK2-
overexpression strain (light blue), the VIN13 control strain
(dark blue), and the BM45 target strain (red). Component
1 accounts for 64%, component 2 for 13%, and compo-
nent 3 for 9% of model variation. (B) The BM45 RAP1-
overexpressing strain (yellow), control BM45 strain (red),
and target DV10 strain (green) are shown. In this case
component 1 accounts for 67% of model variation, com-
ponent 2 for 15%, and component 3 for 6% of model
variation. Samples are labeled according to timepoint (day
2, 5, or 14) and strain.
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another by adjusting the expression of a key transcription
factor. This would suggest that changes in the regulation/
expression of specific transcription factors could be respon-
sible for major phenotypic divergence and adaptation of
different Saccharomyces species or different strains within
a species. To address this issue we followed both a multivar-
iate approach (PCA) and created a statistical graph to visu-
alize the overall structure of the volatile metabolite data set
in a qualitative and quantitative manner.

Figure 3 clearly shows that the vast majority of metabo-
lites in the transcription factor overexpression strain have
shifted in the same direction as the target strain, either
matching closely or in some cases overshooting the target.
Only a few compounds shift in an opposite direction to that
of the target strain. The PCA analysis in Figure 4 shows the
overall shift in the metabolic profiles at each time point in
fermentations performed with each of the five strains
(DV10, VIN13, BM45, SOK2-VIN13, and RAP1-VIN13). On
day 2 of fermentation the differences between the sample
groupings of the SOK2-overexpressing VIN13 and the refer-
ence VIN13 strain is still small. The same is true of the RAP1-
overexpressing strain and its BM45 control strain. However,
by day 5 of fermentation the two transformed industrial
strains form clearly distinct clusters that are separated from
their control samples along the first three principal compo-
nents. The same is true for day 14, when the distances be-
tween distinct sample groupings are even greater for the
first two principal components.

As can be seen in Figure 4B, the overall exometabolite
composition of the RAP1-overexpressing strain has shifted
from the BM45 control strain in the direction of the DV10
target cluster for days 5 and 14 of fermentation. Similarly,
SOK2-overexpressing samples shift from the VIN13 control
cluster (Figure 4A), in the direction of the target BM45
cluster, even shifting beyond the target cluster in days 5
and 14.

Discussion

The adjustment of key transcription factor expression levels
in a wine yeast strain can indeed alter metabolism on a large
scale. More specifically, we were able to moderate metab-
olism in a qualitatively reasonably defined manner by
engineering the expression levels of transcription factors
identified by the analysis of high-quality comparative gene
expression data. This was achieved despite the complexity of
the regulation of aroma compound metabolism, which is
affected by many other parameters, such as the prevailing
redox balance, the concentration of intermediates, and the
flux through upstream and downstream pathways, which
affects the rates and directionality of many promiscuous
enzymes that catalyze the reactions of higher alcohol and
ester synthesis.

The data clearly support the hypothesis that microevolu-
tion, which has provided us with the plethora of industrial
Saccharomyces strains known today, could use transcription

factor moderation and/or binding site alteration to effect
a large-scale rewiring of metabolic and regulatory circuits
in the cell. The possibility thus exists to modify or enhance
industrial wine yeasts in a holistic manner by carefully
selecting and modifying high-level master regulatory sys-
tems, instead of instituting numerous single gene changes
at the effector level.
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