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Abstract——The blood-testis barrier (BTB) is one of
the tightest blood-tissue barriers in the mammalian
body. It divides the seminiferous epithelium into the
basal and the apical (adluminal) compartments. Meiosis
I and II, spermiogenesis, and spermiation all take place
in a specialized microenvironment behind the BTB in
the apical compartment, but spermatogonial renewal
and differentiation and cell cycle progression up to the
preleptotene spermatocyte stage take place outside of
the BTB in the basal compartment of the epithelium.
However, the BTB is not a static ultrastructure. Instead,
it undergoes extensive restructuring during the seminif-
erous epithelial cycle of spermatogenesis at stage VIII to
allow the transit of preleptotene spermatocytes at the
BTB. Yet the immunological barrier conferred by the
BTB cannot be compromised, even transiently, during
the epithelial cycle to avoid the production of antibodies
against meiotic and postmeiotic germ cells. Studies have
demonstrated that some unlikely partners, namely ad-
hesion protein complexes (e.g., occludin-ZO-1, N-cad-
herin-�-catenin, claudin-5-ZO-1), steroids (e.g., testoster-
one, estradiol-17�), nonreceptor protein kinases (e.g.,
focal adhesion kinase, c-Src, c-Yes), polarity proteins
(e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins

(e.g., clathrin, caveolin, dynamin 2), and actin regulatory
proteins (e.g., Eps8, Arp2/3 complex), are working to-
gether, apparently under the overall influence of cyto-
kines (e.g., transforming growth factor-�3, tumor necro-
sis factor-�, interleukin-1�). In short, a “new” BTB is
created behind spermatocytes in transit while the “old”
BTB above transiting cells undergoes timely degenera-
tion, so that the immunological barrier can be main-
tained while spermatocytes are traversing the BTB. We
also discuss recent findings regarding the molecular
mechanisms by which environmental toxicants (e.g.,
cadmium, bisphenol A) induce testicular injury via their
initial actions at the BTB to elicit subsequent damage to
germ-cell adhesion, thereby leading to germ-cell loss,
reduced sperm count, and male infertility or subfertility.
Moreover, we also critically evaluate findings in the
field regarding studies on drug transporters in the testis
and discuss how these influx and efflux pumps regulate
the entry of potential nonhormonal male contraceptives
to the apical compartment to exert their effects. Collec-
tively, these findings illustrate multiple potential targets
are present at the BTB for innovative contraceptive devel-
opment and for better delivery of drugs to alleviate toxi-
cant-induced reproductive dysfunction in men.
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I. Introduction: Background and the Concept of
the Blood-Testis Barrier

The blood-tissue barrier is a concept originally based
on observations reported in the early twentieth century.
When dyes were administered to laboratory animals,
they failed to stain the testis and the brain (Ribbert,
1904; Bouffard, 1906; Goldmann, 1909). These findings
thus led to the concept of the blood-testis barrier (BTB1)
and the blood-brain barrier (BBB) (Fawcett et al., 1970;
Setchell and Waites, 1975; Setchell, 2008; Easton, 2011).
The term blood-testis barrier, also known as the Sertoli
cell seminiferous epithelium barrier, however, was first
used by Chiquoine (1964) in a study that examined the
effects of cadmium toxicity as it related to testicular
necrosis. However, the function of the BTB was not fully
appreciated until the late 1960s, when it was reported
that dyes that were capable of penetrating seminiferous
tubules of prepubertal rats were excluded from tubules
in adult rats (Kormano, 1967a,b, 1968). These earlier
findings were followed by eminent investigations by
Setchell and Waites (1975) and Setchell (2008), who
collected fluids from different compartments in the tes-
tis (such as the rete testis, seminiferous tubule versus
blood plasma and testicular lymph in rats and sheep)
and demonstrated that there were significant differ-
ences in their fluid compositions, such as small hydro-
philic organic compounds (e.g., inositol) and proteins,
illustrating the presence of “restricted” communication
between various fluid compartments in the testis (Setch-

ell and Waites, 1975; Setchell, 2008). Subsequent emi-
nent studies in the 1970s by Fawcett and Russell and
their colleagues using electron microscopy further de-
fined the ultrastructure of the BTB in the mammalian
testis (Dym and Fawcett, 1970; Fawcett et al., 1970;
Dym and Cavicchia, 1977; Russell and Peterson, 1985).

Most mammalian blood-tissue barriers, such as the BBB
in the brain and the blood-retina barrier (BRB) in the eye,
are constituted almost exclusively by the tight junction
(TJ)-permeability barrier between endothelial cells of the
small capillaries in the brain and supported in part by
pericytes or perivascular macrophages (Hawkins and Da-
vis, 2005; Easton, 2011; Paolinelli et al., 2011). Likewise,
the BRB in the eye is constituted almost exclusively by the
TJ barrier of retinal capillary endothelial cells (inner BRB)
and supported by pericytes and retinal pigment epithelial
cells (outer BRB) (Cunha-Vaz, 2004; Hosoya and Tachikawa,
2011). However, the BTB in mammalian testes, unlike other
blood-tissue barriers, is constituted almost exclusively by spe-
cialized junctions between adjacent Sertoli cells near the
basement membrane [a modified form of extracellular matrix
(Dym, 1994; Siu and Cheng, 2004a, 2008)] in the seminifer-
ous epithelium of the seminiferous tubule (Figs. 1, 2, and 3);
and the seminiferous tubule is not penetrated by blood
vessels, lymph vessels, or nerves. Instead, these are
found in the interstitium between tubules (Setchell
and Waites, 1975; Cheng and Mruk, 2010a) (Fig. 1). In
rodents, the myoid cell layer in the tunica propria
(Figs. 1 and 3) contributes significantly to the barrier
function of the BTB because the passage of electron-
opaque markers (e.g., lanthanum, thorium, colloidal
carbon) was blocked by the myoid cell layer in �85% of
seminiferous tubules (Dym and Fawcett, 1970; Fawc-
ett et al., 1970). Subsequent studies have shown that
the myoid cell layer is less effective in restricting the
penetration of electron-dense substances across tu-
bules in the testes of primates (Dym, 1973) and there-
fore perhaps humans. It is noteworthy that the endo-
thelial TJ barrier in microvessels found in the
interstitium, however, contributes relatively little to
BTB function in both rodents and primates (Dym and
Fawcett, 1970; Dym and Cavicchia, 1977; Setchell,
2008; Cheng and Mruk, 2010a).

II. Spermatogenesis and the Blood-Testis Barrier

Spermatogenesis that takes place in the seminiferous
epithelium (Fig. 2) is composed of a series of cellular
events and can be divided as follows (Fig. 4): 1) sper-
matogonial renewal and proliferation via mitosis and
differentiation; 2) cell cycle progression from type B
spermatogonia to preleptotene spermatocytes, which
takes place in the basal compartment, lying outside of
the BTB; 3) cell cycle progression from zygotene and
pachytene to diplotene spermatocytes, which is followed
by meiosis I and II; 4) development of round spermatids
to elongated spermatids, and then spermatozoa via sper-

1Abbreviations: ABC, ATP-binding cassette; AJ, adherens junction;
AR, androgen receptor; Arp, actin-related protein; BBB, blood-brain
barrier; BCRP, breast cancer resistance protein; BPA, bisphenol A;
BRB, blood-retina barrier; BTB, blood-testis barrier; CAR, coxsackievi-
rus and adenovirus receptor; CDB-4022, [4aRS,5RS,9bRS]2-ethyl-
2,3,4,4a,5,9b-hexahydro-8-iodo-7-methyl-5-[4-carbomethoxyphenyl]-
1H-indeno-[1,2-c]-pyridine-hydrochloride; Cdc42, cell division cycle 42;
c-Src, sarcoma-inducing gene of Rous sarcoma virus; Cx, connexin;
c-Yes, a member of the Src kinase family, an oncogene identified in
avian sarcoma, encoding a protein tyrosine kinase; DES, diethylstilbes-
trol; dpc, days postcoitus; Eps8, epidermal growth factor receptor path-
way substrate 8; ES, ectoplasmic specialization; FAK, focal adhesion
kinase; FITC, fluorescein isothiocyanate; FSH, follicle-stimulating hor-
mone; GJ, gap junction; JAM, junctional adhesion molecule; JNK, c-Jun
N-terminal kinase; KO, knockout; LH, luteinizing hormone; MAPK,
mitogen-activated protein kinase; MDCK, Madin-Darby canine kidney;
MDR, multidrug resistance protein; MMP-9, matrix metallopotei-
nase-9; MRP, multidrug resistance-related protein; MTM-R2, myotu-
bularin-related protein 2; NF-�B, nuclear factor �-light-chain-enhancer
of activated B cell; OAT, organic anion transporter; OATP, organic
anion transporting polypeptide; OCT, organic cation transporter;
OCTN, organic cation/carnitine transporter; P450arom, cytochrome
P450 aromatase; PAR, partitioning-defective protein; PI3K, phosphati-
dylinositol 3-kinase; PKB, protein kinase B; PTU, 6-propyl-2-thiouracil;
RB, retinoblastoma protein; RNAi, RNA interference; SB202190, 4-[4-
(4-fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl]phenol; SH, Src ho-
mology; siRNA, small interfering RNA; SLC, solute carrier; SSC, sper-
matogonial stem cell; SU6656, 2,3-dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,
7-tetrahydro-1H-indol-2-yl)methylene]-1H-indole-5-sulfonamide; T�R,
transforming growth factor � receptor; TGF-�, transforming growth factor
�; TJ, tight junction; TNF, tumor necrosis factor; TNFR, tumor necrosis
factor � receptor; ZO-1, zonula occludens-1.
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miogenesis; and 5) spermiation, which all take place in
the apical compartment behind the BTB. Spermatogen-
esis begins with differentiation of spermatogonial stem
cells (SSC) residing within the spermatogonial stem cell
niche, which is located in the basal compartment where
several tubules converge and borders the interstitial
tissue (de Rooij, 2009) to form Asingle spermatogonia
(Fig. 4). Asingle spermatogonia were originally conceived
to be the SSC in the testis (de Rooij and Russell, 2000; de
Rooij, 2009). Subsequent studies, however, have shown
that not all Asingle spermatogonia are “true” SSC in
rodent testes, and it was estimated that there are only
�2000 to 3000 SSC among the 35,000 Asingle spermato-
gonia in each testis based on transplantation experi-
ments (Nagano, 2003; Nakagawa et al., 2007) and mor-
phological (Grisanti et al., 2009) analyses. In addition,
Apaired spermatogonia were shown to be capable of
switching back to become “true” SSC via dedifferentia-
tion (Brawley and Matunis, 2004; Nakagawa et al.,
2007). In short, an Asingle spermatogonium will undergo
4 mitotic divisions to form a 16-cell chain of Aaligned
spermatogonia (Fig. 4), which will differentiate into A1
spermatogonia to be followed by 6 mitotic divisions to
form 1024 preleptotene spermatocytes (Fig. 4). Prelep-
totene spermatocytes are the germ cells that are in tran-
sit at the BTB as clones connected by intercellular
bridges (Fawcett, 1961; Miething, 2010), which will dif-
ferentiate into zygotene and diplotene spermatocytes, to
be followed by two meiotic divisions (meiosis I and II) to
form 4096 haploid spermatids in mice and rats, theoret-
ically (Fig. 4). However, because many of these germ
cells undergo apoptosis, fewer than 25% will become
spermatozoa (Billig et al., 1995; Shaha et al., 2010) via
spermiogenesis to be released into the tubule lumen at
spermiation (O’Donnell et al., 2011). Thus, the BTB pro-
vides a physical barrier to segregate the events of sper-
matogenesis, namely items 3 to 5, and allows these
cellular events to take place in an immune-privileged
site in the epithelium.

III. Structure and Functions of the
Blood-Testis Barrier

A. Background and Unique Structural Features of the
Blood-Testis Barrier

The BTB in mammalian testes, as noted above, is
constituted by specialized junctions between adjacent
Sertoli cells in the seminiferous epithelium near the
basement membrane, away from the TJ barrier of the
endothelial cells in the microvessels found in the inter-
stitium (see Figs. 1 and 3). In the rat, the BTB begins to
assemble by postnatal day �15 to 16, and it is completed
by postnatal day �18 to 21 (Vitale et al., 1973; Berg-
mann and Dierichs, 1983; Russell et al., 1989; Toyama et
al., 2001), coinciding with the time that Sertoli cells
cease to divide (Orth, 1982). Instead of using TJ ultra-
structures, which are the hallmark of the other blood-

FIG. 1. The location of the BTB in the seminiferous epithelium of
adult mammalian testes and its physiological relationship with develop-
ing germ cells during spermatogenesis. The micrograph is the cross-
section of an adult rat testis showing three seminiferous tubules at stages
V, VII, and late VIII of the seminiferous epithelial cycle (see Fig. 2 for
detailed description of the epithelial cycle). The green boxed area is a
section of the seminiferous epithelium that is magnified and represented
by the schematic drawing shown below it, illustrating the intimate rela-
tionship between Sertoli and germ cells and the relative location of the
BTB. Leydig cells (red arrowheads) that produce testosterone (via ste-
roidogenesis) and a microvessel (e.g., erythrocytes inside the microvessel
are denoted by two green arrowheads) found in the interstitial space (In)
are noted. The BTB is located near the basement membrane in the tunica
propria, which also segregates the epithelium into the basal and the
apical (or adluminal) compartment. The BTB is constituted by coexisting
TJ, basal ES, desmosome, and gap junction, and the ultrastructural
features of the BTB as typified by the actin filament bundles sandwiched
between the cisternae of endoplasmic reticulum and the plasma mem-
branes of two apposing Sertoli cells (i.e., the basal ES) shown herein can
be seen in the electron micrographs shown in Fig. 3. The apical ES also
shares similar ultrastructural features with the basal ES, except that the
actin filament bundles that are sandwiched between the cisternae of
endoplasmic reticulum and the plasma membranes of the apposing Ser-
toli cell and elongating spermatids (step 8–19) are restricted only to the
Sertoli cell (see also micrographs in Figs. 2 and 3). As discussed in the
text, there is cross-talk between the apical ES, the BTB, and the hemi-
desmosome. These three ultrastructures also form a functional axis that
regulates and coordinates junction-restructuring events during sper-
matogenesis. Scale bar, 60 �m.
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tissue barriers, such as the BBB and the BRB, to con-
stitute the barrier exclusively, the BTB in the
mammalian testis is constituted by coexisting TJ, basal
ectoplasmic specialization [basal ES, a testis-specific
atypical adherens junction (AJ) type], gap junction, and
desmosome (Figs. 1 and 3; Table 1) (Gilula et al., 1976;
Russell and Peterson, 1985; Pelletier and Byers, 1992;
Pelletier, 2001; Cheng and Mruk, 2002, 2009a, 2010a;
Mruk and Cheng, 2004b, 2011; Mruk et al., 2008; Vogl et
al., 2008; Wong et al., 2008a; Mital et al., 2011). Some of
the most distinctive and prominent ultrastructural fea-
tures of the BTB are tightly packed actin-filament bun-
dles that lie perpendicular to the plasma membrane.
These are sandwiched between cisternae of the endo-
plasmic reticulum and the plasma membranes of appos-
ing Sertoli cells known as the basal ES, and these ultra-
structural features are found on both sides of adjacent
Sertoli cells (Russell, 1993; Vogl et al., 2008; Cheng and
Mruk, 2010a; Lie et al., 2010c) (Figs. 1 and 3). TJs, on
the other hand, appearing as “kisses” between apposing
Sertoli cell plasma membranes, are found between the
basal ES, near the basement membrane (Fig. 3). It is
noted that the ES was called “junctional specialization”
when it was first identified to be a crucial structural
component of the BTB (Flickinger and Fawcett, 1967)
but renamed “ectoplasmic specialization” 10 years there-
after (Russell, 1977c). It is also noted that even though
the BTB is one of the tightest blood-tissue barriers
(Dym and Fawcett, 1970; Setchell and Waites, 1975;
Cheng and Mruk, 2010a; Cheng et al., 2011a; Franca
et al., 2011; Mital et al., 2011), it undergoes restruc-
turing to facilitate the transit of preleptotene sper-
matocytes connected by intercellular bridges as
“clones” (Fawcett, 1961; Miething, 2010) at stage VIII
of the seminiferous epithelial cycle of spermatogenesis
(Russell, 1977b).

Recent studies from multiple epithelia using cultured
intestinal and renal epithelial cells and the small intes-FIG. 2. Cross-sections of testes from adult rats illustrating some se-

lected stages of the seminiferous epithelial cycle of spermatogenesis. The
stages of the seminiferous epithelial cycle shown herein are tubules at
stage V (A), VIII (B), X (C), XI (D), XII (E), and XIV (F). The sections
herein are paraffin sections stained with hematoxylin and eosin. During
spermatogenesis, the seminiferous epithelium (composed of Sertoli and
germ cells) undergoes cyclic changes as the result of germ cell develop-
ment, which is manifested by notable changes on the morphology and
relative location of the spermatids (purple arrowheads, such as acrosome
formation, elongation of the tail), round spermatids (white arrowheads)
and spermatocytes (red and green arrowheads), and can be divided into 6,
12, and 14 stages in human, mouse, and rat, respectively (Leblond and
Clermont, 1952; Parvinen, 1982; de Kretser and Kerr, 1988; Hess, 1990;
Hess and de Franca, 2008). The duration of a complete seminiferous
epithelial cycle takes �8.6 days (Oakberg, 1956) and �12.8 days (Cler-
mont et al., 1959) to complete in mouse and rat, respectively, when a
specific section of a tubule is monitored by stereomicroscopy to define
changes from stages I to XII and I to XIV in these species. But because
certain phases of the spermatogenesis, such as type A spermatogonial
renewal and their subsequent differentiation, take longer time to com-
plete, spermatogenesis in mouse, rat, and human was estimated to take
34 to 35, 48 to 53, and 64 days, respectively, to complete in studies using
[3H]thymidine or 32P-thymidine incorporation (de Kretser and Kerr,
1988) (Table 2). In stage V tubule (A), the heads of elongating spermatids
almost make contact with the Sertoli cell nucleus (yellow arrowheads)
located near the basement membrane of the tunica propria (green as-
terisk). Yellow arrowhead, Sertoli cell; blue arrowhead, type B sper-
matogonium; gray arrowhead, A1 spermatogonium; green arrowhead,

pachytene spermatocyte; white arrowhead, step 5 spermatid; purple arrowhead,
step 17 spermatid. In stage VIII tubule (B), elongated spermatids line up
at the luminal edge of the epithelium to prepare for sperm release at
spermiation. Yellow arrowhead, Sertoli cell; blue arrowhead, A1, sper-
matogonium; red arrowhead, preleptotene spermatocyte; green arrow-
head, pachytene spermatocyte; white arrowhead; step 8 spermatid; pur-
ple arrowhead, step 19 spermatid; orange arrowhead, Leydig cell in the
interstitium. In stage X tubule (C), yellow arrowhead, Sertoli cell; blue
arrowhead, A2 spermatogonium; red arrowhead, leptotene spermatocyte;
green arrowhead, pachytene spermatocyte; purple arrowhead, step 10
spermatid; orange arrowhead, Leydig cell. In stage XI tubule (D), yellow
arrowhead, Sertoli cell; blue arrowhead, A2 spermatogonium; red arrow-
head, leptotene spermatocyte; green arrowhead, pachytene spermatocyte;
purple arrowhead, step 11 spermatid. In stage XII tubule (E), yellow
arrowhead, Sertoli cell; blue arrowhead, type A2 spermatogonium; red
arrowhead, zygotene spermatocyte; green arrowhead, pachytene sper-
matocyte; purple arrowhead, step 12 spermatid. At stage XIV (F), meiosis
I and II occur, and the two secondary spermatocytes that arise from
meiosis I can be seen (red asterisks); also two step 1 spermatids that arise
from telophase of meiosis II are also seen (blue asterisks). Yellow arrow-
head, Sertoli cell; blue arrowhead, A3 spermatogonium; green arrow-
head, early pachytene spermatocyte; purple arrowhead, step 14 sperma-
tid; orange arrowhead, Leydig cell. Scale bar, 25 �m (A–F).
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tinal epithelium ex vivo have provided a semiquantita-
tive model of the TJ barrier (Watson et al., 2005; Van
Itallie et al., 2008; Anderson and Van Itallie, 2009; Mar-
chiando et al., 2010b), and these findings also illustrate
that, similar to the BTB, the TJ barrier/blood-tissue
barrier in these epithelia/endothelia is not static but is a
dynamic ultrastructure (Cardoso et al., 2010; Steed et
al., 2010). In short, the TJ barrier in these epithelia has
two distinct but coexisting paracellular pathways to al-
low transport of biomolecules across the TJ: 1) the “pore”
pathway, which is permeable to small solutes with a
molecular radius �4 Å, and 2) the “nonpore” pathway in
which temporary and transient breaks occur at cell-cell
contacts, which are permeable to �4-Å molecules (An-
derson and Van Itallie, 2009; Ivanov, 2011; Shen et al.,
2011). Thus, it is currently not known whether these two
pathways found at the TJ barrier in other epithelia are
applicable to the BTB because of the presence of the
basal ES, which apparently is being used to reinforce the
“tightness” of the BTB, plus other coexisting junction
types (e.g., desmosome, gap junction) at the site (see
Figs. 1 and 3).

