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Abstract
A continuous-time Markov chain (CTMC) model is formulated for an influenza epidemic with
drug resistance. This stochastic model is based on an influenza epidemic model, expressed in
terms of a system of ordinary differential equations (ODE), developed by Stilianakis et al. (1998).
Three different treatments - chemoprophylaxis, treatment after exposure but before symptoms, and
treatment after symptoms appear, are considered. The basic reproduction number, , is calculated
for the deterministic model under different treatment strategies. It is shown that chemoprophylaxis
always reduces the basic reproduction number. In addition, numerical simulations illustrate that
the basic reproduction number is generally reduced with realistic treatment rates. Comparisons are
made among the different models and the different treatment strategies with respect to the number
of infected indivduals during an outbreak. The final size distribution is computed for the CTMC
model and, in some cases, it is shown to have a bimodal distribution corresponding to two
situations: when there is no outbreak and when an outbreak occurs. Given an outbreak occurs, the
total number of cases for the CTMC model is in good agreement with the ODE model. The
greatest number of drug resistant cases occurs if treatment is delayed or if only symptomatic
individuals are treated.
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1 Introduction
Antiviral drug resistance is an important concern in public health. The emergence and
spread of drug resistance leads to treatment failure, limits the effectiveness of subsequent
treatments, and results in the evolution of more virulent strains. In the past few years, many
studies have focused on this topic (Austin and Anderson, 1999; Blower and Volberding,
2002; Blower and Chou, 2004; Blower et al., 1998; Blower and Gerberding, 1998; Blower et
al., 2005; Ferguson et al., 2003; Hayden, 2001; Hayden, 2006; Levin et al., 1999; Levin et
al., 2004; Longini Jr. et al., 2005; Moscona, 2005; Regoes and Bonhoeffer, 2006; Sánchez et
al., 2005; Stilianakis et al., 1998). Some of these studies investigated drug resistance in
tuberculosis (Blower and Chou, 2004; Blower and Gerberding, 1998), some in HIV (Blower
and Volberding, 2002; Blower et al., 2005; Sánchez et al., 2005), and some in HSV-2
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(Blower et al., 1998). In addition, there have been studies on the development of drug
resistance during influenza epidemics (Ferguson et al., 2003; Hayden, 2001; Hayden, 2006;
Longini Jr. et al., 2005; Moscona, 2005; Regoes and Bonhoeffer, 2006; Stilianakis et al.,
1998). Much of this work has emphasized the importance of mathematical models to gain
further insight into the development of drug resistance.

Antiviral drugs such as amantadine and rimantadine (M2 protein inhibitors) have been used
for influenza A prevention and control. Such treatments are about 80% to 90% effective at
preventing infection, and can reduce the duration of the flu by about one to five days, if
given within 48 hours of infection (Bright et al., 2005). However, drug-treated persons
infected with influenza may shed resistant viruses within five to seven days after treatment
(CDC, 2005). Recently, high levels of resistance to amantadine and rimantadine have been
detected among influenza A viruses. It has been shown that resistance to amantadine and
rimantadine increased from 0.4% in 1994–1995 to 12.3% in 2003–2004 among circulating
influenza viruses collected worldwide between October 1994 and March 2005 (Bright et al.,
2005; CDC, 2006). In another U.S. study conducted from October through December 2006,
92.3% of influenza A (H3N2) viruses isolated from 209 patients showed a change in an
amino acid known to be correlated with adamantine resistance (Bright et al., 2006).
Currently, both of these drugs are not recommended (CDC, 2006). Other antiviral drugs,
such as the neuraminidase inhibitors zanamivir and oseltamivir, are currently recommended
(CDC, 2006). Only oseltamivir has been approved for prophylaxis but both zanamivir and
oseltamivir are effective (84% and 82%, respectively) at preventing infection (Harper et al.,
2005). However, recent studies have shown development of drug resistance in patients
infected with influenza A when treated with oseltamivir, 18% of children infected with the
H3N2 virus (Kiso et al., 2004) and 2 out of 8 patients infected with the H5N1 virus (de Jong
et al., 2005). Studies on oseltamivir resistance are under investigation (CDC, 2006;
Moscona, 2005).

Vaccination is a major preventive strategy in the control of influenza A but is not considered
in this investigation. Instead we concentrate on the effectiveness of antiviral treatment and
the development of drug resistance in a small community of susceptible individuals.

There are three major antiviral treatment strategies for influenza classified according to the
time at which the treatments are given. These three strategies are chemoprophylaxis, drug
treatment after exposure but before symptoms appear, and drug treatment after symptoms
appear. Chemoprophylaxis is treatment with a drug to prevent the development of the
disease and is given prior to exposure. The effectiveness of these three treatment strategies
are studied using a susceptible-infected-recovered (SIR) model for an influenza epidemic.

A variety of models have been developed to study the dynamics of an influenza epidemic or
pandemic (Ferguson et al., 2005; Ferguson et al., 2006; Ferguson et al., 2003; Germann et
al., 2006; Levin et al., 2004; Longini Jr. et al., 2005; Regoes and Bonhoeffer, 2006;
Stilianakis et al., 1998). Some of these models consider drug resistance as a major factor in
the epidemic process (Ferguson et al., 2003; Regoes and Bonhoeffer, 2006; Stilianakis et al.,
1998). Other models have been applied to large scale pandemics with spatially explicit
dynamics and require extensive computer simulations (Ferguson et al., 2005; Ferguson et
al., 2006; Germann et al., 2006; Longini Jr. et al., 2005). These latter models are either fully
stochastic (Germann et al., 2006; Longini Jr. et al., 2005) or include random contacts
(Ferguson et al., 2005; Ferguson et al., 2006). The small scale stochastic dynamics of an
influenza epidemic have not been studied in these models.

