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Abstract
We formulate registration-based elastography in a probabilistic framework and apply it to study
lung elasticity in the presence of emphysematous and fibrotic tissue. The elasticity calculations are
based on a Finite Element discretization of a linear elastic biomechanical model. We marginalize
over the boundary conditions (deformation) of the biomechanical model to determine the posterior
distribution over elasticity parameters. Image similarity is included in the likelihood, an elastic
prior is included to constrain the boundary conditions, while a Markov model is used to spatially
smooth the inhomogeneous elasticity. We use a Markov Chain Monte Carlo (MCMC) technique
to characterize the posterior distribution over elasticity from which we extract the most probable
elasticity as well as the uncertainty of this estimate. Even though registration-based lung
elastography with inhomogeneous elasticity is challenging due the problem's highly
underdetermined nature and the sparse image information available in lung CT, we show
promising preliminary results on estimating lung elasticity contrast in the presence of
emphysematous and fibrotic tissue.

1 Introduction
Lung function is closely related to the mechanical properties of lung parenchyma which is in
turn determined by the orientation and proportion of the elastin and collagen fibers in the
tissue matrix. The disparate properties of these tissues provide both the natural lung elastic
recoil necessary for passive exhalation as well as the structural support for the pulmonary
vasculature and airways. Diseases of the lung that alter lung function often do so by altering
amounts of elastin and collagen [12].

In clinical practice, lung function tests are used to assess the severity of chronic lung
diseases such as chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis.
While these tests are simple and safe to do, they reflect aggregate lung function and are
unable to differentiate the relative amounts of emphysema or scarring that may be found in
the lung of a smoker. In these cases, clinicians often turn to CT to assess both the extent and
distribution of lung disease. A common method employed for the detection and
quantification of emphysema is based upon lung densitometry, i.e. voxels with values less
than e.g. −950 HU are indicative of emphysematous tissue. A clear limitation to this
observation is that the detection of abnormal tissue is not followed by an assessment of its
mechanical properties.

In [5], image registration was proposed as a way of monitoring emphysema progression in
lung CT. They align a baseline CT scan with a follow-up scan and relate intensity
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differences between the two images, corrected for intensity differences due to local tissue
expansion and compression, to the disease progression. Yin et al. [13] propose a similar
approach to handle differing intensity levels due to compression/expansion when matching
inspiration to expiration images of the lung, however, their results do not significantly
improve over using a standard sum of squared difference similarity measure.

Elastography is a non-invasive method to determine local elastic properties, e.g. Young's
modulus. One approach to elastography imaging is to apply a low frequency oscillation to
the tissue and measure the resulting deformations with ultrasound (US). The elasticity of the
material can be extracted from the observed movement of the slowly oscillating tissue, e.g.
to distinguish healthy from abnormal tissue. In Magnetic Resonance Elastography (MRE), a
synchronized cyclic shear wave displacement is encoded into the phase of the MR signal.
Because of the air in the lung, it has been difficult to perform elastography imaging of the
lung. However, McGee et al. [6] recently showed it technically feasible to do MRE of the
lung using hyperpolarized 3He. They present results on estimation of the shear modulus of
an ex vivo porcine lung in 2D. The main challenges with using this method for estimation of
elasticity in COPD patients are signal to noise ratio and relatively long acquisition times.

Another approach to elastography is taken by Miga et al. [7] who introduce modality
independent registration-based elastography to estimate tissue stiffness. Given two,
potentially multi-modal, images of an object undergoing an elastic deformation, they
minimize a modality independent similarity measure with regards to the elastic parameters.
The method uses a Finite Element (FE)-discretization of the solution domain and the linear
elastic energy, and it requires as input the boundary conditions of the biomechanical model,
i.e. the deformation of the boundary of the FE-mesh. In Ou et al. [8], the same group applies
the method to study elasticity of breast lesions and shows that the estimates can be quite
sensitive to the boundary conditions. In some cases, the linear elastic assumption, i.e.
geometric linearity of the strain tensor and linear stress-strain response of the tissue, might
not be reasonable. Gokhale et al. [4] use a hyperelastic model of soft tissue and minimize a
cost function representing the difference between the measured and predicted displacement
fields. However, their results are preliminary – they only apply the method to 2D synthetic
images.

