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Abstract
New stochastic models are developed for the dynamics of a viral infection and an immune
response during the early stages of infection. The stochastic models are derived based on the
dynamics of deterministic models. The simplest deterministic model is a well-known system of
ordinary differential equations which consists of three populations: uninfected cells, actively
infected cells, and virus particles. This basic model is extended to include some factors of the
immune response related to Human Immunodeficiency Virus-1 (HIV-1) infection. For the
deterministic models, the basic reproduction number, , is calculated and it is shown that if  <
1, the disease-free equilibrium is locally asymptotically stable and is globally asymptotically
stable in some special cases. The new stochastic models are systems of stochastic differential
equations (SDEs) and continuous-time Markov chain (CTMC) models that account for the
variability in cellular reproduction and death, the infection process, the immune system activation,
and viral reproduction. Two viral release strategies are considered: budding and bursting. The
CTMC model is used to estimate the probability of virus extinction during the early stages of
infection. Numerical simulations are carried out using parameter values applicable to HIV-1
dynamics. The stochastic models provide new insights, distinct from the basic deterministic
models. For the case  > 1, the deterministic models predict the viral infection persists in the
host. But for the stochastic models, there is a positive probability of viral extinction. It is shown
that the probability of a successful invasion depends on the initial viral dose, whether the immune
system is activated, and whether the release strategy is bursting or budding.
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1. Introduction
Viruses invade almost any type of body tissue, from the brain to the skin [12]. In healthy
individuals, the majority of viral infections are eliminated by the body’s innate or adaptive
immune response. Although the immune response is one of the most important factors in
viral elimination, other factors play a role, including the initial viral dose and the viral
release strategy. The goal of this research is to apply deterministic and stochastic models to
investigate the effect of three factors on viral establishment: the immune response, initial
viral dose, and viral release strategy.
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A well-known deterministic model for viral entry and release from a host cell, but with no
immune response, serves as the starting point for our model development. This simple
model consists of a system of three ordinary differential equations (ODEs) for the target
cells, actively infected target cells, and virus particles [25, 29, 42]. We also consider a
deterministic model with an immune response, applicable to Human Immunodeficiency
Virus-1 (HIV-1) [6, 33]. New stochastic differential equations (SDEs) and continuous-time
Markov chain (CTMC) models are derived based on the ODE models.

The stochastic models distinguish between two types of viral release strategies: budding and
bursting. In the budding strategy, virus particles are produced throughout the life cycle of an
infected cell, budding from the surface of the cell. This release strategy is often employed by
enveloped viruses, e.g., influenza, HIV-1, rabies virus [23, 30, 35]. In the bursting strategy,
viruses are reproduced within a cell and released only upon death of the infected cell, in a
“burst” of new virus particles or virions. This latter strategy is often employed by
nonenveloped viruses e.g., polioviruses [35, 37]. Parameter values estimated from HIV-1
clinical trials [6, 8] are used in the numerical simulations of the models. In HIV-1 infection,
the predominant release strategy early in the infection is budding [30]. It is shown in the
stochastic model with an immune response and parameter values appropriate for HIV-1 that
budding is a more successful invasion strategy than bursting.

Numerous deterministic models have been developed to study various aspects of viral
invasion and the initial immune response to HIV-1 infection (e.g., [5, 28, 29, 39, 42, 43] and
references therein) but only a few stochastic models have been developed (e.g., [8, 18, 22,
27, 36, 38, 40]). Chao et al. used a stage-structured CTMC approach to model HIV-1
infection [8]. Tan et al. [36] and Lin et al. [22] applied Monte Carlo methods. Tuckwell et
al. [38, 40] used SDEs to model early HIV-1 infection, a model with four populations but
with no immune response: healthy, latent, and infected cell populations and virus particles.
Their model was further studied by Kamina et al. [18]. Our SDE models are most closely
related to the model of Tuckwell et al. [38], but our derivation is new. In addition to the SDE
models, we formulate new CTMC models to investigate the probability of viral extinction
during the early stages of infection. Komarova [20] applied a deterministic spatial model to
study the optimal release strategies, budding versus bursting, in the presence of antibodies.
Pearson et al. [27] applied stochastic theory, similar to the branching process theory applied
here, to obtain estimates for the probability of viral extinction for the two release strategies
in a virus-cell model with no immune response. Their results agree with ours for the model
with no immune response.

In the next section, a well-known ODE model for viral infection in the absence of an
immune response is described, then an ODE model for HIV-1 infection with an immune
response [6, 33]. The basic reproduction number  and the type reproduction number  are
calculated. In Section 4, new SDE and CTMC models for the early stages of infection are
formulated. Applying branching processes theory, an expression is derived for the
probability of viral extinction when  > 1 (or  > 1) which depends on initial viral dose,
viral release strategy, and immune response. In Section 5, numerical examples illustrate and
compare the results of the three model formulations, ODE, SDE, and CTMC models. In
Section 6, the results are summarized and further research problems are suggested.

