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Abstract Canada is a large nation with forested ecosys-

tems that occupy over 60% of the national land base, and

knowledge of the patterns of Canada’s land cover is

important to proper environmental management of this vast

resource. To this end, a circa 2000 Landsat-derived land

cover map of the forested ecosystems of Canada has cre-

ated a new window into understanding the composition and

configuration of land cover patterns in forested Canada.

Strategies for summarizing such large expanses of land

cover are increasingly important, as land managers work to

study and preserve distinctive areas, as well as to identify

representative examples of current land-cover and land-use

assemblages. Meanwhile, the development of extremely

efficient clustering algorithms has become increasingly

important in the world of computer science, in which bil-

lions of pieces of information on the internet are continu-

ally sifted for meaning for a vast variety of applications.

One recently developed clustering algorithm quickly

groups large numbers of items of any type in a given data

set while simultaneously selecting a representative—or

‘‘exemplar’’—from each cluster. In this context, the

availability of both advanced data processing methods and

a nationally available set of landscape metrics presents an

opportunity to identify sets of representative landscapes

to better understand landscape pattern, variation, and

distribution across the forested area of Canada. In this

research, we first identify and provide context for a small,

interpretable set of exemplar landscapes that objectively

represent land cover in each of Canada’s ten forested

ecozones. Then, we demonstrate how this approach can be

used to identify flagship and satellite long-term study areas

inside and outside protected areas in the province of

Ontario. These applications aid our understanding of

Canada’s forest while augmenting its management toolbox,

and may signal a broad range of applications for this ver-

satile approach.

Keywords Canada � Forest � EOSD � Fragmentation �
Pattern � Exemplars � Representatives � Affinity

propagation

Introduction

In recent decades, the merging of GIS and remote sensing

technology with landscape ecological theory has led to the

development and use of a host of landscape metrics, which

are measures of land use and/or land cover interpreted from

satellite imagery (Cushman and others 2008; Gustafson

1998; Hargis and others 1998; Li and Wu 2004; Riitters

and others 1995). Metrics have been used to analyze the

spatial patterns of landscape change over scales ranging

from watersheds and landscapes to regions, nations, and the

globe (Cumming and Vervier 2002; De Clercq and others

2006; Gulinck and others 2001; Kupfer 2006; Riitters and

others 2000; Southworth and others 2002; Yu and Ng

2006). Pattern metrics have a demonstrated utility in

assessing whether critical components and functions of

forests are being maintained (Garcia-Gigorro and Saura

2005), and can therefore potentially be used to aid in
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national reporting of forest condition and change. The

development of land-cover data sets derived by satellite

across continental extents, such as the National Land Cover

Dataset (NLCD) in the United States (Homer and others

2007) and the Earth Observation for Sustainable

Development of Forests (EOSD) in Canada (Wulder and

others 2008a), enable a national exploration the biotic,

abiotic, and human processes that control the composition

and configuration of landscapes over large areas.

When used judiciously, landscape metrics have the

potential to quantify and elucidate aspects of forest loss and

fragmentation. Landscape pattern calculation software such

as FRAGSTATS (McGarigal and others 2002) and

APACK (Mladenoff and Dezonia 1997) enable the calcu-

lation of a plethora of landscape pattern measurements, and

extensive research has been aimed at identifying the key

aspects of metrics intended to maximize their usefulness in

various settings (Cain and others 1997; Cumming and

Vervier 2002; Cushman and others 2008; De Clercq and

others 2006; Li and others 2005; McAlpine and Eyre 2002;

Riitters and others 1995). Nevertheless, there are important

well-known caveats associated with the appropriate use of

landscape metrics (Li and Wu 2004; McAlpine and Eyre

2002; Tischendorf 2001; Turner 2005), with no single

metric suitable for all potential applications (Gergel 2007).