In this investigation, we apply the deterministic SIR model developed by Stilianakis,
Perelson, and Hayden (1998) and a continuous-time Markov chain (CTMC) model, to study
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how the epidemic progresses under different treatment strategies. The effectiveness of the
three antiviral treatment strategies are compared in the deterministic and stochastic models.
The basic reproduction number, , is computed when there is no treatment and compared to
the reproduction numbers when there is treatment. In the numerical examples, we show that
the basic reproduction number is reduced with treatment. Because the general form of 
with treatment involves a large number of parameters, it is difficult to determine whether all
treatment strategies reduce . Extensive numerical examples illustrate some of the
differences between the deterministic and stochastic models. The final size distribution is
computed for the CTMC model. In some cases, it is shown to have a bimodal distribution
corresponding to two situations: outbreak or no outbreak. Given an outbreak occurs, the total
number of cases for the CTMC model are compared to the deterministic model.

2 Description of Models
Two models, a deterministic model and a stochastic model are described. The deterministic
model is a system of ordinary differential equations (ODE) originally developed by
Stilianakis et al. (1998) for the development of drug resistance during treatment for
influenza during an outbreak. This deterministic model serves as the basis for development
of a stochastic model, a CTMC model. The CTMC model includes variability due to birth,
death, transmission, and recovery processes.

2.1 Deterministic Model
The influenza model developed by Stilianakis et al. (1998) is an SIR model, where the total
population size is assumed to be constant. Figure 1 is a compartmental diagram illustrating
the transmission dynamics among the susceptible and infected states. The recovered state is
not included in this diagram.

The model includes two susceptible states, eight infected states, and one recovered state.
The susceptible and infected states are further subdivided according to whether individuals
are asymptotic or symptomatic, treated or untreated, and resistant or sensitive to the drugs.
Subscripts on the variables identify the particular subtype. The susceptible individuals are
divided into S = susceptible persons not taking drugs and Spr = susceptible persons taking
drugs prophylactically. The infected individuals are divided into I = infected untreated
persons, Is = infected untreated persons who develop clinical symptoms, Ir = infected
untreated asymptomatic persons who shed drug-resistant virus, Is,r = infected untreated
persons with clinical symptoms who shed drug-resistant virus, Itr = infected treated
asymptomatic persons, Is,tr = infected treated persons who develop clinical symptoms, Ir,tr =
infected treated asymptomatic persons who shed drug-resistant virus, and Is,r,tr = infected
treated persons with clinical symptoms who shed drug-resistant virus.

The parameters in this diagram indicate transition rates between compartments. For
example, γi is the recovery rate for asymptomatic (i = 1) and symptomatic (i = 2)
individuals. Recovery is faster for drug-sensitive individuals after treatment, r1γ1 and r2γ2,
where

(2.1)

The transmission rate depends on the type of infection. The rate of transmission from an
asymptomatic infected person to a susceptible person is β1SI and the rate of transmission
from a symptomatic infected person to a susceptible person is β2SIs. A mass action
transmission rate is assumed. However, because the population size is constant (≡ N), this
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assumption is equivalent to the more commonly used standard transmission rate, where β1
and β2 are replaced by λ1/N and λ2/N, respectively. Transmission is reduced if either
susceptible or infected individuals have been treated. If the susceptible individuals have
been given prophylaxis, then the transmission rate is p2β1SprI and p2β2SprIs, 0 < p2 < 1. If
the infected individuals have been treated, then the transmission rate is p1β1SItr and p1β2Is,tr,
0 < p1 < 1. Finally, if both susceptible and infected individuals have been treated, then the
transmission rate is p3β1SprItr and p3β2SprIs,tr, 0 < p3 < 1. In general, p3 < p2 < p1.
Furthermore, β1,r and β2,r are transmission rates between susceptible and infected
individuals that are drug resistant. Generally, due to a “cost of resistance”,

(2.2)

The parameter δ1 describes the rate at which symptoms develop, I becomes Is, Ir becomes
Is,r, and Ir,tr becomes Is,r,tr, whereas the transition rate from Itr to Is,tr is δ2. It takes a longer
period of time to develop symptoms after treatment; therefore,

(2.3)

Parameters κ1 and κ2 are the rates of developing drug resistance during treatment (due to
treatment failure) either before (κ1) or after symptoms develop (κ2), κ1 < κ2. Three different
types of treatment strategies are considered, chemoprophylaxis (treatment of susceptible
individuals prior to exposure), treatment after exposure but before symptoms, and treatment
after symptoms appear. The per capita rate of these three treatment strategies is θi, i = 1, 2,
3.

Stilianakis et al. (1998) state that for small closed populations, treatment of individuals who
show clinical symptoms would not have an important effect on the epidemic process (third
treatment strategy). They argued that chemoprophylaxis reduces the risk of infection and
therefore, emergence of drug resistance was expected to be low in this case. They also
concluded that if chemoprophylaxis was combined with the treatment after symptoms
appear, then this combination would lead to a result similar to chemoprophylaxis treatment
itself.