2. Deterministic Mathematical Models
A virus must successfully enter a target cell, then use the host machinery to reproduce
multiple copies of itself and to assemble within the cell so that mature virus particles or
virions can be released into the blood to begin a new cycle. The immune response, triggered
by the infection, is a complex set of pathways consisting of the innate and the adaptive
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immune response. In this investigation, we concentrate on only three components of the
immune response, amplification of the helper T cells after stimulation by infected cells,
clearing of the infected cells by killer cells or cytotoxic lymphocytes (CTLs) and clearing of
virus particles after immunoglobulin binding and engulfment by macrophages. These three
responses are modeled in an HIV-1 infection. First, the simple model with no immune
response is described, then a model formulated by Bagnoli et al. [6] and Sguanci et al. [33]
for HIV-1 infection that includes the three components related to an immune response.

2.1. Model with No Immune Response
The most well-known model for intra-host viral invasion and reproduction consists of three
ODEs representing the dynamics of the target cells, T, actively infected target cells, I, and
virions, V (e.g., [25, 29]):

(1)

(2)

(3)

Parameter λ is the production rate of new target cells with decreased production as their
density increases. The amount of decrease depends on the parameter K. For the case K →
∞, the differential equation for T simplifies to

(4)

Parameters δT, δI, and c are the death rates of target cells, infected target cells, and virus
particles, respectively. Generally, δT ≤ δI ≤ c. Parameter β is the infection rate per healthy
target cell upon interaction with the virus. Note that βVT appears in all three equations,
representing a transition from a healthy T cell to an infected T cell and a loss of a virus
particle. This term is often neglected from the virus equation (3) because the number of
virions is large compared to this loss term (e.g., [25, 29]). The units for β differ between
equations (3) and equations (1) and (2) because βVT is in units of virions in equation (3),
whereas, in the other two equations, βVT is in units of cells. But the rate is often taken to be
the same for all three equations [38]. Finally, the parameter π = NδI is the production rate of
new virus particles per infected cell. The value N is referred to as the “burst size”, the
number of new virus particles produced during the lifetime of an infected cell. We assume N
is an integer and N ≥ 2. All of the parameter values are positive.

2.2. HIV-1 Model with Immune Response
The preceding model (1)–(3) is extended to one that includes some factors related to an
immune response, specifically for HIV-1 infection [6, 33]. In HIV-1, the target cells are the
CD4+ T cells (T) which include primarily helper T cells but also macrophages and dendritic
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cells. When the healthy T cells become infected (I), the viral epitope presented on the cell
surface triggers B cells and CTLs [33]. The B cells release antibodies that bind to the
antigen while CTLs remove infected helper T cells. Although many HIV models emphasize
different aspects of the intra-host virus and immune system dynamics (see e.g. [5, 7, 39, 42,
43]), our model is adapted from the one proposed by Bagnoli et al. [6] and Sguanci et al.
[33]. Their model is a system of ordinary differential equations that only involves three
variables, T, I, and V. The B cell and CTL responses are modeled through inclusion of
parameters that represent receptor recognition and activation of helper T cells. Activation of
helper T cells is via antigen presenting cells (APCs) that process the virus. APCs include
macrophages, dendritic cells, and B cells. Unprocessed viral antigens, V, are not involved in
activation of helper T cells. Thus, clonal amplification of the helper T cells in this simplified
model, has a mass action form which is proportional to both helper T cells and infected T
cells. The B cell and CTL responses are assumed to be proportional to the concentration of
helper T cells. These assumptions simplify the model, restricting the number of variables to
three, the same number as in the model (1)–(3). A compartmental diagram for the variables
T, I and V with some factors related to immune control is graphed in Figure 1.

In the model of Bagnoli et al. [6] and Sguanci et al. [33], three additional parameters and
terms are added to model (1)–(3) to represent some of the important factors related to
activation of the immune system. Parameter γ(T) represents clonal amplification of the helper
T cells after stimulation by infected T cells. The increase in helper T cells (also the target
cells of the virus) through the γ(T)IT term represents an increase in the immune response due
to infection. The helper T cells in conjunction with either the infected T cells or virions V
activate the CTLs or the B cells through the terms γ(I)TI and γ(V)TV, respectively. These
latter expressions represent removal of infected T cells and clearance of virus particles. The
model has the following form:

(5)

(6)

(7)

Some of the parameter values applied to model (5)–(7) are given in Table 1 [6, 8]. The units
of β in the equations (5) and (6) are (virions × day)−1 but in equation (7), the units are (cell ×
day)−1. Here, we include this term and assume it has the same magnitude in all three
equations [38], assuming it takes one virus particle to successfully enter and infect a cell.
The term −βVT in equation (7) is neglected in [6] and [33].

3. Deterministic Model Analysis
The disease-free equilibrium (DFE) of models (1)–(3) and (5)–(7) is
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(8)

For the case K → ∞, T ̄ = λ/δT. Calculation of the basic reproduction number and local
stability of the DFE is verified for model (5)–(7) which also applies to the simpler model
(1)–(3) when γ(i) = 0, i = T, I, V.

The local stability of the DFE of model (5)–(7) can be determined by application of the next
generation matrix approach [41]. (See Appendix A1.) The next generation matrix equals

(9)

The basic reproduction number is the spectral radius of :

(10)

Hence, the DFE (8) is locally asymptotically stable if  < 1. For the parameter values in
Table 1 corresponding to model (1)–(3),  = 1 if β ≈ 8.839 × 10−7.