Depending on the spatial extent used for analysis, the

calculation of landscape metrics across a large area can be

computationally demanding. To enable processing and

illustrate patterns across very large extents, regional- and

continental-scale study areas are sometimes partitioned

into smaller equal-sized analysis units (Cardille and others

2005; Cardille and Lambois 2010; Long and others 2010;

Riitters and others 2004; Wulder and others 2008b). When

a large country such as Canada or the United States is

considered, there may be many thousands of analysis units

to assess, each of which might contain hundreds of thou-

sands or even millions of image pixels. In addition, the

chosen land-cover classification scheme also influences

both the complexity of metric calculations and subsequent

applicability to a given management question.

Yet, even once large numbers of metrics are calculated

for a large number of landscapes, conversion of a very

large table of landscape metric values into a deep under-

standing of landscape patterns remains difficult. From the

earliest development of landscape metrics to quantify

spatial pattern, analysts have used principal components

analysis or related data reduction techniques (e.g., Cush-

man and others 2008; Riitters and others 1995) to aid

interpretation by compressing a large set of metrics to a

statistically independent smaller set of meta-metrics. The

intended effect is to summarize the metric values of a given

set of landscapes by reducing the number of metrics that

need to be interpreted.

Clustering algorithms provide the ability to compress a

data set by grouping individuals having similar character-

istics. Recent developments from the world of computer

science offer potential application to any number of areas

in which the ability to produce data outstrips the human

ability to conceptualize it. The Affinity Propagation algo-

rithm (Frey and Dueck 2007), in particular, finds optimal

clusters substantially more efficiently than its rivals while

simultaneously selecting a representative, or ‘‘exemplar’’,

of each cluster identified in the set (Frey and Dueck 2007;

Mezard 2007). This ability to highlight a small set of

exemplars taken directly from a data set offers a valuable

tool for several aspects of environmental management

(Cardille and Lambois 2010). As a complement to existing

tables or graphics of numerical characteristics, an objective

set of representatives that encompasses the broad charac-

teristics of a larger set can help managers to quickly and

efficiently understand much about its contents. Addition-

ally, because sets are summarized by the selection of rep-

resentatives rather than by listing cluster attributes,

exemplars can be directly inspected for an efficient

understanding of the variety of the land-cover patterns in

the larger set.

This research illustrates two applications that can be

informed by this exemplar-guided approach for under-

standing land cover in forested Canada: one descriptive

scenario, and one hypothetical management scenario. For

the first application, we determine representative land-

scapes in each of Canada’s forested ecozones. In the sec-

ond application, we identify representative landscapes of

Ontario’s parks and protected areas, and then use them to

locate similar landscapes in the province that currently do

not enjoy protected status. This work extends and deepens

the effort of Cardille and Lambois (2010) in two main

ways. By using a much smaller set of landscape metrics

(nine vs. 92), we dramatically reduce the amount of

information available for distinguishing landscapes, pro-

viding a substantially greater challenge for the clustering

algorithm. Second, by using identified exemplar landscapes

as a key for comparing protected and non-protected areas,

we illustrate how this work may be applied to the man-

agement and evaluation of Canada’s vast forest resource.

Material and Methods

Study Area

Canada contains 10% of the world’s forests and 30% of the

world’s boreal forests; these forests contribute $28.1 billion

to the national balance of trade and provide an estimated

361,300 direct jobs annually (Natural Resources Canada

2008). Canada’s forests support 180 different native
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species of trees and provide habitat for more than 93,000

species of plants, animals, and micro-organisms (Natural

Resources Canada 2008). Less than 1% of Canada’s forests

are harvested annually (Natural Resources Canada 2008).

Canada has 15 terrestrial ecozones, high-level divisions

of the land mass according to climatic and vegetation

patterns (Ecological Stratification Working Group 1995;