Among the most sophisticated current methods for registering intra-patient images are those
based on biomechanical modeling of tissue deformation where specific material parameters
that reflect the underlying tissue properties can be included. However, reported material
parameters for many tissue types are estimated from in-vitro samples and quite divergent.
Furthermore, it is unknown how medication and tissue pathologies might affect the material
parameters. We have recently shown the feasibility of determining the posterior distribution
over registration parameters restricted by a linear elastic biomechanical model discretized by
a FE method [9, 10]. To avoid using point-estimates for the material parameters, we showed
in [9] how the material parameters can be marginalized out of the posterior by modeling
them as random variables with broad priors. The method was applied in the realm of intra-
operative registration of brain images with a very coarse spatial distribution of the elastic
parameters: a three compartment model (cerebrospinal fluid, white matter, gray matter).

In this paper we estimate the posterior distribution over the inhomogeneous elastic modulus
without any prior information regarding the underlying tissue labels. To reduce the
sensitivity of the approach to boundary conditions (deformation), we propose to marginalize
over the boundary condition of the biomechanical model. An MCMC method, where
marginalization over parameters is easily achieved, is designed to characterize the posterior
distribution. We show how important application dependent estimates, such as the most
probable elasticity parameters and their corresponding uncertainty, can be derived from our
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results. Preliminary lung elastography experiments are carried out on both synthetic and
clinical lung inspiration/expiration CT data which shows the feasibility of the method.

2 Methods
The deformation u of an elastic object Ω, e.g. the lung, caused by a static loading, can be
explained by a biomechanical model. It is common to separate the deformation into the
boundary deformation ub which occurs on ∂Ω and the internal deformation ui in Ω \ ∂Ω. The
parameters of a linear elastic biomechanical model are usually defined in terms of the
Young's modulus E (stiffness) and Poisson's ratio v (compressibility). Suppose we are given
the Dirichlet (deformation) boundary condition ub, then the permissible elastic deformation
u is parameterized by the unknown inhomogeneous elastic parameters. In this paper we
label the unknown elastic parameters θ and note that they can be E, v, or both depending on
the situation. In registration-based elastography, we maximize the similarity between two
images of Ω acquired under different static loading by adjusting the elastic properties of the
biomechanical model.

2.1 Probabilistic Elastography
We treat ub and θ as unknown random variables and pose registration-based elastography in
a Bayesian framework where we marginalize over ub to get at the posterior distribution over
θ:

(1)

Our likelihood model estimates the similarity between two images, Ii(x) (inspiration image)
and Ie(x) (expiration image) for x ∈ Ω, given the elastic parameters θ(x), x ∈ Ω, and the
boundary conditions ub(x), x ∈ ∂Ω. A prior on ub puts low probability on configurations
with high elastic energies, and a spatial prior on the elastic parameters is included to
constrain them to be relatively smoothly varying. We employ a Markov Chain Monte Carlo
(MCMC) sampling approach to characterize the posterior distribution. An advantage of
MCMC is that marginalization over random variables is easily carried out, and from the
posterior distribution we can estimate the most probable estimate and assess the uncertainty
of this estimate. In the following sections we describe the main components of the proposed
elastography method.

Biomechanical Model—The linear elastic energy of an elastic body Ω with elastic
material parameters θ and deformed by u is defined as:

(2)

where ε is the engineering strain vector and σ is the engineering stress vector [2]. We
discretize Eq. (2) with a Finite Element (FE) model of the displacement field. The
volumetric solid Ω is discretized into a tetrahedral FE mesh which consists of nodes nb =
{nb

1,…nb
B} on ∂Ω, nodes ni = {ni

1…ni
I} on Ω \ ∂Ω and P tetrahedral finite elements Ωe

such that ∩e=1…PΩe = ∅ and ∪e=1…PΩe = Ω. The elastic parameters are defined per
element, however, the space of unknown elastic parameters can be reduced by, e.g.,
grouping together elements or defining another lower dimensional material space and
interpolating per element from this space. We discretize the elastic parameters per FE node
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and use the FE machinery to linearly interpolate these parameters to each element.
Consequently, since ui can be computed by minimizing Eq. (2) given ub and θ, the
unknowns in our biomechanical model are the B boundary deformation vectors ub and the Q
= B + I material parameters θ.