Roberts and Heesterbeek [31] proposed an alternative method of calculating a threshold
quantity, equivalent to . Based on the work of Heesterbeek and Roberts [17], a type
reproduction number for controlling the infected cells is as follows:

where e is the first unit vector, tr refers to the transpose of the vector,  is the next
generation matrix (9),  is the identity matrix, and P is the projection matrix for the infected
cells or type 1 compartment (i.e. p11 = 1, and pij = 0 for all other entries). Thus,

(11)

so that  = ( )2. If the objective is to control the virus, instead of infected cells, the type
reproduction number is denoted . For this model,  = . Since the type reproductions are
equal, we denote the single type reproduction number as  =  = . It is the type
reproduction number  that is often used as the definition of the basic reproduction number
(e.g., [7, 25, 27, 29, 42, 43]).

For model (1)–(3) with γ(i) = 0, i = T, I, V, the basic reproduction number and type
reproduction numbers are
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(12)

and

(13)

For the parameter values in Table 1 with γ(i) = 0, i = T, I, V, it follows that  = 1 if β ≈ 1.855
× 10−8. Infection occurs if  > 1 (  > 1). It will be shown in the stochastic models as well,
that the condition  > 1 is required for occurrence of infection.

For models (1)–(3) and (5)–(7), a more complete analysis is summarized in Appendix A2.

4. Stochastic Mathematical Models
Itô SDE models can be derived by applying the modeling procedure in [1, 2, 3, 4]. In
biochemical applications, the derived SDE system is referred to as the chemical Langevin
equation [13, 14]. In addition, a CTMC model is derived based on the theory of branching
processes [16, 19, 24]. The derivations distinguish between the two release strategies,
bursting and budding. The bursting case assumes there is a coupling of the release of free
virions and burst of infected cells. That is, π = NδI and, therefore, the number of virions will
not increase until the lysis of the infected cells and release of virions. The accumulation of
virions, inside an infected cell, exhausts all the cell resources. For the budding case, the
death of infected cells and release of virions are assumed to be independent processes; virus
particles are being produced and released continuously during the entire life of the infected
cells.

4.1. SDE: Bursting
Possible state changes in the stochastic process are based on the deterministic models. When
Δt is small, these changes are given in Table 2. For ease of notation, the same notation is
used as for the deterministic models, although for the SDE models, T, I, and V are
continuous random variables. Let X⃗(t) = (I, V, T)tr be a continuous random vector, ΔX⃗ = X⃗ (t
+ Δt) − X⃗ (t), and t ∈ [0, ∞).

When one infected cell dies, at the same time, N virions are released, (ΔX⃗)3 = (−1, N, 0)tr. In
addition, it is assumed that a loss of one virus particle by entry into a healthy cell results in a
new infected cell, (ΔX⃗)1 = (1, −1, −1)tr. Based on the state changes and their associated
probabilities, we can compute the following expectations (ΔX⃗) and  ((ΔX⃗)(ΔX⃗)tr).

The expectation of ΔX⃗ is the drift vector f⃗ times Δt:

where
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Note that f⃗ is the same as the right side of the ODE system. An approximation of the
covariance matrix of ΔX⃗ to order Δt leads to the diffusion matrix Σ times Δt:

where

and Γ(T) = (λ + γ(T)IT)(1 − T/K). The term  (ΔX⃗)[  (ΔX⃗)]tr in the covariance matrix is
dropped since it is of order (Δt)2.

Since a 3 × 3 square matrix S = Σ1/2 is difficult to find in practice, we use an equivalent
matrix H such that HHtr = Σ as in [3], where matrix H is of dimension 3 × 5:

and Γ (T) = (λ + γ(T)IT)(1 −T/K). The Itô SDE model for the bursting case has the following
form:

(14)

where W ⃗ (t) = (W1(t), W2(t), · · ·, W5(t))tr is a vector of five independent Wiener processes.
In the absence of infection, V (0) = 0, I(0) = 0, and T (0) = T ̄ with γ(i) = 0 for i = T, I, V. The
Itô SDE for the target cells, T (t), can be computed from Table 2 with state changes i = 5, 6,
7, leading to

(15)
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ODEs for the mean, variance, and higher-order moments corresponding to each of the
random variables can be computed by applying the multivariate Itô’s formula [26].
However, these ODEs do not form a closed system; they depend on successively higher-
order moments so that approximation methods for the higher-order moments are needed to
form a finite system of ODEs [11]. For the case of the scalar equation (15), the moment
differential equations form a closed system that can be solved. Applying Itô’s formula [26]
to equation (15), the mean and variance of T (t) can be shown to equal

and

For large K ≫ 1 and t → ∞, Var(T (t)) ≈ T ̄. In the examples in Section 5, the mean and
variance of the random variables for models (1)–(3) and (5)–(7) will be computed
numerically.

4.2. SDE: Budding
For the budding case, the expectation matrix and the drift vector are the same as the ones for
the bursting case. The covariance matrix and diffusion matrix differ from the previous case.
Table 3 lists the possible state changes. There are no “N” terms and δI and π are only related
through the definition NδI = π. Release of virions occurs continuously throughout the life of
the infected cell.