It is noteworthy that besides being found at the BTB,
the ES is also found at the Sertoli cell-spermatid inter-
face from steps 8 to 19 in rat testes during spermiogen-
esis, and it is known as the apical ES (Russell, 1977c).
Once it appears, it is the only anchoring device, replac-
ing desmosomes and gap junctions that are found be-
tween the Sertoli cell and step 1-to-7 spermatids. The
ultrastructural features of the apical ES are identical to
the basal ES except that the actin filament bundles and
the cisternae of the endoplasmic reticulum unique to the
ES are visible only on the Sertoli cell side (Russell,
1977c; Vogl et al., 2000; Toyama et al., 2003; Cheng and
Mruk, 2010a) (Figs. 1 and 3). Perhaps it is because of these
unique ultrastructural features [e.g., the unique actin fil-
ament bundles at the basal ES that confer an unusual
adhesive force to the coexisting TJ, and other coexisting
junction types at the BTB, most notably the desmosome
(Fig. 3)] that the BTB is one of the tightest blood-tissue
barriers in the mammalian body. The physiological sig-
nificance of actin filament bundles at the basal ES that
confer BTB function was first reported in the late 1980s.
In a study using cytochalasin D to selectively disrupt
actin filament bundles in the basal ES at the BTB in
rats, BTB function was found to be disrupted when its
integrity was assessed by the diffusion of 1) an electron-
dense lanthanum salt across the BTB under electron
microscopy and 2) radiolabeled inulin from the intersti-
tial fluid and into the seminiferous tubule lumen by
using micropuncture techniques to collect and compare
radioactivity from fluids in these compartments (Weber
et al., 1988). These data thus illustrate the significance
of intact actin filament bundles to maintain BTB integ-
rity. Subsequent studies that assessed the adhesive
force conferred by the ES, such as the apical ES at the
Sertoli-elongate spermatid interface, which shares ul-

FIG. 3. Cellular, functional and ultrastructural features of the blood-
testis barrier (BTB) in mammalian testes during the seminiferous epi-
thelial cycle of spermatogenesis. A, an intact and functional BTB is found
in each of the three adjacent seminiferous tubules as shown in a, in which
FITC (Mr 389.39) administered to an adult rat (�300 g b.wt.) via the
jugular vein was unable to pass through the BTB located near the
basement membrane of the tunica propria (see broken white-line) to enter
the apical compartment in each of these tubules (see the white bracket),
even though FITC traversed the TJ barrier in the microvessels in the
interstitial space (see green fluorescence in the interstitium annotated by
the white arrowheads) (a). In the right panel, this rat was treated with
CdCl2 (3 mg/kg b.wt. i.p.) for 3 days (b), which is known to disrupt the
BTB integrity, before administration of FITC at the jugular vein. The
BTB was found to be disrupted in all three tubules in this cross-section of
testis because FITC entered the apical compartment “freely,” reaching
the lumen of the seminiferous tubule (see the white bracket). Scale bars,
50 �m (a and b). B, the anatomy of the BTB. In a, this is an electron
micrograph shown the typical ultrastructural features of the BTB created
by two adjacent Sertoli cells lying on the basement membrane (yellow
asterisks). Shown here are the basal ES, typified by the actin filament
bundles (green arrowheads) sandwiched between cisternae of the endo-
plasmic reticulum (ER) and apposing plasma membranes of two Sertoli
cells (apposing red arrowheads), TJ (yellow arrowheads) coexisting with
the basal ES. In b, the desmosome (denoted by the blue arrowheads),
which is also part of the components of the BTB, typified by the presence
of electron dense substances along the two adjacent Sertoli cell and the
absence of the distinctive actin filament bundles since desmosome is an
intermediate-based cell-cell anchoring junction type. In c, the electron
micrograph illustrates the apical ES surrounding the head of this elon-
gating spermatid, in which the actin filament bundles (green arrow-
heads) are sandwiched between cisternae of the ER and the apposing
plasma membranes of the Sertoli cell and the elongating spermatid
(apposing red arrowheads), similar to the basal ES at the BTB shown in
a, except that this typical features of the ES restricted only to the Sertoli cell.
Scale bars, 0.5 �m (a), 1 �m (b), and 0.1 �m (c). Ac, acrosome; Nu, nucleus.
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trastructural features similar to those of the basal ES at
the Sertoli-Sertoli cell interface, have demonstrated that
this is the “strongest” adhesion junction in the testis
versus the desmosome and the gap junction (Wolski et
al., 2005).

B. Functions of the Blood-Testis Barrier

1. “Fence” and “Gate-Keeper” Functions of the
Blood-Testis Barrier.

a. Restricts paracellular flow of biomolecules. Ana-
tomically speaking, the BTB divides the seminiferous
epithelium into the basal and the apical (adluminal)
compartments (Figs. 1–3). The primary function of the
BTB is to restrict the paracellular “flow” of substances
(e.g., water, electrolytes, ions, nutrients, hormones,
paracrine factors, and biological molecules) across the
Sertoli cell epithelium into the apical compartment (Fig.
3). Because the seminiferous epithelium is not pene-
trated by blood vessels or capillaries, lymphatic vessels,
or even nerves, which are all located in the interstitium
between seminiferous tubules (Fig. 1), the BTB thus
regulates the entry of substances, both nutritional (e.g.,
sugars, amino acids) and vital molecules (e.g., hormones,
electrolytes) and harmful toxicants (e.g., environmental
toxicants, drugs, chemicals), into the apical compart-
ment in which postmeiotic germ cell development (i.e.,
spermiogenesis and spermiation) takes place. This “se-
lectivity” function of the BTB thus creates a unique
microenvironment for postmeiotic spermatid develop-
ment in the apical compartment of the seminiferous
epithelium in mammalian testes (Fig. 1) during the

seminiferous epithelial cycle of spermatogenesis (Fig.
2; Table 2).

b. Segregates cellular events during the epithelial cycle
of spermatogenesis. The “fence” function of the BTB also
segregates different cellular events of spermatogenesis as
illustrated in Fig. 4. This morphological segregation im-
posed by the BTB is perhaps important for spermatogonial
renewal, mitotic proliferation, and differentiation so that
they can have unrestricted access to nutrients, hor-
mones, and biomolecules released from microvessels and
into the interstitial space (see Fig. 1), whereas further
development of highly specialized and metabolically in-
active developing spermatids are “shielded” behind the
BTB in the immune-privileged apical compartment.

2. The Blood-Testis Barrier Creates an Immunological
Barrier. The “fence” and “gate-keeper” functions of the
BTB also contribute, at least in part, to the immune-
privileged status of the testis, such that the immunolog-
ical response to autoantigens residing within germ cells
undergoing meiosis and developing spermatids during
spermiogenesis, many of which are expressed tran-
siently, can be suppressed (Fijak et al., 2011; Meinhardt
and Hedger, 2011). This is necessary to avoid the pro-
duction of anti-sperm antibodies and autoimmune dis-
ease, which leads to male infertility (Francavilla et al.,
2007). Thus, the BTB also creates an immunological
barrier to sequester many germ cell-specific antigens,
some of which are proto-oncogenes and oncogenes that
arise or appear transiently during meiosis and spermi-
ogenesis. In this context, it is noteworthy that autoan-
tigens also reside within germ cells outside the BTB in

FIG. 4. A schematic illustration of spermatogenesis in rodents and humans involving cell division (mitosis, meiosis) and cell differentiation shows
the significance of the BTB that segregates germ cells in the basal or the apical (adluminal) compartment of the seminiferous epithelium. The
bracketed number below each germ cell type represents the number of daughter cells derived from an earlier progenitor cell via either mitosis (black
arrow), meiosis [green bar, which includes meiosis I (blue arrow) and meiosis II (green arrow)], or transformation/differentiation without involving cell
division (red arrow). In theory, 4096 elongated spermatids (ES) and thus spermatozoa are formed from a single Asingle spermatogonium in rodents, but
�75% of germ cells (e.g., spermatogonia, spermatocytes, and spermatids) undergo apoptosis and degeneration, so that the number of spermatozoa
derived from a single spermatogonium is considerably less. A, type A spermatogonium; In, intermediate spermatogonium; B, type B spermatogonium;
Spc, spermatocyte; sS, secondary spermatocyte; rS, round spermatid, which undergoes spermiogenesis involving step 1-to-19 and 1-to-6 spermatids
in rats and humans, respectively, to form elongated spermatids; ES, elongated spermatid, which transforms and differentiates to spermatozoan before
spermiation; As, Asingle spermatogonium; Apr, Apaired spermatogonium; Aal, Aaligned spermatogonium; A1-A4 are differentiated spermatogonia. The BTB
physically divides the seminiferous epithelium into the basal and apical (adluminal) compartment. All the events of spermatogonial mitotic division
and differentiation take place in the basal compartment, when type B spermatogonia differentiate into preleptotene spermatocytes, which are the
germ cells in transit at the BTB so that meiosis I/II and spermiogenesis take place behind the BTB in the apical compartment until spermiation (i.e.,
the release of sperm into the tubule lumen).
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the basal compartment, such as preleptotene spermato-
cytes, type B spermatogonia, undifferentiated and dif-
ferentiated type A spermatogonia, and SSCs (see Fig. 1),
which are equally potent and capable of eliciting auto-
immune responses (Yule et al., 1988, 1990), as well as
cancer/testis antigens (Kalejs and Erenpreisa, 2005;

Simpson et al., 2005; Wong et al., 2008a; Caballero and
Chen, 2009), which are oncogenes transiently expressed
in these more primitive germ cells. It is noteworthy that
neither male rodents nor male humans develop antibod-
ies against those autoantigens residing within germ
cells outside the BTB except in pathological conditions.

TABLE 1
Types of cell junctions and their constituent and peripheral proteins found at the blood-testis barrier (BTB) in rodent testes

Prepared based on reviews (Cheng and Mruk, 2002, 2009b, 2010a, 2011; Mruk and Cheng, 2004b, 2010, 2011; Lie et al., 2008, 2011a; Mruk et al., 2008, 2011; Siu and Cheng,
2008; Yan et al., 2008a; Li et al., 2009c; Wong and Cheng, 2009; Kopera et al., 2010; Morrow et al., 2010; Su et al., 2011a) and reports (Li et al., 2011b), many of which are
cited in the text.

Junction Type Component Proteins

Occluding junction
Tight junction

Integral membrane proteins Occludin, claudin-1, -3, -4, -5, -7, -8, -11, JAM-A, JAM-B, CLMP, CAR
Adaptors ZO-1, ZO-2, vinculin
Regulatory or signaling proteins FAK, c-Src, c-Yes, p38 MAPK, ERK1/2, JNK, PKB (Akt), PAK, PI3K
Polarity proteins PAR6, 14–3-3, PATJ, PALS1, Scribble, Crumbs, Cdc42
Protease MMP9
Protease inhibitors TIMP-1, �2-macroglobulin
Trafficking proteins Dynamin 2, Rab8B, clathrin, caveolin-1, EEA-1, Rab9, MTMR2, annexin II
Cytokines TGF-�2, TGF-�3, TNF�, IL-1�
Drug transporters P-glycoprotein (efflux pump), Oatp3 (influx pump)
Scaffolding proteins Actin, collagen �3(IV)

Anchoring junction
Cell-cell actin-based

Basal ES
Integral membrane proteins N-cadherin, E-cadherin, nectin-2, CAR
Adaptors �-catenin, �-catenin, �-catenin, afadin, vinculin
Regulatory or signaling proteins c-Src, c-Yes, CK2, Csk
Trafficking proteins Dynamin 2, clathrin, caveolin-1, MTMR2, annexin II
Drug transporters Oatp3
Scaffolding proteins Actin
Actin regulatory proteins Eps8, Arp2/3 complex, N-WASP, drebrin E

Cell-cell intermediate filament-based
Desmosome

Integral membrane proteins Desmoglein 2, desmocollin 2, desmocollin 3
Adaptors Plakoglobin (�-catenin), plakophilin-1,- 2,- 4, desmoplakin
Regulatory or signaling proteins c-Src, CK2, Csk
Scaffolding proteins Vimentin

Communicating junction
Gap junction

Integral membrane proteins Connexin-43, -33, -26, -32, -36, -37, -40, -43, -45, -46, -50, -57
Adaptors Plakophilin 2, �-catenin, drebrin E
Regulatory or signaling proteins c-Src
Scaffolding proteins Actin

CK2, casein kinase 2; CLMP, CXADR-like membrane protein; Csk, carboxyl-terminal Src kinase; drebrin E, developmentally regulated brain protein E; EEA-1, early
endosome antigen-1; N-WASP, neuronal Wiskott-Aldrich syndrome protein; PAK, p21-activated kinase; PALS1, protein associated with Lin seven-1; PATJ, Pals1-associated
tight junction protein; TIMP-1, tissue inhibitor of metalloproteases-1, a metalloprotease inhibitor.

TABLE 2
Duration of spermatogenesis and the seminiferous epithelial cycle in rodents and men

The duration of spermatogenesis (in days) is the time it takes for one type A spermatogonium to form 4096 mature spermatozoa (in theory; see Fig. 4) with half of the original
number of chromosomes (see Fig. 4) in rodents, so that sperm will be released from the seminiferous epithelium into the tubule lumen at spermiation. This can be estimated
by using �3H�thymidine incorporation. Because of germ cell apoptosis and/or degeneration as a result of the limited number of Sertoli cells in the rat testis (�5 � 106 Sertoli
cells/mouse testis and �30–40 � 106 Sertoli cells/rat testis)(Orth, 1982; Berndtson and Thompson, 1990; França et al., 1998), only �25% of the germ cells become
spermatozoa (Shaha, 2008; Shaha et al., 2010) and are released to the tubule lumen at spermiation (O’Donnell et al., 2011). The duration of the seminiferous epithelial cycle
(or one cycle of the seminiferous epithelium) is the time it takes to complete the series of morphological changes between two appearances of the same developmental stage,
such as stage VIII, in a given area of the seminiferous epithelium in a tubule under stereomicroscopy (Clermont, 1972; Parvinen, 1982; França et al., 1998; Hess and de
França, 2008). Thus, the duration of spermatogenesis takes �4.2 (�68 days) to �4.5 cycles (�58 days) in humans (Amann, 2008) and rodents (Amann and Schanbacher,
1983), respectively, to complete to allow type A spermatogonia to differentiate to sperm. The stages of spermatogenesis are divided according to the specific cellular
associations using cross-sections of the seminiferous tubules originally based on the use of Periodic acid-Schiff’reaction (PAS) of the acrosome in developing spermatids
(Clermont, 1972; Hess and de FrançaZ, 2008), which can easily be defined with the use of hematoxylin and eosin staining using paraffin sections of testes (see Fig. 2).

Species Duration of Spermatogenesis Duration of Seminiferous Epithelial Cycle Stages of the Epithelial Cycle

days days

Rat 48–58 Clermont et al., 1959;
Hilscher, 1964;
França et al., 1998

12.8–12.9 Clermont and Harvey, 1965;
Russell and Brinster,
1996; Aslam et al., 1999

I–XIV Leblond and Clermont, 1952;
Hess, 1990

Mouse 34–35 Oakberg, 1956;
Clermont and Trott,
1969

8.6 Clermont and Trott, 1969;
Russell et al., 1996

I–XII França et al., 1998; Hess and
de França, 2008

Human 64–68 Heller and Clermont,
1964; Amann, 2008

16 Amann, 2008 I–VI Clermont, 1963
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Studies have suggested that local immunoregulatory
mechanisms operate to prevent testicular autoimmune
disease, such as nonspecific immunosuppression, anti-
gen presentation, lymphocyte trafficking, and/or sup-
pressor T cells, as well as androgens. Perhaps selected
populations of leukocytes may play a role to confer im-
mune privilege to the basal compartment of the seminif-
erous epithelium outside the BTB (Mahi-Brown et al.,
1988; Mital et al., 2010; Fijak et al., 2011).

In addition to the BTB, studies have shown that Ser-
toli cells per se may play a critical role in maintaining
the testis as an immune-privileged organ by secreting
immunosuppressive molecules to block immune re-
sponse to transiently expressed autoantigens in devel-
oping germ cells during spermatogenesis, as demon-
strated in cotransplantation experiments (Selawry and
Cameron, 1993; Dufour et al., 2004; Shamekh et al.,
2006; Fallarino et al., 2009; Yin et al., 2009; Mital et al.,
2010). However, the identities of the immunosuppres-
sive biomolecules as noted in these allogeneic and xeno-
geneic transplantation studies remain unknown; it is
conceivable that they are composed of an array of mol-
ecules including cytokines (e.g., interleukins, interfer-
ons) and prostaglandins (Hein and O’Banion, 2009;
Eyerich et al., 2010; Yang, 2010) because Sertoli cells
are capable of producing cytokines and prostaglandins
(Samy et al., 2000; Mruk and Cheng, 2004b; Meinhardt
and Hedger, 2011). In this context, it is noteworthy that
Sertoli cell lines (e.g., MSC-1) lack the immunoprotec-
tive properties associated with primary Sertoli cells (Du-
four et al., 2008), illustrating that studies using Sertoli
cell lines may not reflect the physiological function of the
Sertoli cell in vivo. However, it remains to be determined
whether other Sertoli cell lines also lack the immuno-
protective properties of primary Sertoli cells cultured in
vivo. In short, these findings illustrate that the BTB
creates an immunological barrier impermeable to anti-
gens residing in postmeiotic germ cells during spermio-
genesis and spermiation; however, it also works in con-
cert with other mechanism(s) to confer immune privilege
to the testis. As noted above, because blood and lym-
phatic vessels reside outside of the seminiferous tubules
in the interstitium (Setchell and Waites, 1975), and
macrophages and other antigen presenting cells are
found in the seminiferous epithelium only in pathologi-
cal conditions (Mahi-Brown et al., 1988; Yule et al.,
1990), there is a necessity for Sertoli cells to contribute,
at least in part, to immune defense mechanism(s). In-
deed, it has been shown that Sertoli and/or germ cells
produce antiviral and antibacterial molecules, such as
defensins (e.g., �-, �-defensin) (Com et al., 2003; Jin et
al., 2010) and interferons (Dejucq et al., 1997; Dejucq et
al., 1998a,b), and the production of interferons was
shown to be mediated by toll-like receptors in Sertoli
cells (Starace et al., 2008). It is noteworthy that Esche-
richia coli administered to seminiferous tubules in live
mice were shown to rapidly reproduce to reach a maxi-

mal level within a day, but the bacteria level began to
decline by day 5 and was completely eradicated in �2
months, concomitant with infiltration of neutrophils and
enhanced production of chemokines and inflammatory
cytokines [e.g., tumor necrosis factor-� (TNF�)], result-
ing in infertility with an irreversible disruption of sper-
matogenesis (Nagaosa et al., 2009). Collectively, these
findings illustrate that the seminiferous epithelium has
its own immunosuppressive, antibacterial, and antiviral
defense mechanism(s) to confer immune privilege to the
testis instead of a total reliance on the BTB.