Marshall and Schut 1999). Of these, ten are considered

forested, vary substantially in size, and contain a range of

forest ecosystem types. The ten forested ecozones occupy

approximately 650 million ha (Wulder and others 2008b)

and contain over 402 million ha of non-contiguous forests

and other wooded land (Power and Gillis 2006). Ecozones

offer a linkage to other national reporting activities while

providing ecologically meaningful context (Bailey and

others 1985; McMahon and others 2004). Despite the

grouping of forested lands into ecozones, the land-cover

patterns found within a given ecozone are not homoge-

neous, with descriptions of the vegetation in these zones

detailed in Wulder and others (2008a). On the west coast of

Canada, rugged topography and an influx of warm, moist

air from the Pacific Ocean has resulted in a diverse and

highly productive range of forest types. Subalpine forests

are found in the mountainous areas of British Columbia

and Alberta, while montane forests dominate the drier

plateaus of central and southern British Columbia. In the

central part of Canada, the Boreal Forest, primarily com-

posed of coniferous species, stretches in a continuous belt

from the Rocky Mountains (south) and Alaska (north)

eastward to Newfoundland and Labrador, while deciduous

species dominate in southern Ontario and Quebec (Rowe

1972).

Data

Land Cover and Fragmentation Metrics

The EOSD land cover product (hereafter referred to as

EOSD LC 2000) was generated using circa 2000 Landsat

satellite imagery to map 23 unique land cover classes in the

forested ecozones of Canada (Wulder and others 2008a).

The EOSD LC 2000 has a spatial resolution of 25 m, with

approximately 10 billion 25 m pixels found within the

forested ecozones of Canada. The 23 land cover classes

were reclassified to forest, non-forest, or other to focus on

the distribution and configuration of forest patterns (Wul-

der and others 2008b).

Using the reclassified EOSD LC 2000 product (Fig. 1),

Wulder and others (2008b) selected nine key metrics to

communicate the fragmentation trends present over Can-

ada’s forests: (1) proportion of area forested; (2) number of

forest patches; (3) proportion of patches that are forested;

(4) mean forest patch size; (5) forest patch size standard

deviation; (6) amount of forest edge; (7) forest edge den-

sity; (8) forest/forest joint count; and (9) forest/non-forest

join count. These metrics were selected because they

Fig. 1 Distribution of EOSD

forest (green), nonforest

(yellow) and other (white)

classes used for this study
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‘‘depicted fragmentation as a condition of the landscape;

captured the different types of fragmentation, as caused by

natural and anthropogenic disturbances, ecosystem char-

acteristics, and land use activities; were minimally redun-

dant; and were readily interpretable and easy to understand

when reported nationally’’ (Wulder and others 2008b).

These were computed with freely available APACK soft-

ware (Mladenoff and Dezonia 1997). Metrics were calcu-

lated for each of 7794 1:50,000 NTS map sheets (hereafter

referred to as ‘‘landscapes’’), which were used as analysis

units in this study.

Application 1: Identifying Representative Landscapes

of the Forested Ecozones of Canada

Although ecozones are a standard reporting unit for

national-scale studies in Canada, each ecozone covers a

very large area and cannot realistically be thought of as

containing homogeneous land cover patterns. Because

landscape patterns contain both aspects of landscape com-

position and aspects of landscape configuration, this heter-

ogeneity is difficult to express with just a few numbers in

tabular form. Even when only a few metrics are of interest,

understanding and adequately expressing variability among

hundreds or thousands of landscapes can be daunting. The

typical approach is to select and summarize land-cover

proportions or pattern metric values across given estab-

lished reporting units (cf. Wulder and others 2008b). Such

tables, while clearly informative and useful, summarize a

vast area with set of numbers, which can be difficult to

interpret and may not adequately express the remarkable

variety that might lie within a given reporting unit. How

might the information be expressed differently? In partic-

ular, might one usefully illustrate that variety using a small

list of objectively chosen representative landscapes?

To locate these representatives objectively, we used the

affinity propagation algorithm in order to group landscapes

and simultaneously identify, for each cluster, a single

member that best represents it (Frey and Dueck 2007). To

find a set of exemplars, the algorithm operates on estimates

of the similarity between pairs of objects; in this context,

that meant estimating the similarity between all pairs of

1:50,000 map sheets in a given ecozone. Estimating simi-

larities between land-cover patterns in a given ecozone was

a multi-step process. First, because many pattern metrics

are correlated (Cushman and others 2008; Riitters and

others 1995), we performed a principal components anal-

ysis (PCA) of the nine selected metrics, scaling and

rotating them to concentrate the maximum variation among

metric values onto a set of orthogonal axes. The PCAs

indicated that three independent axes existed among these

metrics for most of the ecozones, with three eigenvalues

above or very near one. The three axes together captured

between 85 and 95% of the variation among the nine

metrics chosen for consideration among the landscapes of

each ecozone. We used values along the PCA axes in order

to ensure that calculations of similarity between landscapes

were not biased toward certain aspects of landscapes that

had been computed redundantly in the initial metric set.