The diffusion matrix Σ has the form

where Γ(T) = (λ + γ(T)IT)(1 − T/K). Applying a similar approach to the bursting case, we can
find a matrix G which satisfies GGtr = Σ [3]:

where Γ(T) = (λ + γ(I)IT)(1 − T/K). The Itô SDE model for budding has the following form:
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(16)

where W ⃗ (t) = (W1(t), W2(t), W3(t), W4(t))tr is a vector of four independent Wiener
processes. In the absence of the infection, the SDE for the target cells is given by equation
(15).

4.3. CTMC Model
To gain an understanding of the probability of virus extinction, a time-homogenous CTMC
model can be formulated based on the infinitesimal probabilities. After an initial viral
invasion, the target cells are assumed to be at steady-state, T (t) = T ̄. Then a simplified
CTMC model can be expressed in terms of the disease states, I(t) and V (t). For γ(T) and I(t)
small, the healthy target cell population size is approximately T ̄, that is, we assume that the
immune system has been activated and the T cell levels are at normal levels, T ̄. For the
CTMC model, let I(t) and V (t) be discrete random variables with values in the set of
nonnegative integers for t ∈ [0, ∞) and Y ⃗ (t) = (I(t), V (t)). Assume that each infected cell or
virion acts independently from each other and the dynamics do not depend on past history.
Theory from branching processes, applied to the probability generating functions (p.g.f.s) of
I(t) and V (t), can be used to obtain estimates for the probability of virus extinction, that is,

 at the outset of infection.

The p.g.f.s of I(t) and V (t) are used to write the backward Kolmogorov equation whose
steady-state solution yields the probability of extinction. If Y ⃗ (0) = (1, 0), then the p.g.f. of
I(t) is

If Y ⃗ (0) = (0, 1), then the p.g.f. of V (t) is

The infinitesimal probabilities in Tables 2 and 3 can be used to write the backward
Kolmogorov differential equations for φi(t; x, y) [19]:

(17)

with initial conditions φi(0; x, y) = x and φ2(0; x, y) = y. At t = 0, the functions

 and , where the terms aj,k and bj,k are the
infinitesimal probabilities in Tables 2 and 3. That is, the expression δ1,j δ0,k + aj,kΔt + o(Δt)
is the probability that a single infected cell, I(0) = 1, will produce j infected cells and k
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virions, where δj,k is the Kronecker delta symbol, i.e., δj,k = 0 if j ≠ k and δj,j = 1. Similarly
δ0,j δ1,k + bj,kΔt + o(Δt) is the probability that a single virion, V (0) = 1, will produce j
infected cells and k virions. The process is time-homogeneous; aj,k and bj,k are independent
of time t. To find the probability of virus extinction, we are interested in steady-state
solutions of (17). Setting the right side of the differential equations (17) to zero, the roots
(q1, q2) of gi(q1, q2) = 0, i = 1, 2, such that 0 < qi ≤ 1 can be used to estimate the probability
of virus extinction when Y ⃗ (0) = (1, 0) or Y ⃗ (0) = (0, 1) [16, 19, 24]. The properties of gi
imply that there always exists a solution gi(1, 1) = 0. But there may exist another positive
solution (q1, q2), 0 < qi < 1, i = 1, 2 [16, 19, 24].

Let Y ⃗ (0) = (I(0), V (0)) = (m, n), T (0) = T ̄ and qi be the smallest positive solutions of the
equation gi(q1, q2) = 0, i = 1, 2, 0 < qi ≤ 1. Then, assuming independence of events, it
follows from Galton-Watson branching theory [16, 19, 24] that the probability of virus

extinction  for the CTMC model is

4.3.1. CTMC: Bursting—For the bursting case, the expressions for the infinitesimal
probabilities can be obtained from Table 2. Only the following state changes, (ΔX⃗)i, i = 1, 2,
3, 4, 7, in Table 2, affect I and V. Assuming Y ⃗ (0) = (1, 0), then a0,0 = γ(I)T ̄, a0,N = δI, and
a1,0 = −(γ (I)T ̄ +δI). Next, assuming Y ⃗ (0) = (0, 1), b0,0 = c + γ(V)T ̄, b1,0 = βT ̄, and b0,1 = −(c
+γ(V)T ̄ + βT ̄). Thus,

(18)

and

(19)

To estimate the probability of extinction, the smallest positive solution (q1, q2) of gi(q1, q2)
= 0 are calculated. Alternately, the roots (q1, q2) are solutions of the time-homogeneous
“offspring” p.g.f.s, denoted as fi(x, y), i = 1, 2. That is, the solutions (q1, q2) of fi(q1, q2) = qi,
i = 1, 2. In the case of bursting, the offspring p.g.f.s are given by

It is easy to check that there always exists a solution x = 1 = y to gi(x, y) = 0, i = 1, 2.
Another solution of equations (18)–(19) exists, (x, y) = (q1, q2), where 0 < qi < 1 iff  > 1
(or  > 1). This can be shown by solving g2(x, y) = 0 for x and substituting the value of x
into g1(x, y) = 0:

(20)
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where

and c2 = c1 − 1 > 0. By Descarte’s rule of signs and the fact that y = 1 is a solution of p(y) =
0, it follows that the polynomial p(y) has exactly two positive real roots. If  ≤ 1, there is no
solution of p(y) = 0 on the interval (0, 1), which follows from the facts that p(0) > 0, p(1) =
1, and dp(y)/dy < 0 for y ∈ (0, 1). In addition, there is a positive root q2, 0 < q2 < 1 iff  > 1.
If 0 < q2 < 1, then the solution x = q1 of g2(x, q2) = 0 also satisfies 0 < q1 < 1.

