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ABSTRACT A strategy to reduce computational demands of genome-wide association studies fitting a mixed model is presented.
Improvements are achieved by utilizing a large proportion of calculations that remain constant across the multiple analyses for
individual markers involved, with estimates obtained without inverting large matrices.

GENOME-WIDE association studies (GWAS) have be-
come a routine task for geneticists in a range of areas.

Analyses employing a mixed model are widely used as this
provides a flexible framework to account for systematic dif-
ferences and covariances due to other sources, such as pop-
ulation stratification and a family structure among
genotyped individuals (Kang et al. 2010; Price et al. 2010;
Zhang et al. 2010). A common type of investigation involves
solving a system of mixed model equations (MME) fitting
one or a few single nucleotide polymorphism markers (SNP)
at a time, treating SNP effects as covariables, with variance
components fixed at their estimates from an analysis omit-
ting SNP. Typically this is done by inverting the coefficient
matrix in the MME for each analysis. While individual anal-
yses take only seconds, analyzing all markers for a high-
density chip imposes a considerable computational burden.
Hence, estimation of SNP effects by first fitting the mixed
model excluding any SNP effects and then applying the
SNP-wise analysis to the resulting residuals has been sug-
gested (Aulchenko et al. 2007). However, this may lead to
biased results if genotypes are not randomized across the
effects in the model or if SNP effects and population strata
are partially confounded. A typical example is an analysis
comprising animals of different breeds with different allele
frequencies (Johnston and Graser 2010).

When fitting the full model, we can partition the
pertaining MME into a small part due to SNP effects and
a part due to the other effects in the model. For complete

genotype information only the former changes as different
SNPs are considered. This structure can be exploited to
reduce computational requirements. We present the strat-
egy to do so, describe its implementation in freely available
mixed model software, and show an example application.

Computing Strategy

Consider a mixed model

y¼ XbkþZukþWkskþ ek; (1)

with y, bk, uk, sk, and ek denoting the vector of observations
(phenotypes), fixed effects other than SNP effects, random
effects, SNP effects and residuals, and X, Z, and Wk the
incidence matrices pertaining to bk, uk, and sk. As empha-
sized by the superscript k, only Wk differs between analyses
for different SNPs, with the elements of Wk equal to the
number of copies of the reference allele—0, 1, or 2 in a bial-
lelic model—for the SNP(s) in the kth analysis. To estimate
ŝk we need to solve the MME
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with R = Var(e) and G = Var(u) the covariance matrices
among residuals and random effects, respectively. Rewrite
Equation 2 as �
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with C11 of size n1 · n1 denoting the part of the coefficient
matrix that is constant and r1 the pertaining vector of right-
hand sides, Ck

22, of size n2 · n2, rk2 the corresponding terms
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for the effects changing with each analysis, and Ck
12 and Ck

21
the off-diagonal blocks in the coefficient matrix. With v̂k

generally not of interest, we can estimate ŝk as a solution to
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With n2 small, inversion of the coefficient matrix and direct
solution of Equation 4 is undemanding. While C21

11 remains
constant and thus needs only to be determined once, com-
putations for the inversion are proportional to n31 and thus
can be nontrivial for large n1. Fortunately, we can obtain ŝk

without inverting C11. Let
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denote the Cholesky factor of the coefficient matrix in
Equation 3 with C11 = L11L119, Ck

21 ¼ Lk21L119 and
Ck
22 ¼ Lk21L

k
219þ Lk22L

k
229. Substituting these terms in Equa-

tion 4 yields
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k ¼ rk2 2 Lk21t̂1 with t̂1 ¼ L21
11 r1: (6)

This suggests that estimates ŝk for k = 1, . . ., K can be
obtained efficiently by splitting computations as follows.

To be performed once

• Set up C11 and r1, i.e., the MME omitting SNP effects.
• Perform the Cholesky factorization of C11 to obtain

L11.
• Determine t̂1 as a solution to L11 t̂1 ¼ r1. With L11 tri-

angular, this involves forward substitution steps

t̂1 ¼ r1=ℓ11 and
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for ri and t̂i, the ith element of r1 and t̂1, and ℓij the ijth
element of L11.

To be performed for each set of SNPs

• Determine parts of the MME specific to the kth analy-
sis, Ck

21, C
k
22, and rk2.

• Set up L*, representing the intermediate matrix arising
in factorizing the coefficient matrix in Equation 3 after
rows 1 to n1 have been processed:
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• “Complete” the factorization steps for rows n1 + 1 to
n1 + n2 using
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(for ℓ​ *ij the ijth element of L*). Processing columns 1 to n1
column-wise replaces Ck

21 in L* with Lk21. The remaining
elements (in columns n1 + 1 to n1 + n2) are then adjusted
row-wise, overwriting Ck

22 with Lk22.

• Determine a general inverse of Lk22, Lk222 , to obtain
ŝk ¼ Lk   222 ðLk   222 Þ9ðrk22Lk21 t̂1Þ. Sampling variances of ŝk

are given by the diagonal elements of Lk   222 ðLk   222 Þ9.

Note that Lk22 can have diagonal elements of zero if a SNP
is monomorphic or if SNPs with proportional allele counts
are considered simultaneously. This is accounted for in the
generalized inverse. If n2 is not small or if sampling varian-
ces are not required, an alternative to solve for ŝk is a series
of forward and backward substitution steps.

Implementation

The strategy described above has been implemented in the
mixed model package WOMBAT (Meyer 2007), utilizing the
existing capabilities to set up the MME for an arbitrary
model and sparse matrix calculations, including Cholesky
factorization of the coefficient matrix. Estimation of SNP
effects is invoked through a run-time option. In addition to
the data, pedigree, and parameter files as required for stan-
dard analyses, allele counts for each SNP analysis are ex-
pected to be read sequentially from a separate file. The software
and user manual together with a worked example illustrating
its use for GWAS analyses are available for download from
http://didgeridoo.une.edu.au/km/wmbdownloads.php.

Application

Our strategy was applied to estimate effects for 4541 SNPs
on age at first corpus luteum in beef cattle. Any missing allele
counts were imputed so that marker information was com-
plete. Records were a subset of data analyzed previously
(Hawken et al. 2011). The model of analysis fitted five fixed
effects and two linear covariables as well as a linear regres-
sion on a single SNP effect. Animals’ additive genetic effects
were fitted as random effects with the relationship matrix
determined from pedigree information. There were 941 ani-
mals with genotypes and phenotypes. Including additive ge-
netic effects for parents without records yielded a total of
3858 animals in the model and 3909 equations in total.

Calculations were carried out on a desktop computer
with an Intel I7 processor rated at 3.2 GHz. Performing
single SNP analyses one by one, inverting the complete
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coefficient matrix in the MME each time required a total of
1784 sec CPU time. Estimation using our new strategy
reduced this to 16 sec. Repeating SNP information 150 times
to mimic a high-density chip with 681,150 SNPs, analysis
was completed in 2295 sec. With a set-up time required of
�1 sec, this gave an average of 297 SNPs analyzed per
second.

Conclusions

Computational demands for GWAS analyses fitting a full
mixed model can be reduced by orders of magnitude
utilizing that a large part of the MME and computations
involved remain constant. The computing strategy described
to exploit this is straightforward and is readily implemented
in existing mixed model software. Savings that can be
achieved increase with the number of effects in the mixed
model and are proportional to the number of SNP effects
considered.
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