Stilianakis et al. (1998) analyzed a flu outbreak in a closed population, such as a school or
nursing home in which the total population size remains constant; and thus assumed that
there are no births and deaths during the epidemic. But for the pandemic situation, which
could be longer and include more individuals, the assumption of a closed population is not
applicable. In addition to births and deaths, there may be immigration and emigration. Based
on this consideration, we include births (immigration) and deaths (emigration) in the SIR
epidemic model. Births are assumed to occur at a constant rate Λ and deaths at a per capita
rate μ. If Λ and μ are small relative to the time scale, then these demographic parameters
have little effect on the outcome. The SIR model with births and deaths takes the following
form:
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This model is used as a basis for formulating the stochastic model.

2.2 Continuous-Time Markov Chain Model
Based on the preceding deterministic model, we develop a CTMC model, where time is
continuous and the class variables are discrete. Considering time t as a continuous variable,
where t ∈ [0, ∞), and according to the population classification in the deterministic model,
we define the random vector

and ΔX⃗(t) = X⃗(t + Δt) − X⃗(t). The probability of a transition is

(2.4)

We assume that Δt is sufficiently small so that the values of a, b, c, …, l take on the values
±1 or 0. At most one change occurs during the time interval Δt. There are 36 possible
changes in states, where at least one of the a, b, c, …, l is nonzero. From the deterministic
model, it is straightforward to write down the infinitesimal transition probabilities. The
transition probabilities (2.4) are described according to the changes in each of the states,
ΔS(t), ΔSpr(t), ΔI(t), etc. We assume the change in state is zero unless otherwise indicated
and, for simplicity, the t dependence in the functions is omitted, e.g., S and I instead of S(t),
I(t). For example, a change in the susceptible class, ΔS = a, can be due to a birth, a = 1, an
infection from contact with infected drug-sensitive individuals, a = −1 and ΔI = c = 1, an
infection from contact with infected resistant individuals, a = −1 and ΔIr = e = 1,
chemoprophylaxis, a = −1 and ΔSpr = b = 1, or a death, a = −1. The corresponding
probabilities associated with these changes are
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The transition probabilities for the 36 possible changes in state are defined below:

These transition probabilities completely define the CTMC model. Sample paths, mean
values, and the final size distribution of the CTMC model are compared to the solution of
the ODE model in section 4.

An Itô stochastic differential equation (SDE) model can be formulated based on the
transition probabilities defined for the CTMC model (Allen, 2007; Allen, 1999; Allen, 2003;
Kirupaharan and Allen, 2004), e.g.,

(2.5)

where f⃗(X⃗(t)) is the drift vector, D(X⃗(t)) is the diffusion matrix, and W ⃗(t) is a vector of
independent Wiener processes. For large population sizes and large number of infected
individuals, the dynamics of the SDE model follow closely those of the CTMC model. The

Xu et al. Page 6

J Theor Biol. Author manuscript; available in PMC 2012 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SDE formulation is described briefly in the Appendix. We do not apply the SDE model here
because in most of the numerical simulations, only one initial infected individual is
introduced into a population of size 400. However, we found that the mean of the SDE
model agrees well with the mean of the CTMC model and the ODE model (< 3% difference
in number of symptomatic cases with no treatment) when the initial number of infected
individuals is ≥ 10 in a population of size 400 or ≥ 5 in a population of size 800.

3 Basic Reproduction Number
In the study of infectious diseases, one of the most interesting questions is whether the
disease will invade the population. The basic reproduction number, generally denoted , is
a parameter used to determine whether the disease will invade. The basic reproduction
number is defined as the number of secondary infections caused by one infected individual
in an entirely susceptible population (Hethcote, 2000). It is one of the most important
parameters in epidemiology. If  < 1, then the disease-free equilibrium (DFE) is locally
asymptotically stable and there is no disease outbreak, but if  > 1, then the DFE is unstable
and an outbreak occurs.

The basic reproduction number is useful in predicting outbreaks in stochastic models as
well. For example, in the case of a simple CTMC SIR epidemic model with I(0) initial
infected individuals, the basic reproduction number provides an estimate for the probability
of an outbreak (Allen, 2003; Bailey, 1975),

(3.6)

There is no outbreak with probability (1/ )I(0). Hence, the final size distribution of the
epidemic may be bimodal, with one mode at zero when there is no outbreak and the other
mode centered at the average number of cases when there is an outbreak (Bailey, 1953;
Ludwig, 1975). Eventually, however, the epidemic dies out because I ≡ 0 is an absorbing
state.

The basic reproduction number is calculated for the deterministic model under various
treatment strategies. Although extensive numerical simulations were performed in
Stilianakis et al. (1998), the basic reproduction number and treatment reproduction numbers
were not computed. The effect of treatment, θi > 0, on the reduction of  is examined in
section 4.

To compute the basic reproduction number we apply a method known as the next generation
approach (Diekmann et al., 1990; van den Driessche and Watmough, 2002). In this method
it is necessary to compute the DFE. For the deterministic model, it is straightforward to
verify that there are two disease-free equilibria for this system. If θ1 = 0, i.e., no prophylaxis,
then the DFE is S̄ = Λ/μ with all other states zero, and if θ1 ≠ 0, then the DFE is

(3.7)

and all other states zero. If Λ = 0 = μ as in the original model of Stilinakis et al. (1998), the
DFE depends on the initial population size. If the initial population size is K, Λ = 0 = μ, and
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θ1 = 0, then the DFE is S̄ = K with all other states zero, but if θ1 ≠ 0, the DFE is S̄ = 0, S̄pr =
K, and all other states zero.