Using the principal component values, we estimated the

similarity between the patterns in any pair of landscapes as

the negative Euclidean distance between their principal

component values (Frey and Dueck 2007). The resulting

pairwise matrix represented our best estimate of the simi-

larity in land cover composition and configuration between

all pairs of landscapes in each ecozone. This allowed us to

quickly request, for any ecozone, any number of clusters

and, with them, the representative landscapes. Because

there is no strictly correct number of clusters inherent in a

set of data, the affinity propagation algorithm places no

limit on the number of exemplars that can be identified. To

illustrate the potential of this approach while keeping the

total number of exemplars to discuss moderately small, we

tasked the affinity propagation algorithm with identifying

two representative landscapes for each of the ten ecozones.

Figure 2 shows the landscape exemplars for each for-

ested ecozone. The clustering and choice of representatives

provided by the affinity propagation algorithm were

broadly consistent with known ecozone characteristics.

Below, we describe the exemplar landscapes that the

affinity propagation algorithm selected, ecozone by

ecozone.

1. Boreal Shield (2,166 landscapes). The Boreal Shield

ecozone is the largest terrestrial ecozone in Canada

and is characterized by dense stands of conifers

(white and black spruce, balsam fir, and tamarack)

juxtaposed against communities of lichens, shrubs,

forbs, and wetlands in areas of exposed bedrock and

thinner soils. Exemplars were selected for two

different landscapes: one dominated by forest

(052O13) and the other dominated by a more

complex mosaic of forest and non-forest (063O16);

exemplar 052O13 is 78% forest, compared to 57%

for exemplar 063O16, which also has 33% of its area

occupied by wetland (see Figs. 2, 3 for this and the

other ecozones).

2. Taiga Shield (1495 landscapes). This ecozone is

characterized by two large biophysical features: the

Taiga Forest and the Canadian Shield. The vegetation

pattern in the ecozone is described as one of

‘‘innumerable lakes, wetlands, and open forests’’

(Ecological Stratification Working Group 1995). One

exemplar is dominated by vegetated non-forest

(024I05); the other, by forest (033O12).
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3. Pacific Maritime (181 landscapes). This ecozone is

dominated by temperate coastal forests composed of

mixtures of western red cedar, yellow cedar, western

hemlock, douglas fir, amabilis fir, mountain hemlock,

sitka spruce, and alder. Both exemplars of the

ecozone are dominated by forest, but reflect its

mountainous topography, with one of the exemplars

(093D07) representing higher-elevation forest and

containing a greater proportion of non-vegetated

cover (i.e., rock/rubble and exposed land). The

second exemplar (092K12) represents low-elevation

forest with little non-vegetated cover.

4. Montane Cordillera (521 landscapes). This ecozone

is considered the most diverse in Canada, ranging

from alpine tundra and dense conifer forests to dry

sagebrush and grasslands (Ecological Stratification

Working Group 1995). The two exemplars are both

dominated by forest, but differ in the amount and

arrangement of non-vegetated cover.

5. Boreal Cordillera (693 landscapes). Characterized by

either closed or open forests at lower elevations and

alpine tundra at higher elevations, this ecozone has

mountain ranges with extensive plateaus. The less

forested exemplar contains a greater amount of

vegetated non-forest (i.e., shrub and herb) and non-

vegetated (exposed land) cover. In the other exemplar

(095C10), valley-bottom forest dominates, mixed with

higher-elevation shrub and alpine areas.

6. Taiga Cordillera (375 landscapes). This ecozone

contains Canada’s ‘‘largest waterfalls, deepest can-

yons, and wildest rivers’’ (Ecological Stratification

Working Group 1995). The two exemplars are

markedly different, with one (106C15) predomi-

nantly non-vegetated (i.e., rock/rubble and exposed

land) with shrub, herb, and pockets of forest, and the

other (116I03) a mix of forest and non-forest (i.e.,

shrub, herb).