Theorem 1: The probability of virus extinction with bursting, T (t) = T ̄, and Y ⃗ (0) = (I(0), V
(0)) = (m, n) is approximately one, if  ≤ 1 (  ≤ 1) and is approximately , if  > 1
(  > 1), where (q1, q2) is the smallest positive root such that 0 < qi < 1, i = 1, 2 of (18) and
(19).

For the model with no immune system activation, γ(I) = 0 = γ(T), the probabilities (q1, q2)
agree with those calculated by Pearson et al. [27]. In the numerical examples, the roots q1
and q2 of equations (18) and (19) will be calculated numerically.

4.3.2. CTMC: Budding—For the budding case, the same method as in the previous
section can be applied to the infinitesimal probabilities from Table 3. Given Y ⃗ = (1, 0), a0,0 =
δI + γ(V)T ̄, a1,1 = π, and a1,0 = −(δI + γ(V)T ̄ + π). Also, given Y ⃗ = (0, 1), b0,1 = βT ̄, b0,0 = c +
γ(V)T ̄, and b0,1 = −(βT ̄ + c + γ(V)T ̄. Thus,

(21)

and

(22)

The time-homogeneous offspring p.g.f.s in the case of budding are given by

It can be shown that there is a solution (q1, q2), 0 < qi < 1, to equations (21) and (22) iff  >
1 (or  > 1). To verify this assertion, solve for y in g2(x, y) = 0, then substitute y into g1(x, y)
= 0:

where
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and d1 = d2 + 1. The solutions to the quadratic equation p(x) = 0 are x = 1, 1/ . Thus, q1 =
1/  < 1 iff  > 1. But if q1 = 1/  < 1, then

(23)

Theorem 2: The probability of virus extinction with budding, T (t) = T ̄, and Y ⃗ (0) = (I(0), V
(0)) = (m, n) is approximately one, if  ≤ 1 (  ≤ 1) and is approximately , if  >
1 (  > 1), where q2 is defined in equation (23).

In the case γ(I) = 0 = γ(T), the probabilities

(24)

Applying a similar technique, Pearson et al. [27] obtained these same probabilities of
extinction.

5. Numerical Examples
Two sets of numerical examples illustrate the dynamics of the SDE and CTMC models for
the budding and bursting cases with and without the immune response. Hypothetical but
reasonable values for the transmission rate β are chosen so that  > 1 in each case.
Estimates for the probability of virus extinction are obtained based on the analysis in the
preceding section. In addition, in the case of virus persistence, simulations of the SDE
models are used to illustrate an approximate stationary probability distribution, obtained
after a sufficiently long period of time. Estimates are given for the expectation and variance
of the distributions.

5.1. No Immune Response
In the first set of examples, γ(i) = 0, i = T, I, V. All other parameter values are given in Table
1. In addition, β = 1 × 10−7 so that  > 1. In particular,  = 2.28 and  = 5.21.

For the CTMC model, estimates for the probability of extinction are calculated. Estimates
for (q1, q2) in the bursting case are: (0.005029, 0.9585) and in the budding case are (1/ ,
q2), where q2 is defined in (23): (0.1920, 0.9663). (See Table 4 and Figure 2.) A viral
invasion is initiated with Y ⃗ (0) = (I(0), V (0)) = (0, n). For this initial condition, there is a
slight difference in the probability of virus extinction, , between the two release strategies,
although q2,burst < q2,bud. But there is a significant difference in probability of virus
extinction if a cell is initially infected, I(0) = m, q1,burst ≪ q1,bud; the probability of
extinction is close to zero in the bursting model, m ≥ 1.

Pearson et al. [27] obtained the same estimates for q1 and q2 and showed that q2,burst <
q2,bud for burst sizes N ≥ 2. In addition, they showed that if βT ̄/(c + βT ̄) ≈ 1, then q2,burst ≈ 0
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and q2,bud ≈ 1/N and if the burst size approaches infinity, N → ∞, then q2 → c/(c + βT ̄) for
both budding and bursting (follows from equations (20) and (24) and Figure 2, p. 5, [27]).

In the absence of infection, equation (15), the probability density of the healthy target cells T
(t) has an expectation and a variance that are approximately equal. For the parameter values
in Table 1, the probability density of T (t), based on equation (15) has an expectation  (T
(t)) = T ̄ = 106 and variance Var(T (t)) ≈ 106. An approximation to the probability density
function is graphed in Figure 3. The distribution is approximately normally distributed.