In the next generation approach, the system of ODEs is decomposed into two vector
components  and , with only the eight infective states included. The element  is  is the
rate of appearance of new infections in infective state i. For vector , let  be the rate of
transfer of individuals into infective state i by methods other than transmission and  be
the rate of transfer of individuals out of infective state i. Then the element  in  is defined
as  (van den Driessche and Watmough, 2002). Next, the Jacobian matrices for 
and  are calculated and evaluated at the DFE. Jacobian matrices F and V are obtained,

Then  is the spectral radius of the matrix FV−1, denoted as

In the next section, the value of  is computed in the general case when all three treatments
are applied.

3.1 General Form for 
The expression for  is related to the treatment parameters θi, i = 1, 2, 3. Suppose θi ≠ 0, i =
1, 2, 3, and the DFE for the case Λ ≠ 0 ≠ μ is given by (3.7), where, for simplicitly, we let
K1 and K2 denote

(3.8)

and K1 + K2 = K = Λ/μ. If Λ= 0 = μ, then K1 = 0 and K2 = K.

To simplify the computation, we rearrange the order of the eight infected states in the ODE
system as follows: I, Ir, Itr, Ir,tr, Is, Is,r, Is,tr, and Is,r,tr. The vectors  and  corresponding to
these eight states are

(3.9)

and
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(3.10)

Jacobian matrices F and V are given in the Appendix. Because of the zeros in , matrix
FV−1 simplifies. The last four rows are all zeros and the spectral radius of FV−1 can be
computed from a 4 × 4 submatrix, M4, defined in the Appendix. Hence,

3.2 No Treatment
When there is no treatment, θi = 0 (i = 1, 2, 3) in the deterministic model. In this case, the
DFE is S̄ = K with all other states zero, and the rates of generating new infections only
appear in compartments I and Ir since S̄pr = 0. Vectors  and  include the transfer rates
from the eight infective states. In this case, only the first two rows of  are nonzero (see
(3.9)) and  is given by (3.10). Computing Jacobian matrices F and V lead to a matrix F
with only the first two rows nonzero and a matrix V with the same form as in the general
formulation given in the Appendix. Therefore, the spectral radius of FV−1 is determined by
the following 2×2 submatrix,

so that  = ρ(FV−1) = ρ (M2). Because of the relations given in (2.2), it follows that

(3.11)

The basic reproduction number is the sum of two terms. The first term is due to infections
from the asymptotic class I and the second term from infections in the symptomatic class Is.
If there are no births nor deaths, Λ = 0 = μ, then the basic reproduction number is given by
(3.11), where μ = 0.

3.3 Treatment Given After Exposure
Assume treatment is given after exposure, θ 2 ≠ 0 and θ1 = 0 = θ3. The DFE is S̄ = K with all
other states zero. Since θ1 = 0, the spectral radius of FV−1 can be determined by a 2×2

matrix M2. Denote the reproduction number with treatment θ2 as . (In the remaining
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discussion, we shall refer to , defined in (3.11), as the “basic reproduction number” and

 as the “reproduction number” with treatment θi.) Then

(3.12)

The reproduction number is the sum of four terms that depend on drug-sensitive infected
individuals, I, Itr, Is, Is,tr, or on resistant infected individuals Ir, Ir,tr, Is,r, Is,r,tr (whichever
sum is larger). If there are no births nor deaths, Λ = 0 = μ, then the reproduction number is
given by (3.12), where μ = 0. If θ2= 0, then the expression (3.12) simplifies to (3.11). Also,
if p1 ≈ 0 (treatment reduces transmission rate almost to zero) and β1,r and β2,r are

sufficiently small, then . However, if p1 is not sufficiently small, then it is not clear
whether treatment θ2 reduces the basic reproduction number.

3.4 Treatment Given After Infection
Assume drug treatment is given after infection, θ3 ≠ 0 and θ1 = 0 = θ2. The DFE is S̄ = K
with all other states zero. In this case, the spectral radius of FV−1 can also be determined by

a 2×2 matrix M2, , where

(3.13)

The reproduction number is the sum of three terms which in turn depend on the drug-
sensitive cases, I, Is, Is,tr, or on the resistant cases, Ir, Is,r, Is,r,tr, whichever sum is larger. If
there are no births nor deaths, Λ = 0 = μ, then the reproduction number is given by (3.13),
where μ = 0. If θ2= 0, the expression (3.13) simplifies to (3.11). Also if p1 ≈ 0 and β1,r and

β2,r are sufficiently small, then .

3.5 Prophylaxis
Assume chemoprophylaxis of susceptible individuals, θ1 ≠ 0 and θ2 = 0 = θ3. The DFE is
given by (3.7), where we let K1 and K2 be the values of S̄ and S̄pr, respectively, as in (3.8).