7. Taiga Plains (800 landscapes). Slow-growing conifer

forests of black spruce are the dominant vegetation in

this ecozone. This is captured in the exemplar that is

predominantly a mix of forest, wetland, and water

(085C05). The other exemplar (106J16) has a hetero-

geneous distribution of cover types, including non-

vegetated (water, exposed land), non-forest (bryoid,

shrub, wetland), and forest (coniferous and deciduous).

8. Boreal Plains (942 landscapes). This ecozone is

dominated by forest, primarily coniferous (black and

white spruce, jack pine, and tamarack), with broad-

leaf forests found in transitional areas with prairie

grasslands. Exemplar 084J10 captures a heteroge-

neous distribution of forest conditions, with conifer-

ous, broadleaf, and mixed forests interspersed with

shrub and wetland. Forest management is evident in

some of the forest-dominated areas. The other

exemplar (083M02), is dominated by herbs, consist-

ing of agricultural lands in a regularized pattern.

9. Hudson Plains (417 landscapes). The Hudson Plains

ecozone represents the largest extensive area of

wetlands in the world (Ecological Stratification

Working Group 1995) and the exemplars distinguish

between wetland-dominated areas with forest and

forest-dominated areas with wetlands.

10. Atlantic Maritime (204 landscapes). This ecozone is

dominated by mixed stands of conifers and deciduous

species. The exemplars reflect this pattern, with

011E04 being dominated by coniferous species and

021N04 dominated by mixed forests with pure

coniferous and broadleaf stands as well. Both chosen

representatives indicate areas that are subjected to

forest harvesting and to agricultural uses.

This application indicated that a very small set of met-

rics, previously proposed as being useful for broad-scale

reporting (Wulder and others 2008b), could successfully

distinguish major landscape types from each other. Addi-

tionally, it revealed that the experimental technique of using

affinity propagation could objectively identify exemplars

that matched and informed existing, more subjective

assessments of forested areas.

Fig. 2 Exemplar landscapes of each ecozone of forested Canada.

Legend: Green forest; Yellow nonforest; Black water, ice, cloud, or

cloud shadow. For each ecozone, the two exemplars selected by the

affinity propagation algorithm of Frey and Dueck (2007) are shown.

The number of 1:50,000 landscapes represented by each exemplar is

given, as is the 1:50,000 map sheet index number of the landscape

selected by the algorithm
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Application 2: Tracking Long-Term Landscape Change

Inside and Outside Protected Areas in Ontario

For this application, we show how representative land-

scapes might be used to systematically track long-term

landscape change inside and outside parks and protected

areas (PPAs) in Ontario. We imagine a scenario in which

the provincial and/or federal governments have the

resources to establish a limited number of long-term study

areas to understand changes inside and outside the prov-

ince’s parks. Three PPA ‘‘flagship’’ landscapes will be

studied in detail and, for each flagship, five landscapes will

be identified outside the PPA system for long-term com-

parison. The fifteen landscapes will then be monitored and

Fig. 3 Distributions of EOSD land cover classes within each of the exemplars
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analyzed (for example, for forest connectivity or fire fre-

quency) as systematically identified near-replicates of the

flagship landscapes. We use landscape metrics and affinity

propagation (1) to find the three landscapes that best rep-

resent the land-cover variation inside protected areas; and

(2) to identify, for each representative, the five landscapes

outside protected areas that are the most similar, with

respect to the identified landscape patterns.

Using a layer of parks and protected areas from the

Government of Canada (http://geogratis.gc.ca/), we iden-

tified the 89 1:50,000 landscapes whose centers lay within

the borders of a park or protected area in Ontario. We

tasked the affinity propagation algorithm with identifying

the three landscapes that best summarized the land-cover

patterns of that set. (As with the previous application, the

number of landscapes is chosen for parsimony and ease of

presentation.) The PCA reduction of landscape metric

values for the 89 PPA landscapes indicated three infor-

mative eigenvalues, and that that the first three principal

components represented 61, 20, and 9% of the variance in

the set, respectively. Asked to find the three best clusters

and their exemplars, the algorithm identified the landscapes

shown in Fig. 4 as representatives of the land-cover pat-

terns in parks and protected areas of Ontario. The selected

landscapes differ in several ways, most clearly in their

proportion of forest cover.