If V (0) = 1000, then the probability of virus extinction is approximately zero, that is, the
virus will persist in the host. In this case, the solutions approach a stationary distribution.
The expectation of the stationary solution of the SDE models for bursting (14) and budding
(16) are approximately equal to each other and equal to the EE of the ODE model,
equilibrium (A.2) (Appendix A2). (See Figure 4.) Based on 10,000 sample path solutions to
(14) (or 16), the expectations are

Approximate stationary distributions for each of the random variables are attained by t = 30
days. The distributions are graphed in Figure 5.

5.2. HIV-1 with Immune Response
For the model with γ(i) > 0, the parameter values are given in Table 1. Let β = 2 ×10−6 so
that  > 1. In particular,  = 1.41 and  = 1.99. For the CTMC model, estimates for (q1,
q2) in the bursting case are: (0.9409, 0.9873) and in the budding case are (0.5022, 0.8929).
(See Table 5.) The probability of extinction  is graphed in Figure 6.

The values of (q1, q2) are computed for various values of β in Table 5. Given the explicit
expression for q2 in (23), it can be seen that as the transmission rate β or the burst size N
increases, the value of q2 decreases, resulting in a smaller probability of virus extinction.
With immune system activation and parameter values appropriate for HIV-1, there is a
distinct difference between the success of a viral invasion with bursting versus budding.
With the budding strategy, there is a much lower probability of virus extinction than with
bursting.

For V (0) = 1000, the viral invasion is successful, independent of the strategy; solutions to
the SDEs approach an approximate stationary distribution by time t = 30 days. The
expectation of these distributions for the SDE models for bursting (14) and budding (16) are
approximately equal to each other and equal to a locally stable EE of the ODE model. (See
Figures 7 and 8.) Based on 10,000 stochastic realizations of model (14) (or (16)), the
expectations are

As might be expected the variance in the virions is larger in the bursting strategy than in the
budding strategy.

Yuan and Allen Page 13

Math Biosci. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. Summary and Discussion
Our goal in this investigation was to apply stochastic techniques that can be used in
conjunction with ODE models to assess the importance of viral release strategy, viral dose,
and the immune response in viral invasion and persistence. ODE models for intra-host viral
infection with and without an immune response, models (1)–(3) and (5)–(7), provided the
motivation for our stochastic model development. Explicit expressions for the basic
reproduction number  and the type reproduction number  were obtained for the ODE
models.

New stochastic models, SDE models and CTMC models, were derived based on the
assumptions in the ODE models. It was shown for the CTMC models that if  ≤ 1, then
with probability one, there is virus extinction. But if  > 1, the probability of virus
extinction is less than one. The success of the viral invasion was studied with respect to the
immune response, viral dose, and release strategy, either bursting or budding.

In the CTMC model with no immune response, it was found that the bursting strategy is
more successful at viral invasion than the budding strategy. This result was demonstrated
with parameter values applicable to HIV-1 but it is independent of the choice of parameter
values, as shown by Pearson et al. [27]. The difference in extinction for the two strategies is
slight if the infection is initiated with a low viral load, V (0) = n, and no infected cells I(0) =
0 but is much greater if the infection is initiated with V (0) = 0 and I(0) = m (see Table 4 and
Figure 2).

In the CTMC with an immune response, applicable to HIV-1, with the helper T cells at
normal levels and for parameter values appropriate for HIV-1, it was found that the budding
strategy rather than bursting is more successful at viral invasion. The more successful
strategy switches from bursting when there is no immune response to budding when there is
an immune response. The differences in the probabilities of extinction for these two
strategies are much greater in the presence of an immune response. A possible reason for the
more successful strategy to be budding rather than bursting is that small numbers of virions
may bud off and invade an infected cell without being detected by the immune system. The
implicit delay before bursting of new virions may allow the CTLs to detect and destroy
infected cells. Pearson et al. [27] showed that even without an immune response, with
bursting, the infection takes longer to establish than with budding. However, it must be
noted that model (5)–(7) is a simplified characterization of the immune response applicable
to HIV-1 and does not account for the many complex chemical and cellular interactions
typical of an immune response. Whether the more successful budding strategy is the
preferred strategy of HIV-1 infection when CTLs and B cells have been activated remains to
be tested.

When the viral invasion is successful, V (0) ≫ 0 and  > 1, the ODE and SDE models
predict that the virus persists. The expectation of the random variables in the SDE models
agree with the endemic equilibrium of the ODE models. The SDE models provide additional
information about the distribution associated with the target cells, infected target cells, and
virions. At the chronic infection level, with or without the immune response, the coefficient
of variation, the ratio of standard deviation to mean, is on the order of 1 ×10−3 to 5 ×10−3.
The small values for the coefficient of variation indicate a low level of variation in T, I and
V after the infection becomes established. The largest variation is present in the viral load
for the bursting strategy. Therefore, these SDE models for HIV-1 infection indicate that after
viral establishment, the stochastic fluctuations in viral levels are less significant than during
the early stages of infection. But it must be noted that there may be additional variability in
the immune response not accounted for in the CTMC and SDE models due to more complex
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cellular interactions or to the variability between individuals as a result of past history,
behavior, co-infection, sex, or genetics.