We construct a prior on the boundary deformation parameters ub by including the elastic
energy in a Boltzmann's distribution with a temperature Te:

(3)

Similarity Model—We incorporate an intensity-based similarity measure to estimate the
likelihood of observing the two images given the elastic parameters and the boundary
deformation. From the elastic parameters and the boundary deformation, we can find the
internal deformation ui by minimizing Eq. (2). Any similarity measure that can be
formulated as an energy function can be included in the framework, but in this paper we
restrict ourselves to the Sum of Squared Differences (SSD) ESSD = ∫Ω(Ii(x) − Ie(x +
u(x)))2dx. The energy function is converted into a probability by way of the Boltzmann
distribution:

(4)

where Zs is a normalizing constant and Ts is the temperature of the distribution. This is
equivalent to modeling the similarity distribution with independent zero-mean Gaussian
distributions with a variance of Ts/2 for each voxel.

Spatial Prior on Elasticity—Registration based elastography is an underdetermined
problem which benefits from including prior knowledge into the estimation process.
Furthermore, in areas where there is a lack of image information, the method will favor soft
tissue because that will reduce the elastic energy. Our framework includes an elasticity prior
which can be used to regularize elasticity at neighboring nodes. We incorporate a prior
distribution on the elastic parameters in the form of a Markov model which penalizes the
difference in the elastic parameters of neighboring nodes:

(5)

where Tc is the temperature and c = {ni, nj} denotes a clique where ni and nj are nodes in the
FE-mesh connected by an element. The clique energy is defined as Ec(θc) = (θ(ni) − θ(nj))2.
Many organs have relatively homogeneous tissue characteristics (e.g. liver and prostate),
while others might have more heterogeneous tissue characteristics (e.g. an unhealthy lung
which exhibits emphysema and fibrotic tissue), so the “temperature” Tc can be set according
to the prior knowledge we have about tissue homogeneity.
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2.2 Sampling the Posterior Distribution
We propose to fully characterize the posterior distribution over the elastic parameters by
generating samples from the posterior. Unfortunately, because of the complexity of the
posterior, it is not possible to draw samples directly from it. Instead, we use a Markov Chain
Monte Carlo (MCMC) (Metropolis-Hastings) method to draw samples from the posterior
[3]. It constructs a Markov chain that after a sufficient burn-in period has the posterior
distribution as its stationary distribution. The necessary burn-in period is dependent on the
initial parameters where a poor choice of starting values can require a long burn-in period.
Finding optimal starting points for MCMC estimation is currently an area of much research,
but the general advice is to initialize the chain with estimates as close to the center of the
distribution's mode as possible [3].

The marginalization of the boundary deformation is easily achieved with a MCMC method
by sampling (θ*, ub*) ∼ p(θ, ub | Ii, Ie) and “discarding” the ub* samples. In practice, we
start with an initial estimate of the parameters, τ0 = (θ0, ub

0), and generate candidate samples
τ̂ from a proposal distribution q(τ | τt−1) which only depends on the previous sample τt−1.
Candidate samples are accepted with probability

(6)

If a sample is accepted we set τt+1 = τ̂, otherwise τt+1 = τt.

To reduce the autocorrelation between subsequent samples from the chain and to reduce the
memory/storage footprint, thinning of the chain is common procedure, i.e. to discard every
k-th sample. After burn-in and thinning we have a set of statistically independent samples
{τ0,…, τN} from the posterior distribution.