Since θ1 ≠ 0, , where M4 is given in (6.17). However, in the simpler case where
there are no births and deaths, Λ = 0 = μ, with the DFE S̄ = 0 and S̄pr = K, the reproduction
number simplifies to

(3.14)

The reproduction number is the sum of two terms that depend on drug-sensitive cases, Itr,
Is,tr or on resistant cases, Ir,tr, Is,r,tr. For chemoprophylaxis, it is always the case that

 because of the relations (2.1), (2.2), and (2.3).
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It is important to note that  does not depend on the treatment rate θ1. However, the DFE
(3.7) does depend on θ1. For θ1 ≫ μ, the DFE (3.7) is very close to S̄ ≈ 0 and S̄pr ≈ K. In this
case, if prophylaxis is begun in advance of the epidemic, as a preventive strategy, most

individuals will have been treated (in state Spr). Then  predicts local stability of this
equilibrium.

3.6 Combined Strategies
Assume the treatment strategies given after exposure θ2 and after infection θ3 are combined
(θ1 = 0). The DFE in this case is S̄ = K with all other states zero. Similar to the previous

cases,  can be computed from a 2×2 matrix M2. Then

(3.15)

where the values of vii are the diagonal elements of matrix V defined in (6.16). The
reproduction number is the sum of four terms which depend on sensitive cases, I, Itr, Is, Is,tr
or on resistant cases, Ir, Is,r, Ir,tr, Is,r,tr. Combining other treatment strategies, the values of

the reproduction numbers,  or , can be computed from a 4 × 4 matrix.

The effectiveness of the treatment strategies is difficult to assess from the various formulas
for the reproduction number because of the large number of parameters. Treatment after
infection or after exposure may even increase the basic reproduction number , given in
(3.11), if some of the parameters related to drug resistance are not sufficiently small, e.g., pi,
βi,r. However, it is interesting to note that chemoprophylaxis always results in a reduction of

. The reproduction numbers will be computed for the numerical examples studied in the
next section.

4 Numerical Simulations
For the numerical simulations, basic parameter values are chosen for the epidemic situation
discussed in Stilianakis et al. (1998), but we use the more general model with births and
deaths. In their study, the parameter values were chosen to fit an epidemic that occurred in a
boarding school for boys with treatment based on the antiviral drug amantadine. Two
different population sizes are assumed, K = 400 and K = 800. In addition, a population size
of K = 358 is assumed, as in the cases studied in Stilianakis et al. (1998). The results 1 of the

ODE model are compared to the CTMC model. We choose  so that the

average life expectancy is 80 years. If the birth rate , then K = Λ/μ= 400. If the

birth rate Λ is changed to , then K = 800. The dynamics are graphed over a
thirty-day time period; an epidemic occurs when there is no treatment. Because the values of
Λ and μ are small, the numerical results for the ODE model when Λ ≠ 0 ≠ μ are very close
to the results when Λ = 0 = μ
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The initial number of infected individuals is assumed to be either Is(0) = 1 or Is(0) = 5; one
or five individuals exhibit symptoms of the disease. In addition, the initial number of
susceptible individuals is S(0) = K − Is(0) and Spr(0) = 0. All other initial states are zero.
Unless specified otherwise, treatment is started immediately (at t = 0). In one example,
treatment begins at day seven. The basic parameter values for the epidemic case are given in
Table 1.

4.1 Comparison of the ODE and the CTMC Models: No Treatment
First, the CTMC model is compared to the ODE model when there is no treatment, θi = 0, i
= 1, 2, 3. Figure 2 graphs a solution of the ODE model and three sample paths of the CTMC
model when the population sizes are K = 400 and K = 800 and the initial number of
symptomatic individuals are Is(0) = 1 and Is(0) = 5, respectively. The graphs show the total
number of sick individuals (those exhibiting symptoms) versus time. These individuals are
easily identifiable during an epidemic because of their symptoms. In particular, Is(t) + Is,tr(t)
+ Is,r(t) + Is,r,tr(t) is graphed for each model for a period of thirty days. Each of the figures
contains plots of three sample paths for the stochastic model when K = 400 and Is(0) = 1 and
when K = 800 and Is(0) = 5.

In Figure 2, an outbreak does not occur for one of the three sample paths. This is due to the
fact that the final size distribution is bimodal (see Figure 3). When the final size is zero or
very small there is no outbreak but when the number of cases is relatively large there is an
outbreak. Applying the estimate in (3.6) for the CTMC model, when  = 5.04 and Is(0) = 1,
the probability of an outbreak is ≈ 0.8 and the probability of no outbreak is ≈ 0.2. For  =
10.08 and Is(0) = 5, the probability of an outbreak is very close to one. These estimates are
in good agreement with the approximate final size distribution based on 1000 sample paths
(Figure 3). The final size distribution is clearly bimodal when K = 400 and Is(0) = 1 (an
outbreak occurs with probability 0.82 and no outbreak with probability 0.18). The
bimodality is not evident when K = 800 and Is(0) = 5 because for all 1000 sample paths
there is an outbreak. Given an outbreak occurs, the average number of symptomatic cases
after 30 days is ≈ 199 when K = 400 and Is(0) = 1 and ≈ 397 when K = 800 and Is(0) = 5.
These values are in good agreement with the ODE model, where the total number of
symptomatic cases after 30 days is 198 when K = 400 and Is(0) = 1 and is 400 when K = 800
and Is(0) = 5 (the initial number of symptomatic cases is not included in these estimates).

Due to the mass action assumption, when θ 1 = 0,  is proportional to K. For the examples
in Figures 2 and 3, when K = 400,  = 5.04 and when K = 800,  = 10.4. These values are
larger than estimates of  for influenza pandemics which range between 1 and 2 (Gani et
al., 2005).