For the second part of this hypothetical management

application we identified, for each flagship landscape, its

five most similar ‘‘relatives’’ outside the parks and protected

areas system. In this setting, these objectively chosen rep-

resentatives would be used as study sites in which long-term

observations could be contrasted with those in the flagship

landscapes. We used the similarity values, as defined above,

to estimate the similarity of land-cover patterns among all

918 landscapes of Ontario. We then used the resulting table

of similarity values to identify the five landscapes whose

metrics values were the nearest to those of the exemplars

chosen in the first stage of this application. The related

landscapes are visually quite similar to their target exem-

plars (Fig. 4). As we would hope, the five landscapes that

were considered highly similar to a particular exemplar

have properties that are both similar to each other and dif-

ferent from landscapes in other clusters. Taken as a whole,

the consistency among these results indicates that several

important facets of this approach function well. First, the

landscape metrics of Wulder and others (2008b) were

appropriate and sufficient for quantifying identifiable sim-

ilarities in spatial patterns among landscapes. Second, the

compression of these landscape metric values into a single

similarity measure between landscapes retains information

suitable for identifying landscapes with land-cover patterns

that are similar in appearance.

Discussion

A national set of landscape metrics and the ability to

identify a representative set of landscape patterns present

Fig. 4 Exemplar landscapes inside (first column) and related land-

scapes (remaining columns) outside of the parks and protected areas

in Ontario, Canada. To the right of each exemplar are the five

landscapes outside the parks and protected areas system that have the

most similar landscape patterns to the representatives, as estimated

using landscape metric values. The resemblance of an exemplar to the

landscapes it represents is an indicator of the success with which the

metrics and algorithm can successfully relate the landscapes for such

applications. Legend: Green forest; Yellow nonforest; Black water,

ice, cloud, or cloud shadow
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the opportunity to better understand the variation in land-

scape pattern, its distribution in the ecozones of forested

Canada, and its potential use in management scenarios

across large areas.

In the first application presented here, the selected

exemplars for each ecozone provide critical context that

complements a more generalized presentation of ecozone

characteristics. Wulder and others (2008b) presented a

summary of fragmentation patterns within each ecozone,

providing a broad overview of regional differences in

landscape patterns; however, such a tabular summary

cannot easily convey the variability and full range of

landscapes that are to be found within each ecozone. For

example, the Boreal Plains ecozone is described in Wulder

and others (2008b) as being approximately 62 ± 25%

forested. Results of the approach here add greatly to that

information, with its choice of exemplars for the Boreal

Plains ecozone that are clearly quite different: one that is

dominated by forest (084J10; 81% forest) and one that is

dominated by vegetated non-forest (083M02, 38% forest).

As mentioned previously, a user wishing to observe more

of the variability could simply re-task the clustering algo-

rithm to generate more representatives. We found the

ability to inspect images of individual exemplars to be a

welcome addition to other established ways of conveying

landscape characteristics across these vast areas.

As described in the Application 2 section, the systematic

identification of representative landscapes might be used as

part of a conservation and/or monitoring strategy in several

ways by federal and provincial natural resource managers.

Because selected exemplars represent other landscapes that

have similar forest composition and configuration, they

would be ideal candidates for guiding the establishment of

permanent sample plots or long-term study sites. Second,

because the process of exemplar selection provides objec-

tive measures of the similarity of all pairs of landscapes,

natural resource managers could use this approach to help

assemble sets of similar landscapes in which to study the

effects of various management strategies. Landscapes that

are similar to flagship protected areas, but which them-

selves are not protected, could serve either as systemati-

cally identified replicates for future studies or investigated

further for conservation purposes, perhaps to increase the

resilience of the overall conservation portfolio.