Proposal Distributions—Because the two parameter sets ub and θ are different in nature,
we split the parameters into two blocks from which proposal samples are generated
independently: q(ub, θ|ub

t−1, θt−1) = q(ub|ub
t−1) q(θ|θt−1). A proposal boundary deformation

is generated from a univariate normal distribution ûb ∼ q(ub|ub
t−1) = N(ub; ub

t−1, σd
2)

centered on the previous estimate ub
t−1 and with σd

2 variance. The elastic parameters are
sampled from a multivariate Gaussian θ ̂ ∼ q(θ | θt−1) = N(θ; θt−1, σe

2Σ) centered on θt−1 and
with covariance σe

2Σ. We assume that the material at node i is likely to vary closely with
node j if they are in proximity of each other. We compute Σi,j, the element in the covariance
matrix which relates the FE-nodes i and j, by a distance function Σi,j = exp(−dist(ni, nj)/D)
where D is a constant.

Preventing Folding of Finite Elements—Folding of the tetrahedral elements should be
prevented in our sampling scheme because it constitutes non-physical deformations. The
boundary of the mesh consists of nodes and a set of triangles that span these nodes. If we
can prevent the sampler from drawing samples which folds the boundary triangles, the
minimization of Eq. (2) with respect to the elastic parameters will almost guarantee that the
resulting deformation is free from folded elements. One exception may occur, however,
when one side of the mesh is “pushed” through the opposite side of the mesh. We assume
that the mesh is close to convex, that the two mesh sides are relatively far apart, and that
there is enough image intensity information between two sides to restrict such a “collapse”
of the mesh.
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After sampling ub, our method searches for folded boundary triangles. When a folded
triangle is detected, the deformation of the nodes that span this triangle, as well as any
neighboring triangles, are resampled, and this procedure is reiterated until no triangles are
folded.

2.3 Summarizing the Posterior Distribution
The local marginal distribution over each random variable contains important information
regarding the most probable value and its uncertainty, while the full posterior distribution is
a high-dimensional complex object from which complex covariance information can be
extracted. Even though we marginalize over the boundary deformations, we still retain the
ub samples so we can summarize both marginal statistics on θ and ub as well as joint
statistics.

A local marginal distribution over one component of θ or ub is a 1D probability distribution.
The mode of this distribution is the most probable estimate and the dispersion of the
distribution can be interpreted as the uncertainty of the most probable estimate. We use the
Inter Quartile Range (IQR), i.e. the difference between the third and first quartiles, to
estimate the statistical dispersion of the samples.

3 Results
We have tested the proposed elastography method on both synthetic and clinical CT lung
images, and in this section we report on these experiments and the corresponding results.
Based on results from [1], we assume that the lung is somewhat compressible with a
Poisson's ratio of 0.4 and restrict ourselves to estimate an inhomogeneous Young's modulus
(θ = E).

3.1 Synthetic Experiments
We constructed a synthetic dataset with known ground truth elasticity values and tested the
ability of the method to recover them. Our inspiration dataset of size 512×512×419 and
spacing (0.95, 0.95, 0.65) mm was acquired from a healthy patient. To reduce the
computation time, we downsampled the images by a factor of 2 in each dimension and
applied a Gaussian smoothing filter with σ2 = 0.5. Slices can be seen in Fig. 1 (d) and (g). A
boundary deformation was constructed based on observed deformations between inspiration
and expiration datasets. From the geometric center of the right lung, we let the elasticity
(Young's modulus) values increase continuously by a factor of 100 up to the part of the lung
at the furthest distance from the center. Using the synthetic boundary deformation and the
inhomogeneous elasticity, we could construct the full deformation u by minimizing Eq. (2)
with regards to the deformation. Using the synthetic deformation, we deformed the
inspiration lung into a synthetic “expiration” lung. Figure 1 (b) shows a slice of the synthetic
elastography map and (a) shows the deformed “expiration” lung overlaid on the full
inspiration dataset. From the inspiration label map we created a tetrahedral FE mesh with
874 nodes and 3603 elements. For the estimation we used parameters Ts = 0.5, Te = 107, Tc
= 300, D = 10mm, σd