4.2 Comparison of the ODE and the CTMC Models: Treatment Begins at Day Seven
In Stilianakis et al. (1998) it was assumed that the population size included 358 susceptible
individuals with 220 people immune. All of the treatments were given at day seven and Is(0)
= 1. Some examples in Stilianakis et al. (1998) are simulated using the ODE and the the

CTMC models. However, in our simulations, we assume  and .
For a thirty-day period, there are few births and deaths. Thus, the simulations in the ODE
model for Λ ≠ 0 ≠ μ are very close to those when Λ = 0 = μ. Treatment begins at day seven,
seven days after the initial case of one symptomatic individual.

In the examples, we compare no treatment with treatment of symptomatic individuals (θ3 =
0.7, θ1 = 0 = θ2) and with prophylaxis and treatment of symptomatic individuals (θ3= 0.7 =
θ3, θ2 = 0) for the ODE and the CTMC models. At a treatment rate of θ3 = 0.7,
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approximately half of the population is treated in one day. Table 2 gives the total number of
symptomatic individuals (S cases), the total number of symptomatic and resistant
individuals (S&R cases), the total number of infected individuals (T cases), and the total
number of resistant individuals (TR cases) after 30 days. In the CTMC model,
approximately 22–23% of the sample paths (out of 1000 sample paths) do not generate an
outbreak. Therefore, given there is an outbreak in the CTMC model, the mean number of
cases are recorded in Table 2. Notice that with treatment of symptomatic individuals, the
number of cases is twice that of combined treatment of symptomatic individuals and
prophylaxis. In addition, the number of symptomatic and resistant cases is much greater if
there is only treatment of symptomatic individuals rather than combined treatment.

The reproduction numbers for these two cases are  and . However,
these values only apply if treatment is given immediately (at t = 0) and when initial values
are close to the DFE given by (3.7). A better descriptor of the dynamics in these cases is 
= 4.51 (when K = 358); delaying treatment causes an outbreak because >1. Applying the
estimate (3.6) to compute the probability of an outbreak, PO= 0.78, which agrees with the
values given in Table 2.

The final size distributions are bimodal when there is no treatment or when there is
treatment of only symptomatic individuals (similar to the graph on the left in Figure 3).
However, the bimodality is not as evident when there is combined treatment (Figure 4).
Chemoprophylaxis does not change the probability of an outbreak (PO) but does reduce the
number of cases and results in a large variation in the number of cases. Graphs of the
solution to the ODE model and the mean of the CTMC model (± one standard deviation) in
Figure 5 illustrate the dynamics of the two models. In these graphs, the mean number of
symptomatic individuals for the CTMC is less than the ODE solution because the mean
includes those few cases where there is no outbreak.

4.3 Comparison of the ODE and the CTMC Models: Single and Combined Treatment
Strategies

Next, we use the ODE and the CTMC models to compare treatment with one drug versus
combined treatment strategies (1000 sample paths are generated in the CTMC model). We
assume the population size is K = 400 with initial conditions Is(0) = 1 and S(0) = 399. There
is no outbreak or a very minor outbreak with prophylaxis, θ1 = 0.7 and θ2 = 0 = θ3

( ), but an outbreak occurs with treatment after exposure, θ2 = 0.7 and θ1 = 0 = θ3

( , Probability of an outbreak=PO= 0.71, see Table 3). With prophylaxis and

treatment after exposure, again there is no outbreak, θ1 = 0.35 = θ2 and θ3 = 0 ( ).
However, an outbreak occurs, if treatment is given after symptoms appear, θ3 = 0.7 and θ1 =

0 = θ2 ( , Probability of an Outbreak=PO= 0.76). Note that the treatment
reproduction numbers applied to formula (3.6) may not in general provide a good estimate
for the probability of an outbreak. When treatment is applied early, our model is more
complex than a simple SIR epidemic model for which the formula (3.6) was derived. In the
two cases with prophylaxis treatment, there is no outbreak and the final size distribution has
the shape of an exponential distribution, PO ≈ 0; it is not bimodal (see Figure 6). Thus, as
expected, chemoprophylaxis or chemoprophylaxis combined with treatment prior to
symptoms is a better strategy than treatment after symptoms appear.

The CTMC model predicts the same number of symptomatic individuals as in the ODE
model given there is an outbreak. But the CTMC model often predicts a positive probability
of no outbreak. For the strategies treatment after exposure, θ2 = 0.7, θ1 = 0 = θ3, and
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treatment after symptoms appear, θ3 = 0.7, θ2 = 0 = θ1, the probability of no outbreak is 0.29
and 0.24, respectively.

It is interesting to note that the reproduction number  calculated for θ1 = 0.7 and θ2
= 0 = θ3 in Table 3 is based on the resistant cases, e.g., see formula (3.14). A few resistant

cases develop but an outbreak is averted. The treatment reproduction numbers  and

 for the examples θ2 = 0.7, θ1 = 0 = θ3 and θ3 = 0.7, θ1 = 0 = θ2 in Table 3
(calculated formulas (3.12) and (3.13)) depend on the sensitive cases.