There are several important aspects of this approach that

should be carefully considered before undertaking a man-

agement implementation of these ideas. (1) The visual

evaluation of representatives was sufficient to illustrate

these concepts; in contrast, any real-world use of repre-

sentatives for long-term study would need to be preceded

by extensive evaluation of their characteristics. This might

certainly include the consideration of many other factors

beyond land-cover metric values, including consideration

of the political, social, and financial characteristics of the

landscapes in question. (2) The suite of nine fragmentation

metrics were chosen for their suitability for national

reporting and their ease of calculation and interpretation

(Wulder and others 2008b). This choice resulted in repre-

sentative landscapes with respect to the chosen metrics. It

does not mean they identified similarities or differences

that were universally relevant to a particular management

decision, and other applications seeking representative

landscapes might well demand the use of other metrics.

Furthermore, since landscape metrics are typically sensi-

tive to changes in classification scheme and extent,

exemplars emerging based on analysis of other land cover

products may differ (Gergel 2007). (3) In the Application 1

section, we identified two landscapes to represent each of

the ten ecozones, primarily to keep the discussion tractable.

In the Application 2 section, we identified three park

landscapes as flagships. In our view, there is no inherently

‘‘correct’’ number of exemplars in a given ecozone for all

applications. There is an extensive body of literature on

extracting an optimal number of clusters from a set (e.g.,

Jain and others 1999): although there is some convergence

around certain estimation techniques, there is no agreed-

upon single estimator. For certain applications, the selec-

tion of a greater number of exemplars may be preferable,

for example in proportion to the number of landscapes. The

affinity propagation algorithm can select any number of

exemplars specified by the user. (4) An additional factor

worth considering is the composition of the similarity value

for a given research question. In the applications presented

here, all measured aspects of landscape pattern were

weighted equally. For some applications, a variable

weighting might be preferred, for example to emphasize

the importance of edges in computing the similarities

between landscapes. (5) Finally, it is worth noting that the

EOSD LC 2000 classification was substantially simplified

from its 23 native classes (Wulder and others 2008a) for

the purposes of generating the fragmentation metrics

(Wulder and others 2008b). Even with this greatly reduced

information, the metrics enabled the affinity propagation

algorithm to distinguish amongst different broad land cover

assemblages.

This exemplar-guided approach using affinity propaga-

tion is extremely well-suited to these specific management

questions. The commonly used PCA algorithm does reduce

the dimensionality of the data used to quantify landscape

patterns, and is used here for that purpose, but does not

directly provide clear groupings with which to compare

individual or groups of landscapes. Meanwhile, most well-

known clustering algorithms, (e.g., k-means) are not

designed to produce representative items, and the analysis

of their results is best limited to numerical tabulations

of summary group characteristics. In contrast to those
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clustering strategies, affinity propagation is a member of a

very small family of algorithms (k-medoids being the best-

known other such algorithm) designed to both cluster data

and select representatives from the data set.

In technical terms, this research adds to the small but

growing body of literature concerned with performing

useful segmentation of landscape patterns in large satellite-

based data sets. Without further considerable research,

however, one should be cautious in comparing the specific

results of this study with other large-scale studies in a

similar spirit. Efforts by Long and others (2010), while

quite successful at clustering landscapes based on metric

values, were of a much smaller landscape size (1 km2 in

that study vs. 800 km2 here), covered a much smaller total

area (5 million ha vs. 650 million ha here), and were based

on a different satellite classification. The identification of

exemplars for the continental United States (Cardille and

Lambois 2010) used the same basic protocol as that used

here; however, the underlying satellite classifications dif-

fered substantially between the EOSD (Wulder and others

2008a) and the NLCD (Vogelmann and others 2001). Most

importantly, the NLCD classification represents land use as

well as land cover. To the extent that underlying classifi-

cations can be made consistent across national borders, a

project to identify exemplar landscapes of all North

America might be fruitful.