3. Confers Cell Polarity in the Seminiferous Epithe-
lium. The BTB confers Sertoli cell polarity in the sem-
iniferous epithelium. One of the most obvious features of
cell polarity in the seminiferous epithelium is mani-
fested by the localization of Sertoli cell nuclei, which are
restricted to the basal compartment, lying adjacent to
the tunica propria; and cytoplasmic organelles (e.g.,
Golgi apparatus, lysosomes) in the Sertoli cell are not
uniformly distributed within its cytosol (Fig. 2). Further-
more, all apical ES ultrastructures at the Sertoli-sper-
matid interface are located in the apical compartment
(see Figs. 1 and 3). Similar to the TJ barrier in other
epithelia, which is crucial to maintain cell polarity, cell
polarity in the seminiferous epithelium of adult mam-
malian testes is conferred, at least in part, by the BTB
via the three polarity complexes or modules: the Crumbs
(Crumbs/PatJ/Pals1), PAR (PAR3/PAR6/atypical PKC/
Cdc42), and Scribble (Scribble/Dlg/Lgl) modules (Assé-
mat et al., 2008; Iden and Collard, 2008; Wong and
Cheng, 2009; Cheng and Mruk, 2010a; Harris and Te-
pass, 2010). Many of the components of these three
polarity protein complexes have been identified in the
testis, and their physiological significance in spermato-
genesis has recently been reported (Wong et al., 2008c,
2009, 2010a). Besides the BTB, the apical ES (for re-
views, see Wong et al., 2008a; Wong and Cheng, 2009)
also confers spermatid polarity during spermiogenesis
using similar polarity modules, so that developing sper-
matids can be properly oriented to occupy minimal space
in the epithelium with their heads pointing toward the
basement membrane and their tails toward the seminif-
erous tubule lumen (see Figs. 1 and 2). Based on earlier
studies in Drosophila melanogaster and subsequent
studies in mammalian epithelial cells, it is known that
the localization of Crumbs and PAR modules at the TJ
near the apical region and the Scribble module at the
basolateral region of an epithelium are mutually exclu-
sive (for reviews, see Assémat et al., 2008; Iden and
Collard, 2008; Wong and Cheng, 2009). As such, each
module recruits its unique binding partners, including
adaptors, kinases, phosphatases, and different organ-
elles, to create the cell polarity necessary for morpho-
genesis, development, and pathogenesis (Médina et al.,
2002; Assémat et al., 2008; Huang and Muthuswamy,
2010; Marx et al., 2010). The most obvious cell polarity
phenotype in the seminiferous epithelium conferred by
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the BTB, besides the unique localization of Sertoli cell
nuclei near the basement membrane, is that spermato-
gonial stem cells, undifferentiated and differentiated
spermatogonia, and preleptotene spermatocytes are all
sequestered outside the BTB in the basal compartment,
whereas late spermatocytes (e.g., zygotene, pachytene,
and diplotene spermatocytes), secondary spermatocytes,
spermatids, and spermatozoa are restricted to the apical
compartment in the seminiferous epithelium (Figs. 1
and 2). Furthermore, many organelles and ultrastruc-
tures, including the cytoskeleton, are not uniformly dis-
tributed within the Sertoli cell cytosol. For instance,
actin filament bundles, and cisternae of endoplasmic
reticulum are very abundant at the BTB at the site of
the basal ES, and also at the apical ES, associating with
developing spermatids during spermiogenesis (Yan et
al., 2007; Vogl et al., 2008; Cheng and Mruk, 2009a,
2010a; Mruk and Cheng, 2010b) (Fig. 5). Recent studies
have shown that polarity proteins, such as PAR3 and
PAR6, also regulate protein distribution at the BTB and
TJ permeability barrier function (Wong et al., 2008c) via

an unexpected mechanism (Wong et al., 2009). For in-
stance, it was shown that a knockdown of PAR3 or PAR6
by RNAi using corresponding specific siRNA duplexes in
Sertoli cells cultured in vitro in which the TJ barrier
mimicked the BTB in vivo (Fig. 6) led to a mislocaliza-
tion of integral membrane proteins and/or peripheral
adaptors at the BTB, such as JAM-A and �-catenin,
perhaps via an increase in protein endocytosis, thereby
destabilizing the TJ barrier (Wong et al., 2008c). Indeed,
such effects were subsequently shown to be mediated by
14-3-3 (also known as PAR5), which regulated the
events of protein endocytosis at the BTB (Wong et al.,
2009). More important, Cdc42 in the PAR module is
critical for cytokine-mediated [e.g., transforming growth
factor (TGF) �3] protein endocytosis events at the BTB
(Wong et al., 2010a), because earlier studies have shown
that cytokines (e.g., TGF-�2, TGF-�3, and TNF�) regu-
late BTB function via an increase in the kinetics of
endocytosis of integral membrane proteins at the BTB,
facilitating the disruption of TJ fibrils above prelepto-
tene spermatocytes in transit at stage VIII of the epi-
thelial cycle (Yan et al., 2008b; Xia et al., 2009). These
findings thus support the notion that polarity proteins
(e.g., 14-3-3, Cdc42, PAR3, PAR6) are crucial regulators
of endocytic vesicle-mediated protein trafficking events
at the BTB (Wong et al., 2008c, 2009, 2010a). Indeed,
recent studies in other epithelia have also supported the
emerging concept that polarity proteins and endocytic
pathways work together to create distinctive cellular
domains in the polarized cell epithelium (Shivas et al.,
2010).

C. An Intact and Functional Blood-Testis Barrier Is
Necessary for Spermatogonial Stem
Cell/Spermatogonial Differentiation during
Spermatogenesis: an Emerging Concept

The emerging concept that the BTB is a physiologi-
cally significant ultrastructure in relation to the onset
of spermatogonial differentiation, such as from type B
spermatogonia to preleptotene spermatocytes during
spermatogenesis, was based on earlier studies that ex-
amined the onset of premeiotic cell differentiation and
meiosis and the timing of BTB assembly in the develop-
ing testis. For instance, preleptotene and leptotene sper-
matocytes are found in the seminiferous epithelium in
rats by postnatal days 9 to 12 before the establishment
of the BTB (Clermont and Perry, 1957). However, the
differentiation of preleptotene spermatocytes, which is
the only germ cell type that is in transit at the BTB, into
zygotene spermatocytes to be followed by pachytene
spermatocytes that occurs by postnatal days �15 to 18
(Clermont and Perry, 1957) coincides with the establish-
ment of the BTB (Vitale et al., 1973; Bergmann and
Dierichs, 1983; Russell et al., 1989). It is also noted that
Sertoli cells cease to divide and are fully differentiated
by approximately postnatal day 15, with �30 to 40 � 106

Sertoli cells per testis in rats (Orth, 1982; Berndtson and

FIG. 5. Distribution of the actin-based cytoskeleton in the seminifer-
ous tubules of adult rat testes. A, cross-section of an adult rat testis in
which F-actin was visualized by staining with rhodamine-conjugated
phalloidin (Invitrogen, Carlsbad, CA) (red fluorescence), and cell nuclei
were stained with 4�,6-diamidino-2-phenylindole and shown in the
merged image (B). The two boxed areas in B are magnified and shown in
C and D illustrating the relative location of BTB in C as denoted by white
arrowheads, and F-actin is also predominant in the tunica propria (see
white arrows) associated with peritubular myoid cells. Extensive F-actin
network is also detected at the apical ES, surrounding the heads of the
elongating spermatids, as shown in D. Scale bars, 80 �m (A and B) and
20 �m (C and D).
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Thompson, 1990) [and �2–5 � 106 Sertoli cells per testis
in mice (Vergouwen et al., 1993; França et al., 1998;
Auharek and de França, 2010)], which persists through
adulthood. In short, these findings suggest that Sertoli
cells that cease to divide by postnatal day 15 are neces-
sary for the establishment of a functional BTB, which in
turn, allows the transit of preleptotene spermatocytes
across the barrier and their differentiation into zygotene
and pachytene spermatocytes. It is noteworthy that neo-
natal rats treated with diethylstilbestrol (DES), which
delayed the establishment of the BTB by 4 weeks, was
also shown to delay the first wave of spermiation by �4
weeks, wherein spermatocytes failed to enter meiosis
I/II and were found to undergo degeneration (Toyama et
al., 2001) [note that spermiation occurs by postnatal day
45 in normal rats (Clermont and Perry, 1957)], illustrat-
ing meiotic arrest in the absence of a functional BTB.

A recent study using adjudin [1-(2,4-dichlorobenzyl)-
1H-indazole-3-carbohydrazide, formerly known as AF-
2364, a potential male contraceptive (Cheng et al., 2001,
2005; Cheng and Mruk, 2010b)] to knock out virtually all
germ cells from the seminiferous epithelium except
SSCs and spermatogonia by perturbing germ cell adhe-
sion to Sertoli cells has yielded some surprising results
(Mok et al., 2011a). First, it was shown that in adult rats
(�270–300 g b.wt.) treated with adjudin at either 50
mg/kg (low dose) or 250 mg/kg (high dose) b.wt. (one
dose, via gavage), all the seminiferous tubules were de-
void of germ cells by �2 weeks except for SSCs/sper-
matogonia (Mok et al., 2011a). However, in the low-dose
group, spermatogenesis reinitiated, beginning at �20
weeks after treatment, and �70% of the tubules dis-
played normal spermatogenesis by 30 weeks; however,
spermatogenesis failed to resume in the high-dose group
(Mok et al., 2011a). We speculated that this might have
been due to the depletion of SSCs/spermatogonia by
adjudin, which is somewhat analogous to the effect of a
“toxicant” on spermatogenesis. Surprisingly, the popu-
lation of SSCs/spermatogonia remained relatively unal-
tered in both low- and high-dose groups (Mok et al.,
2011a), illustrating that the inability to reinitiate sper-
matogenesis in the high-dose group is not the result of
SSCs/spermatogonia loss. Instead, it was found that the
BTB was disrupted in both treatment groups by 6 weeks
after treatment (Mok et al., 2011a) when barrier integ-
rity was assessed by a functional in vivo assay that
monitored the ability of an intact BTB to block the
diffusion of a small fluorescence tag (e.g., FITC or FITC-
inulin) across the BTB (Li et al., 2006; Xia et al., 2009).
It is noteworthy that the BTB was “resealed” in the
low-dose group by 20 weeks but not in the high-dose
group (Mok et al., 2011a), illustrating that a functional
BTB is necessary for reinitiation of spermatogenesis
after its disruption by toxicants. These findings are also
supported by earlier studies in which rats were treated
with 2,5-hexanedione (Boekelheide and Hall, 1991), di-
bromochloropropane (Meistrich et al., 2003), and procar-

FIG. 6. Morphology and ultrastructural features of the Sertoli cell
BTB in vitro. Sertoli cells were cultured at �0.02 � 106 cells/cm2 (A–C) or
at 0.0125 � 106 cells/cm2 (D) on Matrigel-coated glass coverslips for 4
days. Thereafter, cells were fixed in 4% paraformaldehyde (w/v) in phos-
phate-buffered saline (10 mM sodium phosphate and 0.15 M NaCl, pH 7.4
at 22°C), permeabilized in 0.1% Triton X-100 (v/v) in phosphate-buffered
saline, and stained with a monospecific antibody against ZO-1 (A, an TJ
adaptor protein), occludin (B, a TJ-integral membrane protein), N-cad-
herin (C, a basal ES integral membrane protein), or stained for F-actin
using FITC-conjugated phalloidin (Sigma-Aldrich, St. Louis, MO) (D).
Cells were mounted in ProLong Gold antifade reagent with 4,6-di-
amidino-2-phenylindole (Invitrogen) to visualize cell nuclei. Both TJ and
basal ES were established in these Sertoli cells cultured in vitro, con-
firming earlier findings that a functional TJ permeability barrier is
established in Sertoli cells cultured in vitro, by measuring transepithelial
electrical resistance across the Sertoli cell epithelium (Grima et al., 1998;
Lui et al., 2001). The distinctive actin filament network is also found in
these Sertoli cells as shown in D. E to H, electron micrographs of Sertoli
cells (0.5 � 106 cells/cm2) cultured in vitro on Matrigel-coated dishes for
4 days, and the ultrastructural features of the BTB detected in vivo are
also found in this Sertoli cell epithelium (F–H), illustrating that a func-
tional BTB has been established. E, two adjacent Sertoli cells with the
distinctive cell nuclei (Nu) are noted, and microvilli are also found (yellow
arrowheads), which are the typical features of Sertoli cells cultured in
vitro. F, three adjacent Sertoli cells are noted (Nu) and the functional
BTB encircled by the blue and yellow brackets are magnified and shown
in G and H, respectively. G, basal ES is typified by the presence of actin
filament bundles (yellow arrowheads), which are sandwiched between
cisternae of the endoplasmic reticulum (ER) and the apposing Sertoli cell
plasma membranes (see apposing green arrowheads), and TJ (red arrow-
heads) is found to coexist with basal ES. H, functional desmosome (blue
arrowheads), which is typified by the presence of electron-dense sub-
stances on both sides of the two adjacent Sertoli cells, is also noted.
Desmosome shown in H and the basal ES and TJ shown in G are the
magnified images from the corresponding areas in F, illustrating the
ultrastructures of the Sertoli cell BTB in vitro. In short, these observa-
tions illustrate that a functional BTB was established in these Sertoli
cells cultured in vitro, mimicking the BTB in vivo by having the ultra-
structures of the BTB found in vivo. Scale bars, 20 �m (A–D), 5 �m (E and
F), and 1 �m (G and H).
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bazine (Meistrich et al., 1999) or subjected to irradiation
(Kangasniemi et al., 1996), which depleted most germ
cells from the seminiferous epithelium, except spermato-
gonia and/or SSCs. Nonetheless, spermatogenesis failed
to reinitiate in these animals because spermatogonia
failed to differentiate beyond type A; however, it should
be noted that BTB integrity was not examined in these
animals. Nonetheless, these findings are in agreement
with observations in the developing testis, which showed
that the assembly of the BTB correlates with the onset of
differentiation of spermatocytes and meiosis.

Studies using other genetic models also support the sig-
nificance of the BTB in the initiation and maintenance of
spermatogenesis. For instance, claudin-11(�/�) (Gow et
al., 1999; Mazaud-Guittot et al., 2010) and occlu-
din(�/�) (Saitou et al., 2000; Takehashi et al., 2007)
mice failed to assemble TJ fibrils and to establish a
functional BTB, and these mice were infertile, because
occludins are known to oligomerize to form TJ strands
via homologous and heterologous interactions of occlu-
dins localized on adjacent epithelial cells (e.g., Sertoli
cells) (Blasig et al., 2011). In claudin-11(�/�) mice, sper-
matogenesis failed to proceed beyond meiosis (Mazaud-
Guittot et al., 2010), whereas meiotic arrest was de-
tected in occludin(�/�) mice by postnatal weeks �36 to
60, even though occludin(�/�) mice remained fertile by
postnatal week �10 (Takehashi et al., 2007); perhaps
other TJ proteins (e.g., claudins, JAMs) were capable of
temporarily superseding the function of occludin, but
not continuously into adulthood.

Collectively, these findings thus support the concept
that the BTB is important to maintain and reinitiate
spermatogenesis after toxicant-induced aspermatogen-
esis, perhaps at the stages of spermatogonial differenti-
ation (such as from undifferentiated to differentiated
type A spermatogonia and/or the transformation from
type A to type B), meiosis, and the onset of spermiogen-
esis as demonstrated in toxicant and genetic models.
However, it is noted that these events are marked with
a complex and intriguing regulation at both cellular and
molecular levels, as illustrated in gene profiling studies
(O’Donnell et al., 2009; Carlomagno et al., 2010). Thus, it
is not unexpected that the underlying mechanism(s) by
which the BTB exerts its regulatory effect(s) remains
unknown. Studies have shown, however, that spermato-
gonial stem cells (SSCs) reside in the stem cell niche,
which is found in the area where several seminiferous
tubules converge that also borders the interstitial tissue,
near the BTB and microvessels in the interstitium (de
Rooij, 2009; Phillips et al., 2010; Yoshida, 2010), perhaps
making it easier for SSCs to have access to nutrients
from the systemic circulation. It is possible, therefore,
that SSCs acquire signals from polarized Sertoli cells
near the basement membrane via gap junction (GJ), so
that SSCs can undergo proper differentiation during the
seminiferous epithelial cycle of spermatogenesis. This
hypothesis is supported by studies showing that in con-

nexin-43 knockout [Cx43(�/�)] mice, tubules were de-
void of all germ cells except for spermatogonia (Brehm et
al., 2007). More important was the fact that the remain-
ing spermatogonia failed to differentiate beyond type A
spermatogonia (Brehm et al., 2007), and Sertoli cells
remained undifferentiated and proliferative well into
adulthood. Thus, clusters of Sertoli cells were continu-
ously found in the tubule lumen in these Cx43(�/�)
mice (Sridharan et al., 2007), perhaps to “shed” the
unwanted Sertoli cells as a result of unchecked cell
proliferation. Although the ultrastructural features of
the BTB in these Cx43(�/�) mice seemed to be unaf-
fected when examined by electron microscopy (Carette
et al., 2010b), an increase in the levels of occludin, N-
cadherin, and �-catenin concomitant with a significant
loss of ZO-1 at the BTB, as well as mislocalization of
some of these BTB proteins, was detected when exam-
ined by dual-labeled immunofluorescence analysis
(Carette et al., 2010b), illustrating a BTB malfunction at
the physiological level. In short, it is likely that an intact
and functional BTB provides and maintains a proper
microenvironment via GJ signaling to allow spermato-
gonial differentiation within the stem cell niche during
spermatogenesis. In fact, this hypothesis is supported by
a recent gene profiling study in which SSCs induced to
undergo differentiation by BMP4 (bone morphogenetic
protein 4) were found to associate with a surge in cell
adhesion proteins, including GJ-proteins (Carlomagno
et al., 2010).

IV. Regulation of the Blood-Testis Barrier

A. Cross-Talk of Different Junction Types at the
Blood-Testis Barrier to Confer Its Dynamic Nature
during Spermatogenesis

1. Introduction. The BTB physically divides the sem-
iniferous epithelium into the basal and apical compart-
ments (see Fig. 1). It thus segregates the events of post-
meiotic germ cell development (i.e., spermiogenesis) and
spermiation (the release of sperm from the epithelium at
stage VIII of the epithelial cycle in rats) from the sys-
temic circulation, which take place in the apical com-
partment of the epithelium. As noted in section III.A,
the BTB is constituted by coexisting TJ, basal ES, des-
mosome, and gap junction (Setchell, 2008; Vogl et al.,
2008; Cheng and Mruk, 2009a, 2010a) (Figs. 3, 6, and 7;
Table 1). It is possible that these multiple junction types,
particularly the unusual ultrastructural features of the
basal ES (e.g., the tightly packed actin filament bundles
along the Sertoli-Sertoli cell interface, reinforcing its
adhesive function) that coexist with the TJ (Figs. 3 and
7), make the BTB one of the tightest blood-tissue barri-
ers in the mammalian body. However, the physiological
significance of multiple junction types that constitute
the BTB has remained unknown until recently. Emerg-
ing evidence illustrates that the gap junction (Li et al.,
2009b, 2010) and desmosome (Lie et al., 2010b) at the
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BTB coordinate protein distribution at the basal ES and
TJ, which is assisted in part by nonreceptor protein
kinases such as c-Src, c-Yes, and FAK that associate
with these junctions (Fig. 8). The net result regulates
the temporal and spatial “opening” and “closing” of the
barrier, which occurs at stage VIII of the epithelial cycle,
to facilitate the transit of preleptotene spermatocytes,

which move from the basal to the apical compartment
while differentiating into leptotene and zygotene sper-
matocytes (Russell, 1977b; de Kretser and Kerr, 1988;
Kerr et al., 2006) (Fig. 9). Furthermore, the basal ES and
the TJ, while they are structurally “engaged” because
they coexist at the BTB, can also become “disengaged”
(Yan and Cheng, 2005), so that the integrity of the “old”

FIG. 7. A schematic drawing illustrating the molecular architecture of the constituent proteins at the BTB. The BTB is typified by the presence of
actin filament bundles sandwiched between cisternae of the endoplasmic reticulum and the apposing plasma membranes of two adjacent Sertoli cells.
Cell adhesion at the BTB is conferred by the presence of several integral membrane proteins and their adaptors, such as TJ protein complexes
(occludin-ZO-1, claudin-ZO-1, JAM-ZO-1), basal ES protein complexes (cadherin-catenin, nectin-afadin), gap junction protein complex (connexin-43-
plakophilin-2), and desmosome protein complex (desmoglein-2/desmocollin-2-plakophilin/plakoglobin). Adaptors in these protein complexes (e.g.,
ZO-1, �-catenin, afadin, plakophilin, plakoglobin) also recruit additional adaptors [e.g., zyxin, axin, Wiskott-Aldrich syndrome protein (WASP), ponsin]
and regulatory proteins to the site, including nonreceptor protein kinases [such as Src family kinases (e.g., c-Src, c-Yes), Fer kinase, FAK], polarity
proteins [e.g., PAR6, protein associated with Lin seven-1 (PALS1), PALS1-associated tight junction protein (PATJ), atypical PKC (aPKC)], GTPases
(e.g., Rab8B, Cdc42), and MAPKs [e.g., p38 MAPK and JNK/stress-activated protein kinase (SAPK)]. The actin network is also maintained by the actin
capping and bundling protein Esp8 and the actin nucleation Arp2/3 protein complex. Also present is the intermediate filament near the desmoglein-
desmocollin complex, and the tubulin network with the motor proteins (e.g., myosin VIIA, dynein, kinesin) near the actin filament to facilitate
preleptotene spermatocyte transit at the site.