It should be noted that the reproduction number for chemoprophylaxis assumes the disease-
free equilibrium is given by (3.7). Thus, the reproduction number is useful in prediction of
an outbreak only if the population size is initially close to the disease-free equilibrium. That
is, individuals need to be successfully prophylaxed prior to introduction of any infective
individual for the reproduction number to be applied. For example, for the parameter values
in the previous simulations with K = 400 and with θ1 as low as θ1 = 0.1, the disease-free
equilibrium in (3.7) is S̄pr = 399.86 and S̄ = 0.14.

In the last example, we compare the dynamics of chemoprophylaxis given before or after
introduction of infectives and the level of treatment. If chemoprophylaxis is given at levels
of θ1 = 0.1 or θ1 = 0.7 for a sufficiently long period of time, then the class Spr builds up to a
level close to K (=400) in both cases. If, after chemoprophylaxis, an infective is introduced,
there is no outbreak (or a very minor outbreak) because the reproduction number is very
close to one in both cases. If, however, an infective is introduced at the same time
chemoprophylaxis is begun (S(0) = 399 and Spr(0) = 0, and Is(0) = 1), the level of treatment

θ1 has a big effect on the number of cases that occur. In this case  is a good predictor of
the dynamics only at high treatment levels (e.g., θ1 = 0.7). Graphs of the susceptible
individuals in Figure 7 for the ODE model illustrate that with a treatment level of θ1 = 0.7,
the DFE is reached very quickly; Spr is close to 400 after a short period of time. But with
low levels of treatment θ1 = 0.1, Spr approaches a value less than 200 because individuals
are getting infected faster than being treated. For the ODE model, when θ1 = 0.1 the total
number of symptomatic cases after 30 days is 76 with 2.3 symptomatic and resistant cases
(232 total cases and 3.6 total resistant cases), whereas with θ1 = 0.7, the total number of
symptomatic cases is 3.5 with 0.6 symptomatic and resistant cases (13.8 total cases and 1.2
total resistant cases). These estimates agree with the CTMC model given that an outbreak
occurs. The final size distribution for the case θ1 = 0.7 has a shape similar to that given in
Figure 4.

5 Summary
We formulated a CTMC model for an influenza epidemic with drug resistance and
computed reproduction numbers for the ODE model under different treatment strategies. We
also compared the number of cases predicted by the ODE model to the CTMC model and
studied the effects of different treatment strategies through numerical simulations.

Treatment, especially with amantadine or rimantadine, can lead to the shedding of drug
resistant virus. Formulas (3.11)–(3.15) for the reproduction numbers clearly show the
contributions from the resistant cases and the sensitive cases. Under particular treatment
strategies it is possible that the resistant cases rather than the sensitive cases will determine
the magnitude of the reproduction number. Resistant cases that arise due to treatment may
cause a minor outbreak in an epidemic situation or result in disease persistence in a
pandemic situation.
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Based on the numerical examples, the basic reproduction number  decreased with all of
three of the treatments considered: chemoprophylaxis, treatment of exposed individuals
before symptoms appear, and treatment of symptomatic individuals. In all cases,
chemoprophylaxis was the most effective treatment strategy. This was also shown by
Stilianakis et al. (1998). In addition, we have shown that chemoprophylaxis will always
reduce the basic reproduction number. Combining treatment strategies, the same or greater
reduction in cases can be achieved as with a single strategy but the combined treatment rates
can be lower than a single treatment rate (compare θ1 = 0.7, θ2 = 0 = θ3 with θ1 = 0.35 = θ2,
θ3 = 0 in Table 3).

Caution is needed when the reproduction numbers calculated for various treatment strategies
are used to predict an outbreak. With chemoprophylaxis, calculation of the reproduction
number assumes that the population has already been treated at a level θ1 so that initial
number of susceptible individuals is reduced and is close to the disease-free equilibrium
(DFE) (3.7). If this is not the case, for example, if chemoprophylaxis is started at the same
time symptomatic individuals are introduced into the population, then a high level of
chemoprophylaxis is needed to reach the DFE rapidly to prevent further infection.

In our numerical examples, drug resistance contributed to the overall number of cases. But
in the epidemic situation considered here, they represented a small proportion of the cases.
The small number of resistant cases is due to the assumed lower transmission rates for
resistant cases than sensitive cases. However, even though the number of resistant cases is
small, they may still impact the basic reproduction number and lead to minor outbreaks.
They also represent a danger in that they might set off a second drug resistant wave of the
epidemic (Stilianakis et al., 1998).

We have shown for small population sizes and for small initial number of infected
individuals, variability in the epidemic process may result in no outbreak (probability 1–
PO). Therefore, treatment applied to a small population may be more effective than
predicted by the ODE model. In addition, the final size distribution for the CTMC model
shows that there may be a large variability in number of cases (Figure 4).

In all cases, chemoprophylaxis was the most effective strategy. This work thus supports the
conclusions of the recent large scale simulations of influenza A outbreaks that suggest that
prophylaxis, targeted to regions where influenza infections are occurring, should be the
backbone of any strategy to contain influenza (Ferguson et al., 2005; Ferguson et al., 2006;
Germann et al., 2006; Longini Jr. et al., 2005). While the parameters used in our simulations
apply to amantadine treatment they can be modified to the case of treatment with
neuraminidase inhibitors as recently shown by Regoes and Bonhoeffer (2006).