Citations and applications of the affinity propagation

algorithm in the broader literature suggest that it is expe-

riencing widespread adoption in an extremely wide range

of settings. In our view, the flexibility and simplicity of the

method could be widely useful in environmental manage-

ment. As awareness of and access to large databases of

landscape characteristics increase, managers might draw

inspiration from affinity propagation’s growing use in other

fields, such as to extract representative image bands from

data-heavy hyperspectral remote-sensing data (Qian and

others 2009), to cluster large numbers of online videos by

selecting representative image frames (Karpenko and

Aarabi 2011), to tag photo albums (Liu and others 2011),

or to identify temporal features in gene expression data

(Kiddle and others 2010).

Although this clustering of landscapes was built using

the nine landscape metrics of Wulder and others (2008b),

the approach outlined here is not limited to these metrics

nor, indeed, to land cover-based metrics in particular.

Because the algorithm operates on any calculated similar-

ities among landscapes, one could readily select represen-

tative landscapes based on other criteria that can be

measured or estimated in each unit. For example, managers

interested in understanding the effects of insect outbreaks

could combine measures of pre-infestation conditions,

attack intensity, attack duration, and post-attack conditions

into a similarity measure between landscapes. Then, any

number of representatives could be identified for locating

study sites that most efficiently represent areas having

similar attack histories and recovery trajectories. The

algorithm is not limited to landscapes of a certain size, nor

of an equal size: one might identify representative forest

management units, for example by combining estimates of

the percentage of forest harvested in each decade of the

20th century into a similarity measure. Each identified

forest management unit exemplar would then represent a

large number of other units having similar management

histories. Similarly, managers interested in biodiversity

could combine presence/absence measures of an arbitrarily

large number of species into a measure of similarity, to

cluster and identify individual landscapes that support

similar combinations of species. Moreover, the clusters of

management units having similar characteristics could

potentially be used to ensure that the locations of future

harvests are chosen from clusters of management units

having desired criteria. Measures contributing to calcula-

tions of similarity need not be inherently numeric in nature;

measures like the Adjusted Rand Index (Hubert and Arabie

1985) can quantify similarity among sets of nominal vari-

ables. This ability to quickly and objectively identify

similar landscapes might be especially useful for exploring

either ‘‘in-kind’’ or ‘‘out-of-kind’’ development offsets for

conservation planning (Kiesecker and others 2010). Even

more generally, the affinity propagation algorithm is not

limited to landscapes; as a generic clustering and classifi-

cation tool, it could be used to identify, for example, rep-

resentative lakes from a larger set of lakes given specified

criteria of interest.

Conclusion

As more large and complex land cover data sets such as the

EOSD LC 2000 are produced, it will be increasingly

important to have flexible strategies to understand them.

Because land-cover datasets like the EOSD are rooted in

human perceptions of the environment, the identification of

viewable representatives is perhaps an especially infor-

mative approach for developing an understanding of Can-

ada’s vast forest resource. The landscapes described and

presented herein are useful in several specific ways. First,

because the analysis unit is at the same 1:50,000 scale as

the Government of Canada’s National Topographic map

series, the exemplars have a scale and appearance that is

familiar to many natural resource managers and ecologists.

As shown in the Application 1 section, the ability to view

representative landscapes is a powerful supplement to

strictly tabular or statistical summaries of landscape pat-

terns. Second, the numerical estimates of similarity

amongst landscapes that are provided by the affinity
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propagation algorithm can help illustrate and identify

connections among landscapes, as shown in the Applica-

tion 2 section.

Landscape metrics, when properly and conservatively

used, provide the ability to make objective comparisons

among different assemblages of land cover. In large data

sets, data compression to date has mainly been accom-

plished through reduction techniques operating on redun-

dancy in landscape metrics: through this compression, the

number of metrics to consider in a study is greatly reduced.

But in national-scale studies that encompass even a few

metrics or meta-metrics, the vast number of landscapes

remains, with differences among them remaining difficult

to interpret. By grouping landscapes into related sets and

highlighting an optimal representative of each group, the

affinity propagation approach appears to offer benefits for

analysts wishing to extract meaningful information from

large landscape data sets. In addition to its potential benefit

in helping to set management priorities across large areas,

the identification of a single landscape as an exemplar is a

benefit that opens the interpretation of landscape patterns to

a much larger group of both scientists and laypeople.
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