28 CHENG AND MRUK



BTB above preleptotene spermatocytes in transit can be
partially maintained when “old” BTB integral mem-
brane proteins are transcytosed and recycled to assem-
ble the “new” BTB behind transiting spermatocytes (Fig.
9). In this section, these recent findings are critically
discussed, and we also propose a molecular/biochemical
model in Fig. 9.

2. Desmosome. In the testis, the desmosome is a
cell-cell intermediate filament-based anchoring junc-

tion, a strong and flexible adhesive junction (Getsios et
al., 2004; Green and Simpson, 2007; Bass-Zubek et al.,
2009; Green et al., 2010; Thomason et al., 2010; Lie et
al., 2011a; Mruk and Cheng, 2011) (Table 3). In the
testis, it is found most predominantly at the Sertoli-
spermatid (from step 1 to 7 spermatids) interface and at
the BTB between adjacent Sertoli cells (Figs. 3, 6, and
7). Proteins that constitute the desmosome can be clas-
sified into three groups with five major components as
follows: 1) the desmosomal cadherins: desmogleins and
desmocollins; 2) the plakin family cytolinker desmo-
plakin, and 3) the arm (armadillo) proteins: plakoglobin
and plakophilin (Table 3; Figs. 3 and 7). A recent study
has shown that many of these components are found in
the testis, associating with either Sertoli or germ cells,
or with both cell types, in the seminiferous epithelium
(Lie et al., 2010b). On the basis of electron microscopy
studies, it was reported that desmosomes found in the
testis possessed the ultrastructural features of both the
desmosome and gap junction and were designated des-
mosome-like junctions (Russell, 1977a). However, it is
noted that putative gap junctions are also found in the
testis (Enders, 1993; Vogl et al., 2008; Li et al., 2011a).
However, because desmosomal cadherins, desmogleins,
and desmocollins are incapable of forming connexons
similar to connexins (e.g., connexin-43, connexin-33) to
create functional hemichannels and/or gap junction
channels so that the terminology of desmosome should
be kept as it is in other organs, such as the skin and
heart. Surprisingly, there are very few reports in the
literature investigating the functions of desmosomes in
the testis until recently (Lie et al., 2011a; Mruk and
Cheng, 2011), possibly because of the absence of specific
antibodies against many desmosomal component pro-
teins. There are different functional domains within des-
mosomal cadherin desmogleins (Lie et al., 2011a). Using
this information, we prepared a specific antibody
against the intracellular proline-rich linker and repeat
unit domain of rat desmoglein-2, which was used to
investigate the function of desmosomes at the BTB (Lie
et al., 2010b). Desmoglein-2 was found to partially colo-
calize with the basal ES protein N-cadherin and the TJ
protein ZO-1 at the Sertoli cell BTB; it is noteworthy
that desmoglein-2 was also found to interact structur-
ally with c-Src, in addition to plakoglobin by coimmuno-
precipitation (Lie et al., 2010b), illustrating that it may
be a substrate of c-Src. It is possible that its phosphor-
ylation status can be altered by c-Src to affect adhesion
at the BTB. Although the knockdown of desmoglein-2
alone by RNAi using specific siRNA duplexes failed to
compromise Sertoli cell TJ permeability barrier func-
tion, the silencing of desmoglein-2 induced mislocaliza-
tion of ZO-1, but not occludin or N-cadherin, at the
Sertoli-Sertoli cell interface, moving these proteins
away from the plasma membrane and into the cell cyto-
sol (Lie et al., 2010b). It is noteworthy that the simulta-
neous knockdown of desmoglein-2 and desmocollin-2 in

FIG. 8. A schematic drawing illustrating functional domains in non-
receptor protein kinases FAK and Src. Both FAK and c-Src (the trans-
forming, sarcoma-inducing gene of Rous sarcoma virus) are mediators of
integrin-based signaling, most notably at the focal adhesion complex (also
known as focal contact, which is an actin-based cell-matrix anchoring
junction. Focal contact is not found in the testis. Instead, FAK and c-Src
are components of the TJ and basal ES at the BTB, as well as the apical
ES in the apical compartment). There are at least nine members in the
Src kinase family: Src, Yes, Hck, Fyn, Fgr, Lyn, Lck, Blk, and Yrk. c-Src
and c-Yes are found at the BTB and are structurally associated with the
occludin-ZO-1 and the N-cadherin-�-catenin adhesion complexes. FAK
consists of an N-terminal domain that binds �1-integrin, followed by a
FERM (band 4.1, ezrin, radixin, moesin homology) domain, a catalytic
kinase domain, and a FAT (focal adhesion targeting) domain near its C
terminus. Also present are the three Pro-rich regions PRI, PRII, and
PRIII, which also serve as the sites for the attachment of a number of
adaptors and/or regulatory proteins (such as c-Src, PI-3K, PTEN,
p130Cas) after activation of FAK via one or several of its putative phos-
phorylation sites (e.g., Tyr-397, -407, -576, -577, -861, and -925). Members
of the Src kinase family, such as c-Src and c-Yes, consist of four Src
homology (SH) domains, SH1 to SH4 (Xu et al., 1997; Chong et al., 2005).
The SH4 domain near the N terminus of Src kinase contains the myris-
toylation and membrane-localization site and a unique domain of 50 to 70
amino acid residues that has no similarity among members of the Src
kinase family, thus making each Src kinase member a unique protein.
SH2 and SH3 domains are involved in the interaction with phosphory-
lated Tyr residues of other proteins and Pro-rich regions, respectively.
For instance, FAK interacts with c-Src/c-Yes at its SH2 domain. The SH1
domain is the catalytic kinase site. c-Src interacts with several BTB
proteins: occludin, N-cadherin, CAR, desmoglein-2, connexin-43, plako-
philin-2, �-catenin (Lee and Cheng, 2005; Wang et al., 2007; Li et al.,
2009b; Lie et al., 2010b), and myotubularin-related protein 2 (Zhang et
al., 2005), conferring proper phosphorylation status in many of the inte-
gral membrane proteins at the BTB to regulate cell adhesion. Src has two
important phosphorylation sites at Tyr-530 and Tyr-419 near its C ter-
minus. Upon phosphorylation of Tyr-530, Src assumes an inactive locked
conformation via interaction between the SH3 and the SH1 (kinase)
domain; however, dephosphorylation of Tyr-530 and autophosphorylation
of Tyr-419 within the catalytic kinase domain induce Src to assume an
active open conformation, making its catalytic domain active to induce
Tyr phosphorylation of its substrates. Src and FAK form a functional dual
kinase complex to affect multiple cellular functions (Brunton and Frame,
2008; Aleshin and Finn, 2010; Bolós et al., 2010; Cabodi et al., 2010a,b),
including the testis (Yan and Cheng, 2006).
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the Sertoli cell epithelium in vitro (see Fig. 6) was shown
to reversibly disrupt the Sertoli cell TJ permeability
barrier (Lie et al., 2010b), which also induced mislocal-
ization of c-Src, ZO-1, occludin, and CAR [coxsackievirus
and adenovirus receptor, an integrated component of the
BTB and the apical ES (Mirza et al., 2006; Mirza et al.,
2007; Wang et al., 2007)], moving from cell-cell interface
to cell cytosol (Lie et al., 2010b), thereby destabilizing
the Sertoli cell TJ barrier. More important, the use of a
biochemical endocytosis assay indeed confirmed that the

knockdown of both desmoglein-2 and desmocollin-2
could accelerate the internalization of CAR (Lie et al.,
2010b). These findings are significant, because they
demonstrate for the first time that desmosomes at the
BTB confer more than an intermediate filament-based
cell adhesion function; they indeed coordinate the func-
tion of other junctions at the BTB, such as the CAR-,
occludin-, and/or N-cadherin-based adhesion protein
complexes at the TJ and the basal ES, possibly via the
association of desmosomal proteins (e.g., desmoglein-2)

FIG. 9. A current model illustrating the maintenance of the immunological barrier integrity during the transit of preleptotene spermatocytes at the
BTB during spermatogenesis. This model was prepared based on recent findings in the field as discussed in section IV. Left, schematic drawing of a
tubule at stage VII of the epithelial cycle with an intact BTB above a preleptotene spermatocyte differentiated from a type B spermatogonium, showing
several adhesion protein complexes of TJ, basal ES, desmosome, and gap junction. The typical actin filament bundles sandwiched in between cisternae
of endoplasmic reticulum and the apposing Sertoli cell plasma membranes (or apposing Sertoli cell-elongating spermatid) are also shown at the BTB
or at the apical ES. At late stage VII to early VIII of the epithelial cycle (center), cytokines (e.g., TGF-�3, TNF�) and testosterone induce endocytosis
of integral membrane proteins (and/or their adaptors) (possibly also mediated by changes in their phosphorylation status induced by FAK and/or Src),
so that these proteins are internalized, destabilizing the old BTB site to open up the TJ barrier for the transit of preleptotene spermatocytes. This
endocytic vesicle-mediated protein trafficking event is facilitated by the concomitant action of polarity proteins (e.g., PAR6, 14-3-3, PAR3) and the
combined action of Arp2/3 protein complex and Eps8. Some of the endocytosed proteins will be targeted for degradation, but others will be transcytosed
and recycled to the new BTB site behind the transiting preleptotene spermatocyte. This establishment of a new BTB is also facilitated by de novo
synthesis of BTB proteins mediated by testosterone. Also, the transit of spermatocytes across the BTB is facilitated because some of the integral
membrane proteins at the BTB are also found in these germ cells (e.g., CAR), so that these proteins can form homotypic interactions between the
transiting spermatocytes and Sertoli cells at the BTB to disallow an opened BTB (center). Thus, as shown on the right, these BTB restructuring events
that occur at stage VIII of the epithelial cycle concomitant with spermiation will not compromise the integrity of the immunological barrier conferred
by the BTB. This model also demonstrates the presence of multiple targets for male contraceptive development. For instance, a disruption of the
polarity proteins that are involved in the endocytic vesicle-mediated protein trafficking events would disable the transit of preleptotene spermatocytes
at the BTB, halting spermatogenesis. Such action is likely to generate minimal side effects because the site of action is localized at the BTB
microenvironment and not systemic.
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with c-Src, serving as a platform for signal transduction
at the BTB (Lie et al., 2011a; Mruk and Cheng, 2011).
However, much work is needed to define the role of c-Src
(Figs. 8 and 9) in desmosome function at the BTB, and
the precise mechanism(s) by which the desmoglein-2-c-
Src protein complex regulates endocytic vesicle-medi-
ated protein trafficking events at the BTB also needs to
be better defined.

2. Gap Junction. The presence of gap junction at the
BTB has been known for decades (Vogl et al., 2008), and
its significance in testicular function (Enders, 1993; Pel-
letier, 1995; Pointis et al., 2005; Brehm et al., 2007;
Gilleron et al., 2009a,b; Carette et al., 2010b; Pelletier et
al., 2011), particularly in spermatogenesis (Pointis et al.,
2010; Li et al., 2011a), has been extensively reviewed.
However, the role of gap junction at the BTB as a sig-
naling platform to confer cross-talk between different
junction types to coordinate preleptotene spermatocyte
migration at stage VIII of the epithelial cycle has only
become known recently (Li et al., 2009b; Li et al., 2011a).
Gap junction is an actin-based cell-cell communication
junction found mostly at the BTB coexisting with basal
ES but also at the apical ES between Sertoli cells and
pre-step 8 spermatids (Figs. 1 and 10, A–C) (Cheng and
Mruk, 2002; Vogl et al., 2008; Pointis et al., 2010; Li et
al., 2011a). In this context, it is noteworthy that gap
junction proteins, such as Cx43 and Cx26, are also inte-
grated components of the apical ES (Cheng and Mruk,
2010a; Lie et al., 2011a). The gap junction is composed of
aggregates of connexons between adjacent epithelial
cells (Nakagawa et al., 2010; Li et al., 2011a; Maeda and

Tsukihara, 2011) (Fig. 10C). Each connexon (Fig. 10B) is
composed of a hexamer of gap junction proteins [known
as connexins (Cx) (Fig. 10A), such as Cx43, Cx33, and
Cx26, which are integral membrane proteins found in
the testis (Li et al., 2011a); each connexin consists of four
transmembrane domains, two extracellular domains,
and three intracellular domains (Fig. 10A)] either of the
same (monomeric) or different (heteromeric) type(s)
(Fig. 10B). A connexon found in a cell by itself is a
hemichannel, which can be either homomeric or hetero-
meric (Fig. 10B), whereas gap junction channel refers to
connexons coupled between apposing cells, which can be
homo- or heterotypic (Fig. 10C) (Alberts et al., 2002;
Meşe et al., 2007; Li et al., 2011a). Small molecules
and/or chemicals (e.g., inorganic ions, ATP, cyclic nucle-
otides, siRNA duplexes, glucose, polypeptides) can pass
through these channels to coordinate different cellular
events in an epithelium in response to changes in the
environment (e.g., toxicants, temperature, pH, growth
factors) (Loewenstein, 1981; Goldberg et al., 1999; Vali-
unas et al., 2005; Harris, 2007; Meşe et al., 2007).

Cx43, plakophilin-2 (a peripheral adaptor of desmo-
somal proteins and also connexins in the testis) (Table
3), and c-Src were recently shown to form a regulatory
protein complex at the BTB in adult rat testes (Li et al.,
2009b) (Fig. 7). This finding is consistent with an earlier
report that Cx43-ZO-1-Src form a functional complex at
the gap junction plaques in the cell epithelium of the
42GPA9 Sertoli cell line (Gilleron et al., 2008). Knock-
down of Cx43 alone in Sertoli cells by RNAi did not
interfere with Sertoli cell TJ permeability barrier func-
tion (Li et al., 2009b), consistent with a recent study
reporting that the BTB remains intact in Sertoli cell-
specific Cx43 knockout (KO) mice when examined by
electron microscopy (Carette et al., 2010b), even though
these mice were infertile. This was because spermatogo-
nia failed to differentiate beyond type A to initiate sper-
matogenesis (Brehm et al., 2007), and Sertoli cells also
failed to mature but continued to proliferate well into
adulthood so that clusters of Sertoli cells were found in
the tubule lumen in Cx43(�/�) mice (Sridharan et al.,
2007). However, simultaneous knockdown of Cx43 and
plakophilin-2 by RNAi was shown to perturb the Sertoli
cell TJ barrier, which was mediated, at least in part, by
changes in protein localization at the TJ (e.g., occludin
and ZO-1) and basal ES (e.g., N-cadherin, CAR), which
caused these proteins to move away from the cell surface
and into the cytosol, probably resulting from an increase
in protein endocytosis, thereby destabilizing the BTB (Li
et al., 2009b). Indeed, recent studies have demonstrated
that endocytic vesicle-mediated protein trafficking
events are actively involved in the molecular remodeling
of the gap junction plaque in the 42GPA9 Sertoli cell line
via protein endocytosis (Gilleron et al., 2008, 2009b;
Carette et al., 2009), possibly via a phosphorylation-
independent mechanism (Carette et al., 2010a). How-
ever, some of the findings derived from studies using the

TABLE 3
Desmosomal proteins found in the rat testis

Three classes of desmosomal proteins, desmosomal cadherins (A), plakins (B), and
armadillo proteins (C) are found in the desmosome, which consist of five components:
desmoglein (1), desmocollin (2), desmoplakin (3), plakoglobin (4) (also known as
�-catenin), and plakophilin (5). The presence of many of these desmosomal compo-
nent proteins in Sertoli and/or germ cells was identified by reverse transcription-
polymerase chain reaction and/or immunoblotting (Lie et al., 2010b). Sertoli cells
were isolated from 20-day-old rat testes and germ cells were from adult rat testes;
these cells had negligible contamination of other cells and did not come into contact
with other cell types, including Leydig and peritubular myoid cells when assessed by
immunoblotting using corresponding cell markers (Lie et al., 2010b).

Desmosomal Proteins Sertoli Cells Germ Cells

A. Desmosomal cadherins
1.Desmoglein

Desmoglein-1 � 	
Desmoglein-2 	 	
Desmoglein-3 � �
Desmoglein-4 � 	

2.Desmocollin
Desmocollin-1 � 	
Desmocollin-2 	 	
Desmocollin-3 	 �

B. Plakins
3.Desmoplakin 	 	

C. Armadillo proteins
4.Plakoglobin 	 	
5.Plakophilin

Plakophilin-1 	 	
Plakophilin-2 	 	
Plakophilin-3 � �
Plakophilin-4 	 	

	, presence; �, absence.
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42GPA9 Sertoli cell line will need to be verified using
primary Sertoli cell cultures, because Sertoli cell lines
may be regulated differently from differentiated and
nonproliferating primary Sertoli cells (Fig. 6). For in-
stance, Sertoli cell lines (e.g., MSC-1 Sertoli cell line)
lack the immunosuppressive properties of primary Ser-
toli cells (Dufour et al., 2008). Nonetheless, studies that
use the 42GPA9 Sertoli cell line are still very significant
because they illustrate that gap junction dynamics are
regulated by endocytic vesicle-mediated trafficking
events. In short, the effects of Cx43 knockdown in pri-
mary Sertoli cells that impede protein distribution at
the cell-cell interface can possibly be mediated by c-Src,
which alters the phosphorylation status of these pro-
teins (e.g., Cx43, plakophilin-2) at the site, causing the
“closing” of the gap junction communicating channel (Li
et al., 2009b). In fact, treatment of Sertoli cells having a
functional TJ barrier with bisphenol A (BPA) was shown
to perturb gap junction communication when assessed
by a dye-transfer assay (Li et al., 2010). Likewise, gap
junction communication was also shown to be perturbed
when the 42GPA9 Sertoli cell epithelium was treated

with 17�-ethynylestradiol (Tramoni et al., 2009). Stud-
ies have shown that Cx43 alone is crucial for the reas-
sembly of a disrupted Sertoli cell BTB using the Ca2	-
switch model and the bisphenol A model, suggesting
that the Cx43-based gap junction may be mediating
intercellular communication during junction restructur-
ing in the epithelium during spermatogenesis (Li et al.,
2010). In short, these findings show that the gap junc-
tion plays a critical role to maintain the integrity of
other junction types at the BTB, such as the TJ and/or
the basal ES, so that their adhesive protein complexes
can be properly localized to maintain BTB integrity.
However, the mechanism(s) underlying this critical
function of the gap junction is not known. For instance,
is c-Src the cornerstone to coordinate signals down-
stream of the gap junction protein complex, thereby
eliciting proper cross-talk among the TJ, basal ES, and
desmosome? What are the identities of the chemical
signals that pass through gap junction communication
channels to mediate these effects at the BTB? These
questions should be carefully addressed in future
studies.