2 = 0.005 and σe = 0.1, where the temperatures are set so that the
likelihood is the predominant term in the posterior. The initial Young's modulus was set to
50 and the boundary deformation was initialized to the ground truth. The sampler generated
approximately 7 samples per second. We generated approximately 100 000 samples,
discarded the first 50 000 to avoid burn-in effects, and used a thinning factor of 10 to end up
with 5 000 independent samples. We computed the mode and IQR and show qualitative
results in Fig. 1 and quantitative results in Fig. 2. The method is sensitive to stiffness, but the
estimates are scattered around the ground truth value with a relatively high variance which
can be explained by the fact that lung CT in some areas contain little image contrast (image
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information) which may make it difficult for the method to locally estimate a reliable
stiffness value. In Fig. 1 we show that the method is able to detect major aspects of the
stiffness patterns (the synthetic tissue stiffness increasingly goes from soft in the middle of
the lung to stiff on the lung boundary).

3.2 Clinical Experiments
We also tested the method on a clinical dataset which exhibits both fibrotic and
emphysematous lung tissue. The original inspiration and expiration CT images have size
512×512×703 and spacing (0.75, 0.75, 0.5) mm, however, to reduce the computation time
we downsampled the images by a factor of 2 in each dimension and applied a Gaussian
smoothing filter with σ2 = 0.5. Labelmasks of both the inspiration and expiration lungs were
created using the segmentation method in [11]. From the inspiration labelmask we created a
tetrahedral FE mesh with 867 nodes and 3670 elements. The elasticity (Young's modulus)
estimates were homogeneously initialized to 1000. An initial deformation can be found e.g.
by using a registration algorithm [13], or as we did, by minimizing the distance between ub
and the expiration lung labelmap by way of a distance field generated from the expiration
labelmap.

The sampler generated approximately 4 samples per second while using the following
parameters Tc = 10000, Te = 107, Ts = 3.0, σd

2 = 0.005, σe = 5 and D = 10mm. Because we
wanted to detect local changes in stiffness in unhealthy lungs we used a high temperature for
the Tc and Te, while the similarity temperature was set relatively low to make it the
predominant distribution in the posterior. Approximately 200 000 samples were generated,
but after discarding the first half as “burn-in” samples and with a thinning factor of 10, we
ended up with 10 000 statistically independent samples. Figure 3 shows elasticity results
from parts of the lung where there is considerable fibrosis, while Fig. 4 shows elasticity
results from an emphysematous part of the lung.

4 Discussion
This paper has introduced a probabilistic elastography method which can estimate
inhomogeneous tissue elasticity given two images of the same object under different
external loading. The synthetic results indicate that the method can distinguish between
major differences in tissue characteristics. Because expiration causes large deformations and
compression of lung tissue, we can expect intensity differences between perfectly aligned
inspiration and expiration images because of interpolation artifacts and the fact that
compressed tissue in the expiration dataset will appear brighter then the corresponding
image in the inspiration image. Lung images also contain regions of relatively homogeneous
tissue and sparse image information/contrast which makes it difficult to match the images
without prior information. Both the intensity differences and the lack of image information
may explain the outliers we see in the synthetic experiments.

It is generally accepted that lung tissue can be modeled as an elastic material. Our method is
very computationally intensive, and consequently we used a linear elastic FE-model with
tetrahedral elements to limit computation times to approximately 14 hours. Linear elasticity
is applicable when we expect infinitesimal strains or small deformations. However, lung
deformations due to inspiration/expiration are large, thus the estimated elasticity can only be
assumed to be approximate. Better elastography results may be achieved with lung images
where the volume change is smaller. Furthermore, because no external or internal forces are
used in the biomechanical calculations, we can only estimate elasticity contrast and not the
real elasticity. Another limitation of the simple elastic model is that it assumes an isotropic
material model which cannot be assumed to be accurate for the highly anisotropic blood
vessels in the lung. Also, because some of the blood vessels are quite large and are
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connected to the exterior of the lung, they may induce external forces on the internal lung
tissue. Consequently, the model may be inaccurate around large vessels.