Although the models studied in this investigation are simple and apply parameter values
appropriate to HIV-1, the techniques applied in this investigation can be used to investigate
more general models of virus and immune system dynamics. In the model (5)–(7), the
immune system is already activated; there are no delays, no spatial variation and no explicit
modeling of some of the important immune system components. In a more general spatial,
virus-antibody model, analyzed by Komarova [20], some of the same findings were obtained
as in this investigation. That is, if the virus replication rate and the antibody responses are
the same for both the budding and bursting strategies, then the budding strategy is more
successful because it enables the virus to spread faster. But in some cases the bursting
strategy may be advantageous for the virus. For example, if the diffusion coefficient of the
antibodies is small, with the bursting strategy, new virions can flood the antibodies allowing
a greater number of viruses to escape and infect new cells [20].

Further detailed modeling efforts are needed to accurately describe mechanisms involved in
the release of viruses from infected cells. Enveloped viruses are generally released by
budding from intracellular membranes, whereas, nonenveloped viruses are generally
cytolytic, that is, the virus is released following cell lysis [9, 32, 34]. Some exceptions occur.
For example, simian virus 40, a nonenveloped virus, is released from epithelial cells without
cell lysis [9]. Both release strategies have been observed in HIV-1, an enveloped virus [15].
Therefore, the importance of the viral envelope to the release strategy is unclear. Modeling
and analysis of the patterns of behavior of the virus under various assumptions about its
release from the host cell will provide valuable insights for control and treatment of viral
diseases.
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Appendix A. Appendix

Appendix A.1. Next Generation Matrix
To define the basic reproduction number and to verify local stability, denote the vectors 
and , the inflow and outflow from disease compartments I and V as follows:

Let x = (x1, x2) = (I, V) and y = T so that  ≡ (x, y) and  ≡ (x, y), i = 1, 2. Five
conditions are needed to verify local asymptotic stability of the DFE and to define a basic
reproduction number [41].

1.  (0, y) = 0 and (0, y) = 0 for y ≥ 0.

2.  (x, y) ≥ 0 for all nonnegative x and y.

3.  (x, y) ≤ 0 if xi = 0, i = 1, 2.

4.  (x, y) +  (x, y) ≥ 0 for all nonnegative x and y.

5. The disease-free system ẏ = h(0, y) has a unique equilibrium that is asymptotically
stable.

It is straightforward to verify that all five conditions are satisfied [44]. For example,
condition (5) written in terms of T is

from which it follows that T = T ̄ is globally asymptotically stable.

We compute the 2 × 2 Jacobian matrices, evaluated at the DFE,
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that is,

The next generation matrix is  =   defined in (9).

Appendix A.2. Stability of the DFE and EE
Model (1)–(3) and more general models with different growth rates for healthy T cells were
analyzed by De Leenheer and Smith [10]. The definition of  used by De Leenheer and
Smith [10] differs from the definitions given in (12) and (13), but is equivalent to them in
terms of being a threshold.

Assume the initial conditions are positive for T and V and nonnegative for I and, in addition,

(A.1)

De Leenheer and Smith [10] proved if  < 1, then the DFE is globally asymptotically stable
and if  > 1, the DFE is unstable and there exists an EE, a chronic disease state. For our
model, the chronic disease state is

(A.2)

Note that Tc < T ̄ < λ/δT and δI ≥ δT implies Tc + Ic < T ̄. Sufficient conditions for global
asymptotic stability of the EE require another condition

(A.3)

The following theorem summarizes the results for model (1)–(3), a special case of a more
general model studied in [10].

Theorem 3
(Theorem 2.1, [10]) Assume the initial conditions satisfy condition (A.1).

i. If  < 1 (or  < 1), then the DFE (8) of model (1)–(3) is globally asymptotically
stable.

ii. If  > 1 (or  > 1) and if condition (A.3) is satisfied, then the EE (A.2) of model
(1)–(3) is globally asymptotically stable.
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Global asymptotic stability of the DFE (8) in model (5)–(7) can be verified under two
restrictions:

(A.4)

and

(A.5)

With the restriction γ(T) = 0, . However, condition (A.5) is more restrictive than  <

1, where  is defined in (12) since . In particular, it may be the case that .

To verify global stability of the DFE for model (5)–(7), a Liapunov function is defined:

To show global asymptotic stability and apply Liapunov’s direct method [21], L(T, I, V) ≥ 0,
L(T, I, V) = 0 only if I = 0 = V, and L ̇ (T, I, V) ≤ 0 with L ̇(T, I, V) = 0 only if I = 0 = V and T
= T ̄. The first conditions on L are easily satisfied.

Calculating the derivative of L along solution trajectories leads to

Thus, if (A.4) and (A.5) are satisfied, the conditions on L ̇ required of a Liapunov function
are satisfied. If I = 0 = V for model (5)–(7), then T (t) = T ̄ is the only invariant set. The
sufficient conditions for global stability of the DFE for model (5)–(7) are summarized in the
following theorem.

Theorem 4
Assume the initial conditions (A.1) and conditions (A.4) and (A.5) are satisfied. Then the
DFE (8) of model (5)–(7) is globally asymptotically stable.
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Research Highlights

• New stochastic virus-cell models distinguish between two viral release
strategies.

• In the absence of an immune response, bursting is more successful than
budding.