FIG. 10. Schematic illustration on the molecular architecture of connexin, connexon, hemichannel, and gap junction communication channel in gap
junction. A, a typical connexin (e.g., Cx43, Cx26, Cx33) is composed of four transmembrane domains, two extracellular loops, one intracellular loop,
and the intracellular N- and C-terminal tails. The C-terminal region confers most of the distinctiveness among connexins, which also contains
phosphorylation sites for activation and inactivation and for interactions with binding partners (e.g., ZO-1, c-Src). B, an uncoupled functional connexon
(also known as hemichannel) is composed of six connexins, which can be of the same (homomeric) or different (heteromeric) types. C, two coupled and
compatible connexons create a gap junction communication channel between two adjacent Sertoli or Sertoli-germ cells, which can be homotypic or
heterotypic.
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4. Tight Junction (Zonula Occludens) and Basal Ec-
toplasmic Specialization. At the BTB, the TJ coexists
with the basal ES in the seminiferous epithelium near
the basement membrane (Figs. 2, 3, and 7), so these two
ultrastructures are discussed together. As shown in Fig.
3, the ultrastructural features of the basal ES (i.e.,
tightly packed actin filament bundles sandwiched be-
tween cisternae of the endoplasmic reticulum and the
apposing plasma membranes of two Sertoli cells) is al-
most identical to the apical ES except that these fea-
tures are found within both Sertoli cells, whereas they
are limited only to the Sertoli cell side at the apical ES
(Vogl et al., 2008; Cheng and Mruk, 2010a; O’Donnell et
al., 2011). Because the basal ES coexists with the TJ, it
remains difficult to identify proteins that are unique to
the basal ES because putative TJ proteins (e.g., occlu-
dins, claudins, JAM-A, JAM-B) colocalize to the same
site as basal ES proteins (e.g., N-cadherin, �-catenin)
(Yan and Cheng, 2005). Nonetheless, it is very likely
that proteins that are components of the apical ES are
also found at the basal ES (Table 1). However, several
important adhesion proteins (e.g., �1-integrin, laminin-
�3, laminin-�3, JAM-C) are restricted to the apical ES,
whereas others are limited to the basal ES (e.g., JAM-A).
In addition, many proteins are common to both the apical
and basal ES (e.g., N-cadherin, E-cadherin, �-catenin,
�-catenin, nectins, afadins, JAM-B, CAR) (Table 1). For
example, N-cadherin (a basal ES protein) and occludin
(a TJ protein) localize to the same site at the BTB, but
they do not have direct protein-protein interaction, as
confirmed by coimmunoprecipitation; instead, they are
structurally linked via their corresponding peripheral
adaptors �-catenin and ZO-1, respectively, possibly at
stages I to VII and IX to XIV, but not at stage VIII of the
epithelial cycle, which creates an “engaged” state (Yan
and Cheng, 2005). Thus, ultrastructures, such as actin
filament bundles, at the basal ES can be used to “rein-
force” the cell-adhesive function of the TJ at the BTB.
However, when testes are exposed to a toxicant (e.g.,
adjudin) or when the seminiferous epithelium is at stage
VIII of the epithelial cycle when the BTB undergoes
restructuring to accommodate the transit of prelepto-
tene spermatocytes, �-catenin and ZO-1 become “disen-
gaged” and do not physically interact with each other,
such that a disruption of protein-protein interactions
within the occludin-ZO-1 complex or the N-cadherin-�-
catenin complex at the TJ or basal ES will not elicit an
“immediate” disruption of the other and vice versa. This
“engagement” and “disengagement” mechanism thus
provides a novel mechanism to segregate the events of
TJ and basal ES disruption (Yan and Cheng, 2005; Yan
et al., 2008c) via a logical transition from an “assem-
bled,” “disassembling,” and then “disassembled” state at
the “old” BTB situated above preleptotene spermato-
cytes. This provides enough time for “new” TJ fibrils to
be assembled behind transiting spermatocytes to estab-
lish the “new” BTB (see sections below for details) to

avoid disruption of the immunological barrier, even
transiently, during the seminiferous epithelial cycle of
spermatogenesis (Fig. 9). The detailed biochemical and
molecular events involving cytokines (e.g., TGF-�3,
TNF�), sex steroids (e.g., testosterone, estradiol-17�),
and endocytic vesicle-mediated intracellular trafficking
(e.g., endocytosis, transcytosis, recycling) that regulate
BTB dynamics during spermatogenesis will be summa-
rized in sections IV.B, IV.C, and IV.D. On this note, it is
important to examine in future studies the precise phys-
iological role of the basal ES in BTB permeability func-
tion in addition to its structural role. For instance, can a
selective knockdown of basal ES function impede the
Sertoli cell TJ permeability barrier? Can knockdown of a
basal ES adhesive protein (e.g., N-cadherin, nectin) im-
pede the distribution or arrangement of actin filament
bundles at the site?

B. Steroids

1. Testosterone. Testosterone is produced by Leydig
cells located in the interstitium under the influence of
LH, and it is one of the most important regulators of
spermatogenesis in the hypothalamic-pituitary-testicu-
lar axis (Sharpe, 1994; Zirkin, 1998; McLachlan et al.,
2002; Walker, 2010) in parallel to estradiol-17� pro-
duced by Leydig, Sertoli, and germ cells (O’Donnell et
al., 2001; Carreau et al., 2009, 2010; Carreau and Hess,
2010). It is noted that the intratesticular testosterone
level, such as in the seminiferous tubule fluid, is main-
tained at �100 times the level found in the systemic
circulation in both humans and rodents (10�7 versus
10�9 M) (Turner et al., 1984; Jarow and Zirkin, 2005) to
sustain spermatogenesis. Earlier findings coupled with
studies using transgenic mouse models have demon-
strated that androgens are crucial in the regulation of
almost every aspect of spermatogenesis, including sper-
matogonial proliferation and differentiation, germ cell
cycle progression through meiosis, spermiogenesis, sper-
miation, and cell adhesion at the Sertoli-Sertoli and
Sertoli-germ cell interface in the seminiferous epithe-
lium (Wang et al., 2009; Ruwanpura et al., 2010; Verho-
even et al., 2010; O’Donnell et al., 2011) and to confer
immune privilege in the testis (Meng et al., 2011). These
effects are mediated via androgen receptor (AR) using
genomic and/or nongenomic pathways (Walker, 2009,
2010; Lamont and Tindall, 2010; Shupe et al., 2011). For
instance, it was shown that Sertoli cell-selective KO of
AR in mice led to infertility manifested by meiotic arrest
(Chang et al., 2004; De Gendt et al., 2004). Furthermore,
Sertoli cell-specific AR-KO mice displayed a defective
BTB, which was associated with a reduced expression of
claudin-11, ZO-1, occludin, and gelsolin but with a sig-
nificantly enhanced expression of vimentin (Wang et al.,
2006; Willems et al., 2010a; Willems et al., 2010b). In
addition, it was noted that Sertoli cell maturation and
Sertoli cell polarization were also perturbed in these
Sertoli cell-specific AR-KO mice, and that JAM-C (an
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apical ES marker that is also restricted to the apical ES)
was shown to be significantly reduced (Willems et al.,
2010a), illustrating that androgens are crucial to both
apical and basal ES function. It is noteworthy that in
ARflox(ex1-neo)/Y mice that had a partial defect in andro-
gen sensitivity by carrying this floxed allele, a marked
reduction in AR protein levels in different tissues includ-
ing the testis was observed, as well as a defect in sper-
miogenesis, and these mice were infertile (Holdcraft and
Braun, 2004). Moreover the BTB in ARflox(ex1-neo)/Y/
AMH-Cre mice was also disrupted, possibly the result of
a reduced expression of claudin-3 (Meng et al., 2005). It
is noteworthy that peritubular myoid cell-selective
AR-KO mice were also azoospermic and infertile with an
�86% reduction in germ cell number in particular elon-
gating/elongated spermatids, and the testes of these
myoid cell-specific AR-KO mice were marked by reduced
seminiferous tubule fluid production, as well as re-
duced expression of androgen regulated genes by Ser-
toli cells (Welsh et al., 2009). However, proliferation of
germ cells in normal fetal mice, known as gonocytes,
at 15.5 days postcoitus (dpc) was found to be inhibited
by androgens (Merlet et al., 2007). Furthermore, testic-
ular feminized (Tfm) mice (mice with a testicular femi-
nization mutation caused by a frame-shift mutation in
the AR mRNA, lacking functional AR) were found to
possess significantly more gonocytes per testis, and
gonocytes in these Tfm mice had significantly higher
mitotic capacity versus wild-type mice when assessed by
5-bromo-2�-deoxyuridine incorporation; yet the prolifer-
ation of gonocytes from both Tfm and normal mice was
significantly reduced by dihydrotestosterone (10�6 M) at
15.5 dpc but not at 16.5 dpc (Merlet et al., 2007). Thus,
these findings illustrate that although testosterone has
a promoting effect on germ cell maturation in adult
mice, there is a narrow window in the testis when it
comes to fetal development in which testosterone can
inhibit gonocyte proliferation at �15 dpc.

A recent study in which adult rats treated with acy-
line [a gonadotropin-releasing hormone antagonist and
a potent suppressor of circulating gonadotropins, such
as FSH and LH; testosterone in the systemic circulation,
and of intratesticular testosterone in both rodents and
humans (Rivier et al., 1995; Herbst et al., 2002; Zhou et
al., 2010)] was shown to disrupt BTB integrity, which
could be rescued in part by FSH replacement but more
significantly by human chorionic gonadotropin (McCabe
et al., 2010), illustrating the significance of androgens in
the maintenance of BTB integrity in adult rats. In ad-
dition, testosterone and FSH were also shown to be
crucial to maintain the proper distribution of claudin-11
and JAM-A at the BTB in rodent testes (McCabe et al.,
2010).

Other studies using Sertoli cells cultured in vitro (By-
ers et al., 1986; Janecki and Steinberger, 1986; Kaitu’u-
Lino et al., 2007; Yan et al., 2008b) have also demon-
strated the role of androgens in conferring BTB

integrity, because the presence of androgens was shown
to promote the assembly of the Sertoli cell TJ-permea-
bility barrier and to lessen the cadmium-induced disrup-
tive effects on the Sertoli cell TJ barrier function (Jan-
ecki et al., 1992; Chung and Cheng, 2001). Testosterone
was also shown to stimulate the steady-state levels of
occludin (Kaitu’u-Lino et al., 2007; Yan et al., 2008b)
and claudin-11 (Kaitu’u-Lino et al., 2007) in the Sertoli
cell epithelium and the proper localization of these pro-
teins at the Sertoli-Sertoli cell interface. In addition, the
use of 2,3-dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-
tetrahydro-1H-indol-2-yl)methylene]-1H-indole-5-sulfon-
amide (SU6656), a selective inhibitor of c-Yes (a nonre-
ceptor protein tyrosine kinase and a member of the Src
kinase family) that blocked the function of c-Yes at the
Sertoli cell BTB that led to a disruption of the TJ barrier
could also be rescued by testosterone (Xiao et al., 2011),
demonstrating the protective function of androgens at
the BTB. Collectively, these findings illustrate unequiv-
ocally the promoting effects of androgens on the Sertoli
cell BTB assembly, maintenance, and integrity both in
vitro and in vivo, mediated, at least in part, via their
actions on the maintenance of the steady-state levels of
integral membrane proteins (e.g., occludin, claudin-11)
and adaptors (e.g., ZO-1) at the site, as well as by en-
forcing the integrity of actin filament bundles at the
basal ES (Xiao et al., 2011). Furthermore, recent studies
have shown that testosterone also regulates BTB integ-
rity via its effects on endocytic vesicle-mediated protein
endocytosis, transcytosis, and recycling (Yan et al.,
2008b; Su et al., 2010b), such as by “relocating” integral
membrane proteins at the “old” BTB site above prelep-
totene spermatocytes in transit to the “new” BTB site
behind these cells via transcytosis so that the immuno-
logical barrier can be maintained at stage VIII of the
epithelial cycle (Cheng and Mruk, 2010a; Su et al.,
2010b).

2. Estradiol-17�. In adult mammalian testes, tes-
tosterone (a C19 steroid) is irreversibly converted to
estradiol-17� (a C18 steroid) by the aromatase com-
plex in Leydig cells (but mostly in Sertoli cells in
immature rats). This complex is composed of 1) an
ubiquitous NADPH-cytochrome P450 reductase and 2)
a specific cytochrome P450 aromatase (P450arom),
which contains a heme and a steroid binding pocket
(O’Donnell et al., 2001; Hess, 2003; Carreau and Hess,
2010). It was first reported that P450arom was present
in immature germ cells in the mouse, including round
spermatids, elongating spermatids, and elongated sper-
matids (Nitta et al., 1993). Since then, P450arom was
demonstrated in both immature germ cells and ejacu-
lated spermatozoa from rodents, bear, primates, and
humans (Carreau et al., 2010). In short, Leydig cells are
an important source of estrogens in adult testes; how-
ever, germ cells also account for �60% of the aromatase
activity in the testis, contributing significantly to the
pool of estrogens, which is needed to maintain testicular
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function (Carreau and Hess, 2010; Carreau et al., 2010).
Estrogen exerts its biological functions via its interac-
tion with the estrogen receptor (ER) (ER� and ER�
receptors are both found in the testis). This ligand/re-
ceptor interaction leads to conformational changes, al-
tering ER interaction with 1) kinases and scaffolding
adaptors in the cytoplasm to regulate cell signaling cas-
cades (extranuclear nongenomic action) and/or 2) DNA
to control a repertoire of transcription factors, coregula-
tors, and other auxiliary proteins associating with ER to
alter the expression of various genes (genomic action)
(Cheskis et al., 2007; Watson et al., 2007). In adult
mammalian testes, ER� is mostly restricted to Leydig
and peritubular myoid cells and is weakly expressed in
Sertoli cells, whereas ER� is mostly restricted to Sertoli
cells and weakly expressed in Leydig cells but abun-
dantly expressed in spermatocytes, even weaker in
round and elongating spermatids, but almost none in
elongated spermatids (Carreau and Hess, 2010). The
combined nongenomic and genomic actions of estrogens
thus confers cell-specific function in the testis. Recent
studies have also identified a third estrogen receptor:
GPR30 (G-protein-coupled receptor, a transmembrane
intracellular estrogen receptor) in rat pachytene sper-
matocytes and round spermatids that regulates germ
cell apoptosis and differentiation (Chimento et al., 2010,
2011). GPR30 and ER� were also shown to be strongly
expressed by Sertoli cells cultured in vitro and activated
by estrogen treatment in immature rats (Lucas et al.,
2008).

Estrogen is crucial to male reproductive function, in-
cluding the male reproductive tract (e.g., efferent
ductules, epididymis), testis, spermatogenesis, and the
BTB (Li et al., 2009d; Carreau and Hess, 2010; Carreau
et al., 2010; Joseph et al., 2010a,b, 2011; Cheng et al.,
2011a; Hess et al., 2011). A role for estrogen as a locally
acting male hormone in the testis was first demon-
strated in adult mice deficient in ER� (Hess et al., 1997).
These ER�-KO mice were infertile largely because of a
defect in fluid reabsorption by efferent ductules of the
epididymis, thereby disrupting spermatogenesis in the
seminiferous epithelium (Hess et al., 1997). However, it
is noteworthy that despite the loss of 1) ER� alone (Eddy
et al., 1996; Hess et al., 1997) or ER� alone in somatic
cells (Mahato et al., 2000, 2001), 2) ER� alone (Krege et
al., 1998; Antal et al., 2008), or 3) both ER� and ER�
(Dupont et al., 2000) in mice, or in rats treated with ER�
agonist (16�-lactone-estradiol 2) or ER� agonist (8�-
vinyl-estradiol 2) (Allan et al., 2010), spermatogenesis
developed normally. Even though ER�(�/�) adult mice
were infertile [but not ER�-null mice, because ER�(�/�)
mice exhibited no compromised fertility (Couse et al.,
2001)]. But this was the result of defects in the reab-
sorption of luminal fluid in efferent ductules that led to
pressure build-up in tubules, thereby adversely affecting
the seminiferous epithelium instead of a direct effect on
spermatogenesis (Hess et al., 1997). It is noteworthy

that P450arom(�/�) mice [by deleting the Cyp19 gene
encoding P450arom (i.e., lacking estrogen synthesis en-
tirely) without any loss of gonadotropins or androgens in
the systemic circulation and/or the testis] were unable to
synthesize endogenous estrogens, but these mice re-
mained fertile until 18 weeks of age when postmeiotic
defects began to show up, and these KO mice also had a
reduced number of round and elongated spermatids as a
result of spermiogenesis arrest by 1 year of age postpar-
tum (Robertson et al., 1999). Still, spermatogenesis con-
tinued to function normally, at least in some tubules
(Robertson et al., 1999). Rodents that have normal sper-
matogenesis in only 10% of their tubules are known to
still be fertile (Robaire, 2003); thus, a loss of estrogen-
synthesizing capability in these null mice failed to in-
duce complete infertility. Thus, other factors, perhaps
phytoestrogens and isoflavones [or even pseudoestrogens,
such as diethylstilbestrol (DES), found in drinking water]
or standard rodent diet, may have contributed to the re-
placement of the lost estrogens in these P450arom-null
mice, maintaining spermatogenesis in some tubules. This
possibility was indeed supported by a subsequent study
in which P450arom-null mice fed on a soy-free diet in-
deed became infertile after 1 year with postmeiotic de-
fects, incapable of completing spermiogenesis (Robert-
son et al., 2002). In addition, mice with mutations in
the kisspeptin signaling pathway [e.g., Kiss1(�/�) or
Gpr54(�/�) mice; kisspeptins are a family of peptide
hormones that, together with the kisspeptin receptor
(previously known as G-protein-coupled receptor 54),
play a critical role in the regulation of the hypotha-
lamic-pituitary-testicular axis, such as in the release
of 1) gonadotropin-releasing hormone from the hypo-
thalamus and 2) LH and FSH from the pituitary gland
(d’Anglemont de Tassigny and Colledge, 2010; Hameed
et al., 2011)] were found to have smaller testes and
impaired spermatogenesis versus wild-type animals,
lacking spermatids in the epithelium as the result of
postmeiotic defects. On the other hand, diets supple-
mented with phytoestrogens (e.g., genistein and daid-
zein from soy/soybeans) were shown to have a significant
improvement in spermatogenesis over a 7-month period
with regard to testis weight and the number of elongated
spermatids and spermatozoa (Mei et al., 2011). In sum-
mary, these findings illustrate that estrogens support
somatic cells in the testis and the epididymis, as well as
regulate germ cell apoptosis and spermiogenesis, in par-
ticular the transition of spermatocytes into round sper-
matids (Carreau and Hess, 2010; Carreau et al., 2010).

The first evidence that estrogens play a role in regu-
lating BTB function came from an earlier study in the
1970s in which neonatal rats were treated with either
�-estradiol-3-benzyoate or clomiphene citrate (a selec-
tive estrogen receptor modulator). In this study, BTB
assembly was found to be delayed by up to 1 week (Vitale
et al., 1973). In normal rats, the BTB is established by
postnatal day �18 to 21 (i.e., �3 weeks) (Vitale et al.,
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1973; Bergmann and Dierichs, 1983; Russell et al., 1989;
Toyama et al., 2001). However, when neonatal rats were
treated with DES, a synthetic nonsteroidal estrogen
(five doses of DES at 10 �g per male pup, on postnatal
days 1, 3, 5, 7, 9 and 11), the BTB failed to be assembled
by postnatal week �3 (Toyama et al., 2001). Instead
BTB assembly was delayed by �4 to 5 weeks (i.e., until
postnatal weeks �7–8) because the basal ES was not
detected by electron microscopy until postnatal day 56
(Toyama et al., 2001). In these DES-treated rats, meiosis
also failed to occur; pachytene spermatocytes were the
only germ cells found in the seminiferous epithelium
and many of these spermatocytes underwent apoptosis.
When the BTB was finally assembled by postnatal day
56, step-1 to -4 spermatids were also found in the sem-
iniferous epithelium (Toyama et al., 2001). This delay in
BTB assembly is probably caused by the inability of the
Sertoli cell to cease to proliferate and to differentiate
after DES treatment as reported in a similar study
(Sharpe et al., 1998). Collectively, these findings thus
illustrate that estrogens can impede Sertoli cell BTB
function. In addition, the onset of meiosis is tightly
associated with the establishment of a functional and
intact BTB. This postulate is further supported by re-
cent observations using rats treated with a high dose of
adjudin (125 or 250 mg/kg b.wt., by gavage) in which
adjudin-induced BTB disruption in rats was shown to
impede spermatogonial differentiation; spermatogenesis
failed to reinitiate in these rats even though there was
no significant loss of spermatogonial stem cells and sper-
matogonia (Mok et al., 2011a). It is noteworthy that
when adult rats were treated with adjudin at 50 mg/kg
b.wt. (a low-dose group in the same study), although
BTB integrity in these rats remained intact by �2 to 3
weeks after treatment (Mruk and Cheng, 2004b; Su et
al., 2010a; Mok et al., 2011a), testes in these rats later
displayed a transient and reversible disruption of the
BTB. It is noteworthy that the disrupted BTB detected
by 4 to 6 weeks was “resealed” by 20 to 30 weeks. Once
the BTB became functional, a reinitiation of spermato-
genesis was observed, germ cells began to repopulate the
once “voided” seminiferous epithelium in this low-dose
group, and fertility rebounded (Mok et al., 2011a).