Our models assume a single well-mixed population. They need to be generalized to more
realistic situations that contain age and spatial structure and which relax the well-mixed
assumption for contacts between individuals. These more general models will be especially
important in pandemic planning for an H5N1 outbreak.
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6 Appendix

6.1 SDE Model
We assume the changes ΔS(t), ΔSpr(t), etc. (±1 or 0) are small relative to the total population
size. To compute the drift vector f⃗(X⃗(t)) in (2.5), we apply the transition probabilities for the
CTMC model and compute the expectations. The expectation of ΔS(t) is

where the right side equals the values of the random variables at time t. In particular,
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where the drift vector f⃗(X⃗(t)) has the same form as the right side of the ODE model.

To compute the diffusion matrix D(X⃗(t)) in (2.5), we find the covariance matrix Σ(X⃗(t)) =
E(ΔX⃗[ΔX⃗]T) − E(ΔX⃗)[E(ΔX⃗)]T = E(ΔX⃗(ΔX⃗)T) + o(Δt). Then Σ(X⃗(t)) = D(X⃗(t))DT (X⃗(t)) Δt +
o(Δt). Matrix ΔX⃗(ΔX⃗)T is an 11×11 symmetric positive definite matrix of the form

Applying the 36 transition probabilities defined for the CTMC model, the nonzero entries in
E(ΔX⃗(ΔX⃗)T) are given as follows:
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The diffusion matrix D can be defined so that it has dimension 11 × 36. Entries in the matrix
D consist of the square root of the births, the deaths, and the transitions. The nonzero entries
in the first three rows and first eight columns of D are defined explicitly as follows:

where

The dependence on time, e.g., S ≡ S(t), is omitted for simplicity. Vector W ⃗(t) in (2.5) equals
(W1(t), W2(t), …, W36(t))T, a vector of 36 independent Wiener processes. Other SDE
formulations and more details may be found in the references (Allen, 2007; Xu, 2006).

6.2 Basic Reproduction Number
To compute the basic reproduction number for the ODE system, where θi ≠ 0, i = 1, 2, 3, the
Jacobian matrices F and V are computed from the vectors  and , defined in (3.9) and
(3.10), respectively. Computing F and V and evaluating at the DFE, S̄ = K1, S̄pr = K2, lead to

and

(6.16)

Xu et al. Page 19

J Theor Biol. Author manuscript; available in PMC 2012 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where

We then compute FV−1. Since in FV−1, the last four rows are all zeros, the spectral radius is
determined by the following 4×4 submatrix of FV−1,

(6.17)

where

and vii is a diagonal element in matrix V. Then  = ρ(FV−1) = ρ(M4).
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Figure 1.
A Compartmental Diagram of an SIR Influenza Model with Drug Therapy
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Figure 2.
Comparison of the ODE model (smooth curve) to the CTMC model, where θi= 0, i = 1, 2, 3,

 and where either K = 400 and Is(0) = 1 (  = 5.04) (left) or K = 800 and Is(0) = 5
(  = 10.08) (right). Three sample paths are illustrated.
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Figure 3.
Approximate final size distribution Prob{Final Size = n} for the CTMC model when K =
400 and Is(0) = 1 (left) and when K = 800 and Is(0) = 5 (right) based on 1000 sample paths
and no treatment. The bar width in the frequency histogram equals 2. Hence, for 1000
sample paths, the probability of the final size is multiplied by 2 × 103.
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Figure 4.
Approximate final size distribution for the CTMC model based on 1000 sample paths when
K = 358 and Is(0) = 1. Combined treatment of symptomatic individuals and prophylaxis
begins at day 7 (θ1 = 0.7 = θ3, θ2 = 0). The bar width in the frequency histogram equals 2.
Hence, for 1000 sample paths, the probability of the final size is multiplied by 2 × 103.
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Figure 5.
Solution to the ODE and mean of the CTMC model (± one standard deviation). Number of
symptomatic individuals is graphed, K = 358 and Is(0) = 1. Treatment begins at day 7 with
treatment of symptomatic individuals and prophylaxis (θ1 = 0.7 = θ3, θ2 = 0).
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Figure 6.
Approximate final size distribution for the CTMC model based on 1000 sample paths when
K = 400 and Is(0) = 1. Chemoprophylaxis begins at day 0 (θ1 = 0.7, θ2 = 0 =θ3). The bar
width in the frequency histogram equals 1. Hence, for 1000 sample paths, the probability of
the final size is multiplied by 103.

Xu et al. Page 26

J Theor Biol. Author manuscript; available in PMC 2012 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Graphs of the susceptible individuals, S(t) (solid curve) and Spr(t) (dashed curve), for the
ODE model with K = 400; θ1 = 0.7, θ2 = 0 = θ3 (left) and θ1 = 0.1, θ2 = 0 = θ3 (right); S(0) =
399 and Spr(0) = 0.
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Table 1

Basic Parameter Values (Stilianakis et al., 1998)

Parameter Basic Values Parameter Basic Values

β1 6 × 10−4/day γ1 0.50/day

β1,r β1/5 = 1.2 × 10−4/day γ2 0.25/day

β2 6 × 10−3/day r1 2.0/day

β2,r β2/5 = 1.2 × 10−3/day r2 1.33/day

p1 0.67/day κ1 0.25 × 0.02 = 0.005/day

p2 0.33/day κ2 0.25 × 0.20 = 0.05/day

p3 0.10/day θ1 0.70/day

δ1 0.50/day θ2 0.70/day

δ2 0.10/day θ3 0.70/day
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