In future work we will increase the number of FE elements to better discriminate between
emphysematous, fibrotic and healthy tissue. However, because of the added degrees of
freedom, additional prior information needs to be included e.g. through densitometry to
identify regions with emphysema and fibrosis or by having additional correspondence
information such as vessel or bronchial branches. FE-methods are known to be sensitive to
boundary conditions. The covariance between elasticity and boundary estimates can be
extracted from the posterior distribution and used to investigate this sensitivity. Even though
registration-based elastography is a challenging under-determined problem, we have shown
that it is feasible to estimate lung elasticity with a registration based approach. We believe
that with better modeling, e.g. through the inclusion of more prior information and finer
resolution meshes, the clinical impact of registration based elastography for studying lung
function can be substantial, especially since traditional ultrasound and MR elastography is
difficult because of the air filled lungs. However, further validation is required, e.g. by
comparing our results with histology samples or MRE. A potential high-impact clinical
application would be to study the mechanical nature of smoking related lung disease.
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Fig. 1.
Synthetic data. All values in parentheses describe the window level setting we use to
highlight tissue stiffness where the lower value of the window is colored red (softest) and
the upper value is colored purple (stiffest) according to the rainbow color scheme included
in (c). (a) Synthetic expiration lung with an inverted gray colormap overlaid on the
inspiration volume. Notice the large deformations due to expiration. (b) The synthetic
elasticity map corresponding to the slice in (d). (d) Axial slice of the inspiration lung
volume. (e) Estimated elasticity. (f) The IQR uncertainty map. (g) Coronal slice of the
inspiration lung volume. (h) Estimated elasticity. (i) The IQR uncertainty map. Notice that
these results are consistent with the results in Fig. 2 where the general stiffness can be
estimated, but with large outliers.
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Fig. 2.
This figure includes quantitative results on estimating the stiffness (Young's modulus) for
the synthetic case (qualitative results are included in Figure 1). The nodes in the plot have
been sorted according to ground truth stiffness and plotted in red while the corresponding
estimated stiffness is plotted in blue. It is clear from the plot that the method is sensitive to
major differences in stiffness, but the estimates are scattered around the ground truth with a
relatively high variance. It is also evident that the method does a better job of estimating the
stiffness in the middle to the left of the graph than on the far right. The mean of the
difference between the estimated values and the ground truth was 2.6 with a standard
deviation of 14.5.
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Fig. 3.
Fibrotic tissue. The elasticity and uncertainty maps are color coded using the rainbow
colormap in Fig. 1 (red is soft, purple is stiff) (c) and the window level in parentheses. (a) A
coronal slice of the inspiration dataset where the upper and lower part is identified as fibrotic
by a physician. (b) Notice how the fibrotic areas in the lower and upper lung appear stiffer
than the surrounding tissue, and also that the cyst in the lower left of the image is estimated
as “soft” which could mean that it is ventilated and therefore collapses during expiration. (c)
The IQR of the estimated elasticity map. The uncertainty is somewhat larger in the stiffer
fibrotic area.
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Fig. 4.
Emphysematous tissue. The elasticity and uncertainty maps are color coded using the
rainbow colormap in Fig. 1 (c) and the window levels (4000/2000) and (300/150) for figures
(c) and (d) respectively. (a) Axial slice of the inspiration CT dataset. (b) Thresholded image
at −950Hu to identify emphysematous tissue and overlaid on the axial slice in (a). (c)
Estimated elasticity map. Notice how the elasticity in the lower part of the image is
relatively homogeneous, while in the upper area where the emphysema is most predominant
it appears stiffer. The reason may be that this emphysematous region is not ventilated and
the air filled emphysematous regions do not collapse during expiration. (d) Uncertainty map.
We can see that because of the emphysematous regions and consequently the lack of image
information, the uncertainty is larger in the area of emphysema compared to non-
emphysematous regions.
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