The role of estrogens in BTB function is best illus-
trated in a study in which adult rats treated with short-
term doses of bisphenol A (an estrogenic environmental
toxicant used primarily to make polycarbonate plastic
and epoxy resins) (five doses at 10 or 50 mg/kg b.wt.) was
found to have no effects on BTB integrity. However, BPA
or estradiol-17� administered to neonatal rats disrupted
the BTB (Li et al., 2009d) in vivo. The disruptive effects
of estrogens on the Sertoli cell TJ permeability barrier
were also confirmed using Sertoli cells cultured in vitro
that had an established barrier that mimicked the BTB
in vivo and with the ultrastructures of TJ, basal ES, and
desmosome when examined by electron microscopy (Siu
et al., 2005) (see Fig. 6). More important, it was found

that the estrogen-induced disruptive effects on the Ser-
toli TJ barrier were mediated by changes in the distri-
bution of integral membrane proteins at the BTB, such
as occludin, N-cadherin, and connexin 43, which moved
from the cell-cell interface and into the cell cytosol via an
increase in protein endocytosis, thereby destabilizing
the TJ barrier function (Li et al., 2009d). In addition,
BPA was shown to disrupt gap junction function when
cell-cell communication was assessed by a gap junction
dye-transfer assay (Li et al., 2010). These findings are
also in agreement with an earlier study demonstrating
that estrogens (e.g., 17�-ethynylestradiol) and proges-
tins (e.g., medroxyprogesterone acetate, levonorgestrel)
are capable of blocking gap junction communication us-
ing the 42GPA9 Sertoli cell line (Tramoni et al., 2009).
These findings thus suggest that at stage VIII of the
epithelial cycle, when preleptotene spermatocytes are in
transit at the BTB, aromatase highly expressed by sper-
matocytes (Carreau et al., 2010) might produce an ele-
vated level of estradiol-17� in the microenvironment,
which might induce BTB restructuring via an increase
in protein endocytosis to destabilize barrier function at
the “old” BTB site above preleptotene spermatocytes in
transit, to facilitate the entry of spermatocytes into the
apical compartment. In contrast, androgens released into
the microenvironment, by either Sertoli cells and/or Leydig
cells, may assist in the assembly of the “new” BTB below
spermatocytes in transit. As such, the tightly regulated but
coordinated effects of estrogens and androgens, together
with cytokines [e.g., TNF�, TGF-�2/-�3, interleukin-1�
(IL-1�)] and nonreceptor protein tyrosine kinases (e.g.,
FAK, c-Src, and c-Yes) (see Fig. 9) thus provide an efficient
system to maintain BTB integrity during the seminiferous
epithelial cycle of spermatogenesis.

C. Nonreceptor Protein Kinases: Focal Adhesion
Kinase, c-Src, and c-Yes

1. Introduction. Studies in other epithelia and blood-
tissue barriers have demonstrated that the phosphory-
lation status of integral membrane proteins, peripheral
adaptors/kinases/phosphatases, and/or scaffold proteins
at the AJ (e.g., N-catenin, �-catenin) (Gumbiner, 2000;
Dejana et al., 2008), TJ (e.g., occludins, claudins) (Cheng
and Mruk, 2002; González-Mariscal et al., 2008; Dörfel
et al., 2009; Findley and Koval, 2009; Raleigh et al.,
2011), gap junction (e.g., Cx43, keratins) (Magin et al.,
2007; Hesketh et al., 2009; Solan and Lampe, 2009;
Maeda and Tsukihara, 2011), and desmosome (e.g., des-
mocollins, desmogleins, plakoglobin) (Aoyama et al.,
2009; Thomason et al., 2010; Lie et al., 2011a) play a
critical role in determining adhesive function at the
cell-cell interface. The phosphorylation status of these
proteins and their peripheral adaptors/regulators is reg-
ulated by nonreceptor protein kinases and/or lipid ki-
nases in response to changes in the environment, growth
and development, growth factors, cytokines, inflamma-
tion, infection, and oxidative stress (Cheng and Mruk,
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2002; Hawkins and Davis, 2005; Xia et al., 2005a; Su-
zuki and Hara, 2011). This, in turn, regulates their
distribution in cell epithelia and endothelia via changes
in protein endocytosis, recycling and transcytosis (Mruk
and Cheng, 2010a; Stuible and Tremblay, 2010; Funa-
koshi et al., 2011). For instance, Tyr-398 and Tyr-402, in
a highly conserved sequence of occludin in humans,
YETDYTT (residues 398–404 from the N terminus),
near its C terminus, are known to be the putative phos-
phorylation sites of c-Src. Deletion of this YETDYTT
domain (a substrate of c-Src), or the site-directed muta-
tion of Tyr-398 and Tyr-402 in this domain, also abol-
ished c-Src-mediated phosphorylation (Elias et al.,
2009). It was also shown that phosphorylation of Tyr-
398 and Tyr-402 prevents the interaction of occludin and
ZO-1, dissociating the occludin-ZO-1 complex, thereby
destabilizing the TJ barrier in colon carcinoma cell line
(Caco-2), fibroblast cell line (Rat-1) or kidney cell lines
(MDCK) (Elias et al., 2009). These findings are thus in
agreement with other studies illustrating the signifi-
cance of phosphorylation on the assembly of TJ proteins
(e.g., occludin, claudin-5, ZO-1) into TJ fibrils at the TJ
barrier in X. laevis oocytes (Cordenonsi et al., 1997,
1999), small intestine (Goldblum et al., 2011), or brain
endothelial cells (Yamamoto et al., 2008).

The role of protein phosphorylation conferred by ki-
nases and phosphatases and its significance in junction
integrity at the BTB, however, was not known until the
early 2000s when it was first demonstrated that inhib-
itors and/or activators of protein kinases and phospha-
tases could “manipulate” Sertoli cell TJ permeability
barrier function (Li et al., 2001). Subsequent studies
have also illustrated that the phosphorylation status of
proteins at the apical ES (e.g., �-catenin), likely regu-
lated by the c-Src/MTMR2 (myotubularin-related pro-
tein 2) protein complex, indeed regulated the binding
between N-cadherin and �-catenin (Xia and Cheng,
2005; Zhang et al., 2005). Likewise, the phosphorylation
status of occludin conferred by FAK at the Sertoli cell
BTB also determines the integrity of the occludin-ZO-1
complex by regulating adhesion via changes in protein
endocytosis (Siu et al., 2009b). The lack of studies in the
literature on the role of kinases in BTB function is
largely due to the lack of information on the constituent
components on different junction types at the BTB until
recently (see Table 1). In sections IV.C.2. and IV.C.3, we
provide a summary and critical discussion on the role of
several protein kinases on Sertoli cell BTB function and
how these kinases regulate BTB restructuring during
the seminiferous epithelial cycle in concert with cyto-
kines, actin regulators, and steroids. However, it must
be noted that several other nonreceptor protein kinases
[e.g., CK1 (casein kinase 1) and CK2, which are also
found at the BTB associating with the N-cadherin/�-
catenin complex but not with nectin/afadin (Lee and
Cheng, 2005)] (Cordenonsi et al., 1997, 1999; Smales et
al., 2003; Dörfel et al., 2009) and GTPases (e.g., Rho

kinase) (Yamamoto et al., 2008), can also regulate the
phosphorylation status of occludin, tricellulin, or clau-
din-5 and adhesion in other epithelia and blood-tissue
barriers (e.g., the blood-brain barrier).

2. Focal Adhesion Kinase. Focal adhesion kinase
(FAK), as its name implies, is a nonreceptor protein
tyrosine kinase found predominantly at the focal adhe-
sion complex (also known as focal contact, an actin-
based cell-matrix anchoring junction type), known to be
involved in cell adhesion and migration during develop-
ment, growth, inflammation, and tumorigenesis (Brun-
ton and Frame, 2008; Chatzizacharias et al., 2010;
Frame et al., 2010; Golubovskaya, 2010; Ning et al.,
2010; Schaller, 2010) (Fig. 8). Subsequent studies have
shown, however, that FAK is ubiquitously expressed in
mammalian cells and tissues (Boutros et al., 2008), and
other studies have also identified FAK at the BTB, at
the apical ES and at the actin-based cell-cell TJ and
anchoring junctions (Cheng and Mruk, 2009b). In con-
trast to members of the Src family kinases, FAK does not
possess a myristoylation site to anchor itself to the
plasma membrane, and it also lacks putative Src homol-
ogy 2 (SH2) and SH3 domains required for protein-
protein interactions, even though FAK has multiple
binding partners in epithelia, including the seminifer-
ous epithelium (Cheng and Mruk, 2009b; Frame et al.,
2010; Schaller, 2010) (Fig. 8). FAK, similar to Src ki-
nases, is most notably known for its involvement in
integrin-based signaling; in fact, �1-integrin binds to the
N-terminal region of FAK (Boutros et al., 2008; Cheng
and Mruk, 2009b) (Fig. 8). Thus, it is not surprising that
FAK forms a bona fide complex with �1-integrin at the
apical ES (Siu et al., 2003b; Beardsley et al., 2006),
because �6�1-integrin-laminin-�3�3�3 is a predomi-
nant cell adhesion complex at the apical ES (Palombi et
al., 1992; Salanova et al., 1995; Siu and Cheng, 2004b;
Yan and Cheng, 2006), and it is critically involved in the
release of sperm from the seminiferous epithelium at
spermiation (O’Donnell et al., 2011). A recent study has
demonstrated that the �1-integrin-FAK protein complex
at the apical ES activates the p130Cas (p130 Crk-asso-
ciated substrate)-DOCK180 (Dedicator of cytokinesis
180)-RhoA-vinculin signaling pathway downstream to
disrupt elongated spermatid adhesion at spermiation
(Siu et al., 2011). FAK contains at least six putative
phosphorylation sites at Tyr-397, -407, -576, -577, -861,
and -925 for its activation; of these, Tyr-397 is the only
autophosphorylated site (Ilić et al., 1997). p-FAK-Tyr-
397 and p-FAK-Tyr-576 are predominantly localized to
the apical ES, displaying a stage-specific expression,
and are the highest at stage VIII just before spermiation
(Siu et al., 2003b). At the BTB, FAK is predominantly
expressed at stages III to VI of the epithelial cycle but it
is considerably diminished at stages VIII to IX at the
time of preleptotene spermatocyte transit at the site.
More importantly, p-FAK-Tyr-397 was shown to be sig-
nificantly induced during the assembly of the Sertoli cell
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TJ-permeability barrier (Siu et al., 2009c), illustrating
the involvement of FAK in the assembly and mainte-
nance of the BTB. Both FAK and p-FAK-Tyr-397 are
localized to the Sertoli-Sertoli cell interface (Siu et al.,
2009c). FAK also colocalized with both occludin and
ZO-1, forming a functional occludin-ZO-1-FAK complex.
A surge in interaction between FAK and occludin was
also detected during cadmium-induced BTB disruption
even though a declining FAK steady-state level was
noted (Siu et al., 2009b), which apparently was being
used to induce aberrant phosphorylation of occludin to
elicit mislocalization of occludin and ZO-1, moving these
proteins away from the cell-cell interface and into the
cytosol, as the result of enhanced protein endocytosis
(Siu et al., 2009c).

The physiological significance of FAK in BTB function
was best demonstrated in a study by RNAi to knock-
down FAK in Sertoli cell epithelium with a functional TJ
permeability barrier (Siu et al., 2009b). Although the
knockdown of FAK using specific siRNA versus nontar-
geting siRNA duplexes was capable of silencing �50% of
FAK expression in these Sertoli cells with no effects on
the levels of occludin and ZO-1 in the same experiment,
the Sertoli cell TJ permeability barrier was disrupted.
This also associated with mislocalization of occludin and
JAM-A, but not ZO-1, when these two integral mem-
brane proteins moved away from the cell surface and
into the cell cytosol, thereby destabilizing the TJ barrier
(Siu et al., 2009b). More importantly, it was observed
that knockdown of FAK also rendered these cells insen-
sitive to cadmium, because cadmium failed to perturb
Sertoli cell barrier function in FAK-silenced cells (Siu et
al., 2009b), illustrating that FAK is also one of the cel-
lular targets of cadmium toxicity in the testis. Much
research is needed in future studies to assess whether a
FAK inhibitor delivered locally to the testis can be used
to protect against cadmium-induced testicular injury.

3. c-Src and c-Yes. The Src (sarcoma-inducing gene
of Rous sarcoma virus) family of nonreceptor protein
tyrosine kinases is composed of at least nine members in
rodents: Src, Yes, Hck, Fyn, Fgr, Lyn, Lck, Blk, and Yrk.
Of these, c-Src is the best studied Src kinase family
member, and since being discovered y by Francis Peyton
Rous in 1911, it has been implicated in oncogenesis
(Martin, 2001, 2009; Yeatman, 2004; Aleshin and Finn,
2010) (Fig. 8). Src kinases are also involved in embryonic
development, cell growth, cell movement, and actin-cy-
toskeletal dynamics and, similar to FAK, are central to
integrin-based signaling, most notably, at the focal ad-
hesion complex at the cell-matrix interface (Huveneers
and Danen, 2009; Guarino, 2010; Tegtmeyer and Back-
ert, 2011). Members of the Src kinase family all have
characteristic SH domains, such as SH1, SH2, SH3 (a
proline-rich domain), and SH4 used for protein-protein
interactions (see Fig. 8), so that it can recruit multiple
partners to a specific cellular site to affect multiple
cellular functions (Engen et al., 2008; Aleshin and Finn,

2010). Each Src kinase member, including c-Src and
c-Yes, consists of four distinctive domains: an N-termi-
nal SH4 domain, followed by a SH3 domain, a central
SH2 domain and a SH1 tyrosine kinase domain (Aleshin
and Finn, 2010) (Fig. 8). In the testis, both c-Src (Lee
and Cheng, 2005; Goupil et al., 2011) and c-Yes (Xiao et
al., 2011) are localized to the BTB and the apical ES in
the seminiferous epithelium of adult rat testes. Al-
though c-Yes and c-Src are two closely related members
of the Src kinase family and they share redundancy in
their signaling functions, they have different cellular
functions in multiple epithelia (Summy et al., 2003; Sato
et al., 2009). For instance, c-Yes is known to regulate
endocytic vesicle-mediated protein trafficking events,
most notably transcytosis, because it is monopalmitoy-
lated at its SH4 domain. Thus, it can take part in the
transport of the Golgi pool of caveolin [a marker of
transcytosis (Hansen and Nichols, 2010)] to the plasma
membrane, whereas c-Src is nonpalmitoylated, and it
can shuffle between the plasma membrane and the late
endosome/lysosome to regulate protein endocytosis
(Sato et al., 2009), such as endosome-mediated protein
degradation. In addition, overexpression of c-Yes in
human colorectal carcinoma cells was shown to pro-
mote cancer spread and metastasis but not tumor
growth (Barraclough et al., 2007). Likewise, c-Src
overexpression also did not promote tumor growth,
but it enhanced cell detachment, causing a delay in
the G2 phase of the cell cycle, and inducing nonapop-
totic cell death in these cells, thereby preventing can-
cer metastasis (Welman et al., 2006). These findings
thus clearly illustrate differences in c-Src and c-Yes
signaling functions. Other Src kinases, such as Hck
(and its truncated form) and Lyn, are also detected in
the testis based on immunohistochemistry experi-
ments, and truncated Hck was found to localize pre-
dominantly to the apical ES (Bordeleau and Leclerc,
2008; Goupil et al., 2011); however, their role at the
BTB remains unexplored.

a. c-Src and blood-testis barrier function. c-Src is
most notably detected in the seminiferous epithelium at
the apical ES at stages VII to VIII of the epithelial cycle
(Lee and Cheng, 2005), but p-c-Src-Tyr-416 is the pre-
dominantly activated c-Src at the apical ES, associating
with �1-integrin (Wong et al., 2005b; Zhang et al., 2005)
and laminin �3-, �3-, and �3-chains (Yan and Cheng,
2006). However, c-Src was also detected at the BTB,
associating with N-cadherin at the basal ES (Lee and
Cheng, 2005). It also structurally associated with FAK
as demonstrated by coimmunoprecipitation (Yan and
Cheng, 2006). Furthermore, c-Src structurally interacts
with desmoglein-2 at the Sertoli cell BTB (Lie et al.,
2010b). In addition, c-Src also forms a functional protein
complex with MTMR2 [a member of the lipid phospha-
tase MTM family known to be involved in endocytic
vesicle-mediated trafficking events (Mruk and Cheng,
2010a)], which also localized predominantly at the BTB
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(Zhang et al., 2005). Collectively, these findings suggest
that c-Src is an integrated component of occludin-, N-
cadherin-, and desmoglein-2-based protein complexes at
the BTB, possibly regulating cell adhesion via its ability
to maintain and/or alter the phosphorylation status
of either occludin, N-cadherin, and/or desmoglein-2,
thereby regulating their kinetics of endocytic vesicle-
mediated protein endocytosis, recycling, and/or transcy-
tosis during spermatogenesis. This hypothesis should be
further evaluated in future studies.

b. c-Yes and blood-testis barrier function. In contrast
to c-Src, c-Yes is predominantly localized to the BTB in
the seminiferous epithelium in a stage-specific pattern,
but the most intense expression is at stages VIII to IX at
the time of preleptotene spermatocyte transit, colocaliz-
ing with occludin and N-cadherin (Xiao et al., 2011).
More important, c-Yes also forms a structural complex
with FAK, occludin, and N-cadherin, but not with
JAM-A or CAR at the BTB (Xiao et al., 2011), consistent
with an earlier study reporting that c-Yes structurally
interacts with occludin at the TJ in kidney MDCK cells
(Chen et al., 2002). These findings illustrate that c-Yes
can potentially regulate the phosphorylation status of
N-cadherin- and occludin-based adhesion complexes
(but not the JAM-A- or CAR-based adhesion protein
complex) to confer cell adhesion. This possibility is sup-
ported by findings in other studies using MDCK and
human intestinal T84 cells in which c-Yes forms a com-
plex with occludin and dissociation of c-Yes from the
occludin complex leads to dephosphorylation of occludin,
disrupting the TJ permeability barrier (Nusrat et al.,
2000; Chen et al., 2002). In fact, a blockade of c-Yes
function with the use of a selective inhibitor, SU6656,
was shown to perturb Sertoli cell TJ barrier function.
This was also associated with changes in the distribu-
tion of actin filaments in these cells in which actin fila-
ment bundles were found to move away from the cell-cell
interface (Xiao et al., 2011), such as at the basal ES, into
the cell cytosol, thereby destabilizing TJ fibrils near the
cell surface. Likewise, occludin became mislocalized,
moving away from the cell-cell interface and into cell
cytosol, and it associated more extensively with the en-
docytic vesicle protein clathrin (Xiao et al., 2011). It is
noteworthy that the disruptive effects of SU6656 were
blocked in the presence of testosterone (Xiao et al.,
2011), illustrating that c-Yes must be working in concert
with AR in the microenvironment of the BTB to fine
tune the timely restructuring of multiple junctions at
the site to allow the transit of preleptotene spermato-
cytes without compromising the immunological barrier.
The working model proposed in Fig. 11 forms a frame-
work for the design of different functional studies in the
years to come.

D. Cytokines

1. Introduction. Studies in multiple epithelia and/or
blood-tissue barriers in various organs (e.g., kidney,

small intestine, brain, eyes), including the BTB in adult
mammalian testes, have demonstrated the role of cyto-
kines, such as TNF�, interferon-�, TGF-�2/-�3, IL-1�,
and IL-12, in regulating TJ permeability barrier func-
tion under normal and pathological conditions (e.g., in-
flammation, tumorigenesis) (Walsh et al., 2000; Xia et
al., 2005a; Lui and Cheng, 2007; Li et al., 2008, 2009a,c;
Capaldo and Nusrat, 2009; Turner, 2009; Marchiando et
al., 2010a; Roberson and Bowcock, 2010; John et al.,
2011). It is noted that endocytic vesicle-mediated protein
trafficking events (e.g., endocytosis, transcytosis, recy-
cling, or intracellular protein degradation mediated by
endosome- and/or ubiquitin-dependent pathways) that
determine the levels of integral membrane proteins at
the TJ barrier play a critical role in modulating the
adhesive status of cell adhesion protein complexes (e.g.,
cadherins, occludins, JAMs, claudins) at the barrier, and
protein endocytosis can be mediated by either clathrin-
or caveolae-dependent pathways or macropinocytosis
(Tuma and Hubbard, 2003; Maxfield and McGraw, 2004;
Mehta and Malik, 2006; Clague and Urbé, 2010; Gola-
chowska et al., 2010; Hsu and Prekeris, 2010). Recent
studies have shown that these events are highly compli-
cated. For instance, endocytosis of occludin at the TJ
barrier in epithelia can be regulated via macropinocyto-
sis (Bruewer et al., 2005), clathrin-mediated (Ivanov et
al., 2004), or caveolae-mediated (Shen and Turner, 2005;
Schwarz et al., 2007; Stamatovic et al., 2009; Marchi-
ando et al., 2010b) pathways, depending on the tissue
being investigated.