• With an immune response, in a model for HIV-1, budding is more successful
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Figure 1.
Compartmental Diagram for the Model with Immune Response
The circles represent compartments T, I and V. The arrows indicate the direction of flow
between the compartments. The terms δT T, δI I and cV are death rates. The terms with γ(T),
γ(I) and γ(V) are an interaction that involves two compartments but only affects one of them,
either inflow or outflow. The dashed arrow indicates this type of interaction, but the
compartment connected by a dashed line is not changed after the interaction.
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Figure 2.
Probability of virus extinction, given T (t) = T ̄, I(0) = m, V (0) = n, β = 1 × 10−7,  = 2.28,
and  = 5.21, (a) bursting, (b) budding.
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Figure 3.
Approximate stationary probability density function for healthy target cells T (t) in the
absence of infection, equation (15). The solid curve is the normal approximation to the
density.
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Figure 4.
Expectation of 10,000 sample paths of the SDE models, systems (14) and (16), with no
immune response, γ(i) = 0, i = T, I, V,  = 2.28.
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Figure 5.
Approximate stationary distribution for T, I and V for systems (14) and (16) at t = 30 days
with no immune response, γ(i) = 0, i = T, I, V and  = 2.28. Each distribution is fit to a
normal curve (solid curve). The standard deviations σburst and σbud for each of the
distributions are σburst(T) = 600, σburst(I) = 380, σburst(V) = 2.06 × 104, and σbud(T) ≈ 660,
σbud(I) ≈ 470, σbud(V) ≈ 1.90 × 104.
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Figure 6.
Probability of virus extinction, given T (t) = T ̄, I(0) = m, V (0) = n, β = 2 × 10−6,  = 1.41,
and  = 1.99, (a) bursting, (b) budding.

Yuan and Allen Page 26

Math Biosci. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Expectation of 10,000 sample paths of the SDE models, systems (14) and (16), with immune
system activation,  = 1.41.
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Figure 8.
Approximate stationary distribution for T, I and V for systems (14) and (16) at t = 30 days
with an immune response. Each stationary distribution is fit to a normal curve (solid curve).
The standard deviations σburst and σbud for each of the distributions are σburst(T) = 112,
σburst(I) = 316, σburst(V) = 1.80 × 104, and σbud(T) ≈ 111, σbud(I) ≈ 344, σbud(V) ≈ 1.30 ×
104.
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Table 1

Parameters values for model (5), (6), and (7) taken from [6, 8] for total blood volume

Parameter Value Units

λ 105 cell × day−1

γ(T) 10−5 (cell × day)−1

K 1012 cell

δT 0.1 day−1

β – –

δI 0.8 day−1

γ(I) 10−5 (cell × day)−1

π = NδI 100 virions × (cell × day)−1

c 2.3 day−1

γ(V) 5 × 10−6 (cell × day)−1
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Table 2

Possible state changes during Δt: bursting case

i State change Probability PiΔt Description

1 (1, −1, −1) βVTΔt viral entry into a T cell

2 (−1, 0, 0) γ(I)TIΔt natural death or killing by CTLs of an infected T cell

3 (−1, N, 0) δI IΔt bursting of an infected T cell and release of virions

4 (0, −1, 0) (c + γ(V)T)VΔt natural death or removal of a virion

5 (0, 0, 1) production or clonal amplification of a T cell

6 (0, 0, −1) δT TΔt death of a T cell

7 (0, 0, 0) no change
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Table 3

Possible state change during Δt: budding case

i State change Probability PiΔt Description

1 (1, −1, −1) βVTΔt viral entry into a T cell

2 (−1, 0, 0) (γ(I) T + δI)IΔt natural death or killing by CTLs of an infected T cell

3 (0, 1, 0) πIΔt budding of a virion

4 (0, −1, 0) (c + γ(V) T)VΔt natural death or removal of a virion

5 (0, 0, 1)

(λ + γ (T )IT )(1 − T
K )Δt

production or clonal

6 (0, 0, −1) δT TΔt amplification of a T cell death of a T cell

7 (0, 0, 0)

1 − ∑
i=1

6
PiΔt

no change
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Table 4

Estimates of (q1, q2) for the CTMC model with no immune response

β bursting, (q1, q2) budding, (q1, q2)

1 × 10−7 2.28 5.21 (0.005029, 0.9585) (0.1920, 0.9663)

2 × 10−7 3.16 10.0 (0.00002976, 0.9200) (0.1000, 0.9280)

1 × 10−6 6.15 37.9 (0.0, 0.6970) (0.0264, 0.7050)

2 × 10−6 7.62 58.1 (0.0, 0.5349) (0.0172 0.5429)
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Table 5

Estimates of (q1, q2) for the CTMC model with immune response.

β bursting, (q1, q2) budding, (q1, q2)

1 × 10−6 1.06 1.12 (0.9851, 0.9982) (0.8964, 0.9875)

2 × 10−6 1.41 1.99 (0.9409,0.9873) (0.5022, 0.8929)

1 × 10−5 2.32 5.35 (0.9262, 0.9574) (0.1868, 0.5300)

2 × 10−5 2.60 6.78 (0.9260, 0.9458) (0.1474, 0.3754)
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