As discussed in section III.B.3, polarity protein com-
plexes, namely the Crumbs (CRB), the PAR (partition-
ing-defective), and the Scribble/Dlg (Discs large)/Lgl (Le-
thal giant larvae), are crucial to confer Sertoli cell
polarity at the BTB. Besides their role in conferring
Sertoli cell polarity at the BTB and maintaining proper
orientation of developing spermatids during spermio-
genesis, recent studies have shown that polarity pro-
teins, most notably PAR6 and 14-3-3� (also known as
PAR5), also confer cell adhesion at the Sertoli-Sertoli
and Sertoli-spermatid interface at the BTB and apical
ES, respectively (Wong et al., 2008c, 2009). This is
achieved, at least in part, by the ability of PAR-based
proteins (e.g., 14-3-3) to regulate cell adhesion at the
Sertoli-Sertoli interface via changes in the kinetics of
protein endocytosis. For instance, it was shown that the
knockdown of 14-3-3� by RNAi using specific 14-3-3�
siRNA duplexes in Sertoli cells cultured in vitro with an
established functional TJ-permeability barrier led to an
increase in endocytosis of JAM-A and N-cadherin,
thereby destabilizing the Sertoli cell TJ barrier (Wong et
al., 2009). In addition, a knockdown of either PAR3,
PAR6 or 14-3-3� by RNAi in Sertoli cells resulted in the
redistribution of proteins (e.g., N-cadherin) at the Ser-
toli-Sertoli cell interface (Wong et al., 2008c; Wong et al.,
2009), leading to a loss of BTB integrity. More impor-
tant, it was recently demonstrated that the cytokine-
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mediated increase in protein endocytosis at the Sertoli
cell BTB required the presence of Cdc42 [an integrated
component of the PAR-based polarity protein complex
(Iden and Collard, 2008; Wong and Cheng, 2009)], be-
cause overexpression of a dominant-negative Cdc42 mu-
tant in Sertoli cells by site-directed mutagenesis blocked
the TGF-�3-induced acceleration in protein endocytosis,
as well as TGF-�3-induced TJ permeability barrier dis-
ruption (Wong et al., 2010a). These findings suggest that
cytokines (e.g., TGF-�2, TGF-�3, TNF�, IL-1�) play a
“commanding” role in regulating BTB dynamics and
that they do not just regulate protein adhesion at the
Sertoli-Sertoli cell interface via changes in the kinetics
of endocytosis, recycling, and endosome- or ubiquitin-
mediated protein degradation (Yan et al., 2008b; Xia et
al., 2009; Su et al., 2010b; Lie et al., 2011b) or protein-
protein interactions (Xiao et al., 2011). Instead, cyto-
kines also work with polarity proteins, which are critical
to regulate endocytic vesicle-mediated protein-traffick-
ing events (Wong et al., 2010a), as well as actin dynam-
ics (Sarkar et al., 2008; Lie et al., 2011b) and steroid-
mediated actions at the BTB (Delfino et al., 2003; Xiao et
al., 2011). Herein, we will critically evaluate the central
“commanding” role of cytokines on BTB regulation based
on recent findings in the literature.

2. Transforming Growth Factor �, Tumor Necrosis
Factor �, and Interleukin-1�. Sertoli and/or germ cells
are known to secrete an array of cytokines during the
epithelial cycle, many stage-specifically, to regulate
spermatogenesis (Skinner, 1993; Mruk and Cheng,
2004b; O’Bryan and Hedger, 2008; Guazzone et al.,
2009) and the BTB (Li et al., 2009c; Cheng and Mruk,
2010a; Cheng et al., 2010). However, the best studied
cytokines that regulate BTB dynamics are TGF-�2,
TGF-�3, TNF�, and IL-1� (Lui et al., 2003a; Siu and
Cheng, 2004a; Li et al., 2008; Lie et al., 2011b) (Table 4).
These four cytokines in the seminiferous epithelium are
the products of Sertoli and germ cells (in particular
spermatocytes and early spermatids but not elongated
spermatids except for TNF�, which is produced by elon-
gated spermatids, and their receptors are mostly found
in the Sertoli cell (see Table 4), such that their produc-

tion at specific stages of the epithelial cycle can exert
their effects on the BTB created by Sertoli cells, repre-
senting a unique but efficient system to regulate BTB
restructuring during spermatogenesis. In addition, al-
though the phenotypes induced by all four cytokines are
similar, each cytokine mediates its effects via different
mechanisms and/or signaling pathways. As such, tran-
sient restructuring events that are “localized” to the
BTB (such as behind transiting preleptotene spermato-
cytes) induced by TGF-�3 can be regulated indepen-
dently of TNF�- or IL-1�-mediated disruption above
transiting spermatocytes, so that the immunological
barrier can remain “sealed” during the passage of sper-
matocytes across the BTB at stage VIII of the epithelial
cycle (see Fig. 9).

a. Transforming growth factors �2 and �3. TGF-�2
and TGF-�3 are both 25-kDa homodimeric glycopro-
teins, with each monomer being �12.5 kDa (see Table
4). TGF-� exerts its biological effects by first binding to
the TGF-� type II receptor (T�RII), which then recruits
the type I receptor (T�RI), forming a TGF-�/T�RII/T�RI
complex, except that TGF-�2 binds to the two receptors
almost at the same time with the assistance of the type
III receptor, �-glycan (Massagué, 2000; Massagué and
Gomis, 2006). This protein complex, in turn, recruits
other adaptors, mediating different signaling pathways
downstream, involving different GTPases and mitogen-
activated protein kinases (MAPKs), and regulating an
array of cellular events and functions under normal and
pathological conditions, including spermatogenesis (Lui
et al., 2003a; Xia et al., 2005a; Loveland et al., 2007;
Massagué, 2008; Worthington et al., 2011). For instance,
TGF-� signaling downstream involving either p38
MAPK (Lui et al., 2003c; Wong et al., 2004) or ERK1/2
(Xia and Cheng, 2005) can disrupt either BTB and germ
cell adhesion or BTB function only, respectively.

Lui et al. (2001) reported that the assembly of a func-
tional TJ permeability barrier by Sertoli cells in vitro
was associated with a significant decline in the expres-
sion of TGF-�2 and -�3, suggesting that the presence of
these cytokines in the microenvironment might perturb
TJ barrier function. Indeed, recombinant TGF-�3 added

TABLE 4
Cytokines found in the rodent testes that regulate BTB function

TGF-�2 TGF-�3 TNF� IL-1�

Molecular mass 25-kDa Homodimer with
two 12.5-kDa monomers

25-kDa Homodimer
with two 12.5-kDa
monomers

51-kDa Homotrimer with three
17-kDa monomers

17-kDa Monomer; 31-kDa
precursor is also
biologically active

Cellular association in
adult testes

Sertoli cells, round
spermatids

Sertoli cells,
spermatocytes, round
spermatids

Sertoli cells, spermatocytes,
round spermatids, elongating
and elongated spermatids

Sertoli cells,
spermatocytes, round
spermatids

Stage-specific expression/localization
I-IV � 	 	 �
V-VII 	 	 	 �
VIII-IX � 	 � 	
X-XIV � � 	 	

References Teerds and Dorrington,
1993

Mullaney and Skinner,
1993; Lui et al., 2003b

De et al., 1993; Siu et al., 2003a Haugen et al., 1994; Syed
et al., 1995

	, presence; �, absence.
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to Sertoli cultures was shown to block the assembly (Lui
et al., 2001) or the maintenance (Lui et al., 2003a) of the
TJ barrier dose dependently, which is mediated by the
p38 MAPK signaling pathway (Lui et al., 2003c). More
important, these findings in vitro were subsequently
confirmed and expanded in studies in vivo in which
administration of TGF-�3 to the testis via intratesticu-
lar administration indeed induced BTB damage when
examined by electron microscopy, and required the cou-
pling of the adaptors TGF-� activated kinase 1 binding
protein 1 and CD2-associated protein with the TGF-�3/
T�RII/T�RI protein complex upstream (Xia et al., 2006).
Perhaps the most important of all, the use of TGF-�3 at
doses that were within the range of the levels of TGF-�s
in the testis, rather than pharmacological doses, was
found to induce BTB disruption when assessed by a
functional in vivo BTB integrity assay, and similar to
the in vitro findings, this TGF-�3-induced BTB disrup-
tion was reversible (Xia et al., 2009). Another line of
research that illustrates the significance of TGF-�s on
BTB function derives from the use of the cadmium-
induced BTB disruption animal model, in which adult
rats treated with CdCl2 (at 3 mg/kg b.wt. i.p.) was shown
to associate with a surge in TGF-�3 expression (Wong et
al., 2004), and the use of a specific p38 MAPK inhibitor
could block, at least in part, the cadmium-induced BTB
disruption and the loss of occludin from the BTB site
(Lui et al., 2003c; Wong et al., 2004). More recent studies
have shown that TGF-�2 or -�3 also enhances clathrin-
mediated protein endocytosis at the Sertoli cell BTB
(Yan et al., 2008b; Xia et al., 2009), but instead of recy-
cling the endocytosed proteins back to the cell surface,
TGF-�-induced endocytosed proteins are targeted for
endosome- and/or ubiquitin-mediated intracellular deg-
radation (Yan et al., 2008b; Su et al., 2010b). In addition,
a recent study has demonstrated that the TGF-�3-in-
duced acceleration in protein endocytosis at the Sertoli
cell BTB requires the activation and involvement of
Cdc42 in the PAR-based polarity protein complex (Wong
et al., 2010a). These findings thus illustrate that
TGF-�2 and/or -�3 produced by Sertoli cells, spermato-
cytes, and round spermatids locally at or near the BTB
microenvironment, such as at stage VIII of the epithelial
cycle, can “open” the BTB via the p38 MAPK signaling
pathway, which in turn accelerates protein endocytosis
at the site and targets internalized proteins for endo-
some- or ubiquitin-mediated intracellular degradation.
This redistribution of integral membrane proteins at the
BTB therefore “destabilizes” the TJ barrier, leading to
its transient disruption.

b. Tumor necrosis factor �. TNF�, also known as
cachexin or cachectin, is a proinflammatory cytokine. As
its name implies, TNF� is involved in inflammation; it
also inhibits tumorigenesis and viral replication by in-
ducing apoptosis (Kruglov et al., 2008; O’Bryan and
Hedger, 2008; Guazzone et al., 2009). TNF is primarily
produced by activated monocytes and macrophages in

response to inflammation or infection (Fiers, 1991), and
also by Sertoli cells, spermatocytes, and round, elongat-
ing, and elongated spermatids in the testis (De et al.,
1993; Siu et al., 2003a) (Table 4). Interstitial cells, such
as mast cells and macrophages, are also a major source
of TNF� in the mammalian testis (Guazzone et al.,
2009). TNF is produced initially as a type II integral
membrane homotrimeric protein of �78 kDa with each
monomer of �26 kDa (212-amino acid polypeptide)
(Kriegler et al., 1988; Tang et al., 1996), which is subse-
quently cleaved by metalloprotease TNF�-converting
enzyme (also known as ADAM17) (Black et al., 1997) to
generate the 51-kDa soluble homotrimeric form (each
monomer is �17 kDa with 185 amino acids) of TNF�.
Both the membrane bound and soluble forms of trimeric
TNF� are biologically active. Transmembrane and solu-
ble TNF� exert their biological effects by binding onto
either one of two membrane-bound TNF� receptors
(TNFR): TNFR1 (55–60 kDa) or TNFR2 (75–80 kDa)
(Tartaglia and Goeddel, 1992). TNFR1 is found in most
tissues and can interact with either a cytoplasmic
TNFR1-associated death domain protein (a 34-kDa
adaptor protein that is also a TNFR1-associated signal
transducer) or the Fas-associated death domain protein
(a 23-kDa adaptor protein), which can lead to TNF�-
induced death signaling through a caspase-dependent
apoptotic pathway (Hsu et al., 1996), such as to regulate
Sertoli/germ cell survival or apoptosis in the testis.
Thus, TNF� plays a significant role in determining the
size of the germ cell population in the seminiferous
epithelium via its effects on germ cell apoptosis, because
more than 75% of germ cells that arise during spermato-
genesis undergo spontaneous degeneration (Clermont,
1963; Huckins and Oakberg, 1978; Bartke, 1995; Billig
et al., 1995; Shaha, 2008). In this context, it noteworthy
that estrogen (e.g., estradiol-17�) also regulates germ
cell (e.g., pachytene spermatocytes) apoptosis via its ef-
fects on cyclins A1 and B1 (Chimento et al., 2010, 2011),
reactive oxygen species, as well as the Fas-FasL system
(Lee et al., 1999; Shaha, 2008; Shaha et al., 2010; Aitken
et al., 2011). It remains to be determined whether TNF�
works independently or in concert with estrogen to
maintain the optimal number of germ cells in the epi-
thelium during spermatogenesis. Recent studies have
also shown that TNFR1 signaling can also be mediated
by the protein ubiquitin-mediated pathway (Wertz and
Dixit, 2008) and the NF-�B pathway [nuclear factor
�-light-chain-enhancer of activated B cells, a transcrip-
tion factor (Baker et al., 2011)] (Kim et al., 2011).
TNFR2, in contrast, lacks the ability to bind to death
domain adaptor proteins; instead, it primarily activates
the NF-�B pathway (Rothe et al., 1995) or the JNK
[c-Jun N-terminal kinase, also known as stress-acti-
vated protein kinase, a member of the MAPK family
(Haeusgen et al., 2011)] signaling pathway (Dempsey et
al., 2003). The TNFR2 pathway is also a drug target for
autoimmune diseases (Faustman and Davis, 2010), but
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its function in spermatogenesis remains somewhat ob-
scure. In short, TNF� is a multifunctional cytokine in
the testis. For instance, it stimulates Sertoli cell andro-
gen receptor expression, iron transport to germ cells,
and lactate supply to postmeiotic germ cells; it regulates
spermiation (Delfino et al., 2003; Siu et al., 2003a; Ly-
siak, 2004); and TNF� is also a potent inhibitor of Ley-
dig cell steroidogenesis (Hong et al., 2004). In the testis,
TFNR1 is mostly expressed in Leydig cells, lymphocytes,
macrophages, Sertoli cells, and germ cells, whereas
TNFR2 is detected in peritubular myoid and Sertoli cells
(Pentikäinen et al., 2001; Suescun et al., 2003; Schell et
al., 2008). In short, the biological actions of TNF� de-
pend on 1) the receptor subtype engaged (once TNF�
binds to its receptor, TNFR also forms a trimeric protein
complex to serve as a platform to recruit other proteins
to the site), 2) the expression and/or recruitment of spe-
cific adaptors (e.g., TNFR1-associated death domain
protein, Fas-associated death domain protein, receptor
interacting protein, and TNF receptor associated fac-
tor-2) or other binding partners to the TNF�/TNFR com-
plex, and 3) cross-talk between TNFR1 and TNFR2,
which in turn, select the appropriate signaling pathways
downstream (Xia et al., 2005a; Smith and Humphries,
2009; Naudé et al., 2011).

TNF� was first shown to perturb Sertoli cell TJ bar-
rier function when its recombinant protein was added to
Sertoli cell cultures in vitro (Siu et al., 2003a). This
finding is in agreement with the role of TNF� in induc-
ing an up-regulation of Fas expression in mouse Sertoli
cells via the NF-�B pathway that triggers apoptosis,
leading to a disruption of the BTB, underlying the
pathogenesis of autoimmune orchitis (Yule and Tung,
1993; Starace et al., 2005; Guazzone et al., 2009; Pel-
letier et al., 2009). Similar to TGF-�3, administration of
recombinant TNF� in vivo to rats via intratesticular
injection at doses comparable with the highest level
during the epithelial cycle, TNF� was also found to
reversibly disrupt the BTB when examined ultrastruc-
turally by electron microscopy and functionally when
assessed by an in vivo BTB integrity assay (Li et al.,
2006). Although the disruptive effects of both TGF-�3
and TNF� on Sertoli cell BTB function, both in vitro and
in vivo, seem similar, TNF�-induced BTB disruption is
not mediated via the p38 MAPK signaling pathway.
Instead, TNF� exerts its effects via an entirely different
pathway. Besides inhibiting the de novo synthesis of
occludin by Sertoli cells, TNF� was shown to induce
MMP-9 synthesis by Sertoli cells and the activation of
pro-MMP-9 to its enzymatically activated form, which
was probably used to cleave the existing collagen net-
work in the basement membrane, perturbing the scaf-
folding function imposed by collagen and leading to BTB
disruption (Siu et al., 2003a). These changes, in turn,
created a negative feedback that caused TNF� to induce
collagen synthesis and the production of tissue inhibitor
of metalloproteinase 1, so that the former was needed to

replenish the cleaved collagen network and the latter
was needed to limit unwanted proteolysis in the semi-
niferous epithelium (Siu et al., 2003a). It is likely that,
because of this unique mechanism, TNF� and other
cytokines (e.g., TGF-�3) can regulate TJ barrier function
differentially during the transit of preleptotene sper-
matocytes at the BTB to allow the maintenance of the
immunological barrier.

c. Interleukin-1�. IL-1� is mostly a product of sper-
matocytes and round spermatocytes in rat testes (Hau-
gen et al., 1994; Lie et al., 2011c), and its production by
Sertoli cells is largely dependent on the presence of germ
cells (Cudicini et al., 1997; Jonsson et al., 1999; Lie et al.,
2011c). Its expression and production in the testis is
stage-specific, being highest at stages VIII to IX of the
epithelial cycle (Syed et al., 1995; Wahab-Wahlgren et
al., 2000) (Table 4). Administration of IL-1� to the testis
locally was shown to perturb BTB integrity; however,
this disruptive effect was not mediated by reducing the
steady-state level of integral membrane proteins at the
BTB (e.g., occludin, JAM-A, N-cadherin), unlike TGF-�3
or TNF�; instead, IL-1� perturbed the orderly arrange-
ment of actin filament bundles at the BTB, causing
disintegration of actin filaments. This in turn led to a
disruption of the BTB (Sarkar et al., 2008). Subsequent
studies using Sertoli cells cultured in vitro having an
established functional TJ barrier showed that although
the levels of BTB integral membrane proteins (e.g., oc-
cludin) were not altered by IL-1� treatment, an increase
in the kinetics of endocytosis of occludin and a decrease
in its rate of degradation were detected, which in turn
destabilized Sertoli-Sertoli cell adhesion, leading to a
disruption of the TJ barrier (Lie et al., 2011b). These
changes were mediated by a disruption of the actin
network at the BTB via a redistribution of Eps8 (epider-
mal growth factor receptor pathway substrate 8) and a
surge in the expression of Arp3 (actin-related protein 3)
[Eps8 is an actin barbed-end capping and bundling pro-
tein recently shown to regulate actin bundling in the
testis (Lie et al., 2009b), and Arp3 is part of the Arp2/3
protein complex, which is known to confer actin nucle-
ation/branching in cell epithelia (Ahmed et al., 2010;
Rottner et al., 2010; Cheng and Mruk, 2011; Firat-
Karalar and Welch, 2011), including the seminiferous
epithelium (Lie et al., 2010a)] at the Sertoli cell BTB (Lie
et al., 2011b). Thus, the transient loss of Eps8 at the
Sertoli-Sertoli cell interface via its redistribution ren-
ders the failure of actin filament bundles to remain
intact at the basal ES, and the surge in Arp3 induces
actin branching, increasing the plasticity and fluidity of
the actin network, perturbing normal endocytic vesicle-
mediated protein trafficking events. This, in turn, desta-
bilizes BTB integrity (Lie et al., 2011c).

3. Cytokines and Steroids: Their Differential Effects on
Blood-Testis Barrier Dynamics and the Regulatory Role
of Cytokines on Steroid-Mediated Action on the Blood-
Testis Barrier. As noted above, cytokines and estro-
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gens (section IV.D.2) are known to have a disruptive
effect on Sertoli cell BTB integrity. However, testoster-
one promotes BTB assembly and its maintenance (Meng
et al., 2005; Xia et al., 2005b; Wang et al., 2006; Yan et
al., 2008b) via its action on 1) production of proteins,
such as caveolin-1, Rab11 (Su et al., 2010b), claudin-11
(Kaitu’u-Lino et al., 2007), occludin (Chung and Cheng,
2001), and their proper localization at the Sertoli-Sertoli
cell interface (Kaitu’u-Lino et al., 2007; Su et al., 2010b);
2) proper protein-protein interactions (e.g., N-cadherin-
�-catenin, c-Yes-occludin; c-Yes-N-cadherin; occludin-
clathrin; N-cadherin-clathrin) (Zhang et al., 2005; Su et
al., 2010b; Xiao et al., 2011); 3) proper recycling of en-
docytosed proteins back to the cell surface to maintain
cell adhesion (Yan et al., 2008b; Su et al., 2010b); and
4) maintenance of actin filament bundles within the
Sertoli cell (Xiao et al., 2011), which are necessary to
maintain BTB integrity and function during the semi-
niferous epithelial cycle of spermatogenesis. Studies
have shown that the “opposing” effects of cytokines/es-
trogens and androgens seem to be under the central
“command” of cytokines. This possibility is not just
novel, but perhaps essential physiologically, given the
diverse cellular and molecular events that are occurring
at the microenvironment of the BTB (Lie et al., 2009a).
In addition, the number of differentiated Sertoli cells
(Orth, 1982) that can support developing germ cells at a
Sertoli/germ cell ratio of �1:30 to 1:50 (Weber et al.,
1983) in adult rat testes during the epithelial cycle is
limited, with �25 to 40 � 106 Sertoli cells per testis. For
instance, TNF� is known to perturb Sertoli cell TJ-
permeability barrier function by inhibiting the produc-
tion of occludin, but not ZO-1, and by maintaining the
proper level of occludin at the BTB, which is mediated by
MMP-9 and collagens (Siu et al., 2003a). It can also
stimulate Sertoli cell intercellular adhesion molecule-1
(De Cesaris et al., 1999) and AR (Delfino et al., 2003)
expression, which is mediated by an activation of the
JNK signaling pathway and the binding of NK-�B (a
transcription factor) to the AR promoter, respectively.
These findings thus illustrate that TNF� can either
perturb BTB function via its direct effects on adhesion
protein complexes at the BTB, perhaps at the “old” BTB
site above preleptotene spermatocytes in transit, or pro-
mote BTB assembly at the “new” BTB site via androgen
action beneath transiting spermatocytes, which occur at
stage VIII of the epithelial cycle. The role of cytokines in
mediating the effects of steroids on BTB function was
also supported by recent studies in other blood-tissue
barriers. For instance, using the human brain microvas-
cular endothelial cell line hCMEC/D3 as an in vitro
model of the blood-brain barrier, hydrocortisone was
shown to stimulate the steady-state levels of occludin
and claudin-5, but not claudin-1 and vascular endothe-
lial cadherin, as well as to promote the TJ permeability
barrier in hCMEC/D3 cells, making the barrier almost
4-fold “tighter” than controls; yet TNF� perturbed TJ

barrier function and significantly blocked hydrocorti-
sone-stimulated blood-brain barrier-protein expression
(Förster et al., 2008), illustrating that TNF� can medi-
ate the effects of steroids on TJ barrier function. In the
section that follows, we provide a hypothetical model illus-
trating the central “commanding” role of cytokines on BTB
regulation based on recent findings in the literature.

4. Cytokines, Steroids, Polarity Proteins, Nonreceptor
Protein Kinases, and Actin Regulatory Proteins: Their
Concerted Efforts to Regulate Blood-Testis Barrier Dy-
namics during Spermatogenesis. As depicted in Figs. 7
and 9, occludin-, claudin-, N-cadherin-, JAM-A-, JAM-
B-, nectin-, and CAR-based adhesion complexes that
confer BTB integrity during the seminiferous epithelial
cycle of spermatogenesis are localized at the Sertoli-
Sertoli cell interface. This is achieved by proper phos-
phorylation of integral membrane proteins, their corre-
sponding adaptors, and associated polarity proteins via
the action of nonreceptor protein kinases. Intact actin
filament bundles at the basal ES that “reinforce” and
support the tight junctions are maintained by the proper
ratio of Eps8 to Arp2/3 protein complex. However, at
stage VIII of the epithelial cycle, when preleptotene
spermatocytes are in transit at the BTB (Parvinen,
1982; Hess and de Franca, 2008), several events occur as
follows. First, androgen-induced de novo synthesis of
integral membrane proteins (e.g., occludin, claudin-11),
and their corresponding adaptors begin to assemble
“new” TJ fibrils (Chung and Cheng, 2001; Kaitu’u-Lino
et al., 2007) behind migrating spermatocytes to estab-
lish a “new” BTB. The establishment of a “new” BTB is
also assisted by the relocation of TJ (e.g., occludin, clau-
dins) and basal ES proteins (e.g., cadherins, nectins,
CAR) from 1) the basolateral storage site, most likely
mediated by GTPases and/or endosomes, and 2) the “old”
BTB site above transiting spermatocytes via internal-
ization and transcytosis of “used but still functional”
integral membrane proteins, and to recycle these endo-
cytosed proteins to assemble “new” TJ-fibrils. This en-
docytic vesicle-mediated event is facilitated by polarity
proteins (e.g., 14-3-3, PAR3, PAR6, and Cdc42) (Wong et
al., 2008c, 2009, 2010a) and androgen-induced expres-
sion of caveolin-1 and Rab11 (both are markers of trans-
cytosis and recycling) (Su et al., 2010b). This action is
mediated, at least in part, by TNF�, which is known to
induce Sertoli cell androgen receptor expression (Delfino
et al., 2003). Second, BTB disruption in vitro and in vivo
induced by TNF� (Siu et al., 2003a; Li et al., 2006),
TGF-�3 (Lui et al., 2003b; Xia et al., 2006, 2009), and
IL-1� (Sarkar et al., 2008; Lie et al., 2011b) is known to
be mediated by changes in endocytic vesicle-mediated
trafficking events. Endocytosis of integral membrane
proteins and their associated adaptors from the “old”
BTB site is made possible by their phosphorylation,
which is mediated by protein kinases (e.g., FAK, c-Src,
c-Yes) (Lee and Cheng, 2005; Siu et al., 2009b,c; Lie et
al., 2010b; Xiao et al., 2011) or dephosphorylation by

BLOOD-TESTIS BARRIER AND MALE CONTRACEPTION 43



phosphatases (Li et al., 2001), altering their phosphor-
ylation status. Some of these endocytosed proteins are
used to establish the “new” BTB behind transiting sper-
matocytes under the influence of testosterone (Yan et
al., 2008b; Su et al., 2010b), but some are targeted for
intracellular degradation via endosome- or ubiquitin-
dependent pathways that are regulated by cytokines
(e.g., TGF-�2, TGF-�3, TNF�, IL-1�) (Yan et al., 2008b;
Xia et al., 2009; Su et al., 2010b; Lie et al., 2011b),
thereby destabilizing the “old” BTB site to prepare for its
dissolution. Third, endocytic vesicle-mediated events are
also facilitated by changes in the ratio of Esp8 to the
Arp2/3 complex to increase the fluidity and plasticity of
the BTB to assist in intracellular trafficking of proteins
(e.g., endocytosis, transcytosis, recycling), which is also
regulated by cytokines (e.g., IL-1�) (Lie et al., 2011b).
Fourth, TJ and basal ES proteins expressed by transit-
ing spermatocytes [e.g., CAR, JAMs, cadherins, nectins
(Lee et al., 2003, 2004; Mirza et al., 2007; Wang and
Cheng, 2007; Wang et al., 2007; Shao et al., 2008)] can
form “transient” interlocking complexes with corre-
sponding proteins found in Sertoli cells to avoid “un-
wanted” paracellular leakage of biomolecules and sub-
stances at the BTB (Wang and Cheng, 2007). In short,
the concerted efforts of different molecules and mecha-
nisms thus maintain the function of the immunological
barrier when preleptotene spermatocytes are in transit
across the BTB. It is envisioned that additional “players”
and “regulators” will be added to this model depicted in
Fig. 9 in the years to come. Nonetheless, this model
serves as the framework upon which functional experi-
ments can be designed in future studies.

V. Toxicants and Blood-Testis Barrier Function

Environmental toxicants, such as heavy metals (e.g.,
cadmium), that caused testicular injury (Parizek and
Zahor, 1956; Parizek, 1960; Chiquoine, 1964) and BTB
disruption (Setchell and Waites, 1970) were first re-
ported more than 5 decades ago. In addition, bisphenol A
was also shown to perturb the assembly of the BTB in
immature rats (Li et al., 2009d), impeding male fertility
via its effects on male germline stem cells and the ex-
pression of Sertoli cell junctional proteins (Salian et al.,
2009a,b) after neonatal or perinatal exposure, consistent
with findings in vitro in which bisphenol A was found to
disrupt the expression of Sertoli cell junctional proteins
(Fiorini et al., 2004; Li et al., 2009d). These findings are
consistent with mounting evidence that prenatal and
neonatal exposure of rodents to bisphenol A, even at the
current “safe” dose level (�50 �g/kg b.wt./day) accepted
by the U.S. Food and Drug Administration and the U.S.
Environmental Protection Agency, is linked to changes
in sexual differentiation, defects in male and female
reproductive tracts, meiotic abnormalities in fetal
oocytes, complications during pregnancy, and increases
in malignancies in adult animals (Richter et al., 2007;

Hunt et al., 2009; Vandenberg et al., 2009). A recent
study has conclusively demonstrated a trend of reducing
semen quality and increasing testicular cancer among
Finnish men caused by exposure to environmental tox-
icants (Jørgensen et al., 2011), consistent with earlier
studies that associated reduced sperm count and repro-
ductive dysfunction in men exposed to environmental
toxicants (Benoff et al., 2000; Phillips and Tanphaichitr,
2008; Lucas et al., 2009; Siu et al., 2009a; Bonde, 2010;
Sakkas and Alvarez, 2010; Cheng et al., 2011b; Wong
and Cheng, 2011). It is noteworthy that only in recent
years, toxicant-induced testis damage was used by in-
vestigators as a model to study the regulation of the BTB
at the cellular and molecular levels both in vitro and in
vivo (Janecki et al., 1992; Chung and Cheng, 2001;
Fiorini et al., 2004; Wong et al., 2004, 2010b; Siu et al.,
2009a; Elkin et al., 2010; Li et al., 2010; Cheng et al.,
2011b; Gualtieri et al., 2011; Wong and Cheng, 2011).
However, it is of interest to note that not all toxicants
that impede spermatogenesis in males can disrupt BTB
integrity. For instance, in the same study in which
CdCl2 was found to disrupt BTB integrity, methoxy-
acetic acid and 1,3-dinitrobenzene, which affected
pachytene spermatocyte and Sertoli cell function, re-
spectively, were shown to have no effects on BTB integ-
rity or function (Elkin et al., 2010). These findings thus
illustrate that the BTB is vulnerable to some but not all
toxicants (Li and Heindel, 1998; Yu et al., 2009; Wong et
al., 2010b; Cheng et al., 2011b).

A. Sertoli Cell Differentiation Status and Blood-Testis
Barrier Integrity and Their Impact on Spermatogenesis

In this context, it is of interest to note that exposure of
neonatal rats to goitrogens, such as 6-propyl-2-thioura-
cil (PTU), to induce neonatal hypothyroidism leads to an
increase in testis weight and size, as well as germ cell
production (Cooke and Meisami, 1991; Cooke et al.,
1991, 1992; Santos-Ahmed et al., 2011), possibly the
result of reduced apoptosis, which is mediated via the
Akt1 [Akt, also known as protein kinase B (PKB), is a
Ser/Thr protein kinase family composed of Akt1, Akt2,
and Akt3, the product of the normal gene homolog of
v-akt, the transforming oncogene of AKT8 virus] signal-
ing pathway (Santos-Ahmed et al., 2011). It is noted that
rats exposed to PTU from postnatal days 1 through 25
displayed a delay in the differentiation of Sertoli cells, so
that these cells continued to proliferate, and the BTB
was not established by postnatal day 25 (De França et
al., 1995). This increase in Sertoli cell number in the
testis of PTU-treated rats thus enhanced the capacity of
these cells to support more germ cells (and perhaps
associated with an increase in Akt1 signaling), which, in
turn, led to an increase in germ cell numbers and testis
weight. At present, it is not known whether the BTB was
established in these rats by the time they reached adult-
hood, but because these adult rats were fertile, it can be
assumed that the BTB was functional. Nonetheless,
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these findings illustrate that the assembly of the BTB is
tightly linked to the maturation status of Sertoli cells
and that the BTB can be developed only with differen-
tiated Sertoli cells that have ceased to divide. The con-
cept that proper terminal differentiation of Sertoli cells
plus their mitotic quiescence are crucial to the establish-
ment and/or maintenance of a functional BTB to support
spermatogenesis is further supported by a recent study
using Sertoli cell-specific conditional knockout mice of
retinoblastoma protein (RB). Other studies have shown
that the RB pathway is crucial in cell cycle control and
cell differentiation by serving as a master regulator to
coordinate cell cycle exit with differentiation (Lipinski
and Jacks, 1999; Nguyen and McCance, 2005; Chinnam
and Goodrich, 2011; McDuff and Turner, 2011). It was
noted that RB(�/�) mice appeared normal by postnatal
week 6 (that is, they were fertile with normal testis
weights and spermatogenesis indistinguishable from
wild-type mice); however, by postnatal weeks 10 to 14,
these Rb(�/�) mice were infertile with severe Sertoli
cell dysfunction, and Sertoli cells displayed defective
regulation of multiple androgen-regulated genes and
most notably a “leaky” BTB (Nalam et al., 2009). These
findings thus illustrate that improper terminal differen-
tiation of Sertoli cells seems not to affect the initial
establishment of the BTB to support spermatogenesis in
rats, but it fails to “maintain” BTB integrity, which in
turn perturbs spermatogenesis. In addition, RB is
known to impair cell cycle G1- to S-phase progression by
acting as a repressor of the E2F family of transcriptional
activators, and recent studies have shown that E2F1 is
a transcription factor possessing both proapoptotic and
prosurvival properties (Udayakumar et al., 2010); thus,
future studies should examine whether a disruption of
the Sertoli cell BTB would also impede the events of
apoptosis in the seminiferous epithelium.

B. The Cadmium Model

Although it has been known since the 1950s that
exposure of adult rats to cadmium salts (e.g., cadmium
chloride) induces severe testicular injury (Parizek and
Zahor, 1956), its disruptive effects on the BTB were not
known until Setchell and Waites (1970) illustrated that
the Sertoli cell barrier is highly sensitive to CdCl2. How-
ever, only in the 1990s did it become clear that cadmium
(Hew et al., 1993b) and other toxicants [e.g., glycerol
(Wiebe et al., 2000)] that induce irreversible male infer-
tility are mediated, at least in part, via BTB damage by
disrupting TJ-associated actin microfilaments and TJ
fibrils, together with an inhibition on occludin expres-
sion) and/or microtubules in Sertoli cells. Herein, we
provide a brief but critical and updated discussion on
how this cadmium model has helped us and other inves-
tigators in the field to unravel the underlying signaling
mechanisms that regulate BTB dynamics during sper-
matogenesis. These findings also illustrate some new
avenues of research that can be tackled to develop novel

male contraceptives and/or deliver drugs across the
BTB, and perhaps other blood-tissue barriers.

1. Introduction. Cadmium is a major environmental
toxicant that is released into the atmosphere as cad-
mium oxide, cadmium chloride, or cadmium sulfide via
industrial activities, such as manufacturing of batteries
and pigments, metal smelting and refining, and munic-
ipal waste incineration. It enters the food chain via
contaminated water and food (World Health Organiza-
tion, 2000; Agency for Toxic Substances and Disease
Registry, 2008). Once ingested, cadmium enters eukary-
otic cells via the ZIP (Zrt-, Irt-like Protein, representing
a family of zinc transporters; Zrt1 and Zrt2 were initially
found in yeast Saccharomyces cerevisiae, and Irt1, an
iron and zinc transporter, was found in roots of Arabi-
dopsis thaliana) transporters SLC39A8 and SLC39A14,
which are also found in the testis (Dalton et al., 2005; Su
et al., 2011a). However, Cd2	 also enters cells using the
Fe2	/H	 cotransporter divalent metal transporter 1
(Thévenod, 2010) and perhaps other transporters, such
as influx pumps (Su et al., 2011a). Although the average
person’s intake of cadmium is only �1 to 30 �g/person/
day via food and water, with an additional 2 to 30 �g of
cadmium per person per day among cigarette smokers (a
single cigarette carries �1–2 �g of cadmium) (Ander-
sson et al., 1986; Agency for Toxic Substances and Dis-
ease Registry, 2008; Pan et al., 2010), it has an exceed-
ingly long half-life, approximately 20 to 40 years in
humans (Kjellström and Nordberg, 1978; World Health
Organization, 2000; Wong et al., 2010b) and �200 days
in rodents (Webb, 1975). Cadmium accumulates mostly
in the liver and kidney but also in the testes (Waalkes et
al., 1992; Järup and Akesson, 2009), largely because of
high concentrations of metallothioneins [cysteine-rich
low molecular mass metal-binding proteins localized to
the membrane of the Golgi apparatus that protect cells
from cytotoxicity of heavy metals (such as copper, sele-
nium, and zinc) and xenobiotics (such as cadmium, mer-
cury, silver, and arsenic) by binding to these metals
through the thiol group of its cysteine residues] in these
organs (Dalton et al., 1996; Siu et al., 2009a; Chiaverini
and De Ley, 2010; Vesey, 2010; Wong et al., 2010b). As
such, significant and harmful amounts of cadmium can
indeed build up in a person over a period of time, over-
whelming the capacity of metallothioneins.

2. Cadmium and Carcinogenesis—Molecular Targets
and Mechanisms of Action. Cadmium is associated with
increased risks in carcinogenesis in multiple organs, most
notably kidney, prostate, liver, pancreas, lung, stomach,
and testis in humans and rodents, and it was pronounced
a potent carcinogen in rodents in the early 1960s (Waalkes
et al., 1992; Waalkes, 2003; Goyer et al., 2004; Huff et
al., 2007; Thévenod and Chakraborty, 2010). For in-
stance, rats that received long-term exposure to cad-
mium aerosols, such as at 50 �g/m3 CdCl2, had a 70%
greater incidence of lung carcinoma than control rats
(Takenaka et al., 1983). Besides the organs listed above,
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recent studies also link cadmium to different forms of
cancer in multiple organs in humans, such as mouth,
lung, head and neck, urinary bladder, and breast, based
on data derived from workers occupationally exposed to
cadmium and from heavy smokers (Waalkes et al., 1992;
Huff et al., 2007; Barrett, 2009; Beveridge et al., 2010;
Kazi et al., 2010; Khlifi and Hamza-Chaffai, 2010; Pan
et al., 2010). The mechanisms of cadmium-induced car-
cinogenicity seem to be multifactorial, such as inducing
DNA-protein cross-linking, inhibiting DNA damage re-
pair, disrupting gene expression, inhibiting cell apopto-
sis (Waalkes et al., 1992; Waalkes, 2003; Huff et al.,
2007), disrupting Wnt/�-catenin signaling function
(Thévenod and Chakraborty, 2010), and modulating
transcriptional regulation of stress-response genes (e.g.,
metallothioneins, heme oxygenase, heat shock proteins,
and apoptosis-related genes) (Luparello et al., 2011).
Cadmium also acts as a mitogen by promoting breast
cancer cell proliferation (Siewit et al., 2010; Yu et al.,
2010). It also induces tissue damage, such as in the
kidney, where it induces apoptosis (0.1–10 �M) or ne-
crosis (�50 �M) (Templeton and Liu, 2010). However,
all the available evidence seemingly suggests that cad-
mium-induced oxidative stress plays a central role in
cadmium carcinogenesis, because superoxide dismutase,
catalase, NADPH oxidase, and/or glutathione peroxi-
dase were shown to be altered significantly during cad-
mium-induced genotoxicity, tissue damage and aberrant
gene expression (Waalkes, 2003; Joseph, 2009; Liu et al.,
2009). It is noteworthy that cadmium-induced reproduc-
tive dysfunction is also likely to be mediated by an
increase in oxidative stress, which, in turn, impedes cell
junctions in the testis, including the BTB (Wong and
Cheng, 2011).

3. Cadmium and Male Reproductive Dysfunction. Ex-
posure of rodents to short-term doses of cadmium
[e.g., CdCl2 administered at 1–5 mg/kg b.wt. (i.e., at
�0.3–1.5 mg/rat, assuming the body weight of adult
rats is �300 g) at a single dose via intraperitoneal or
subcutaneous injection] was known to induce serious
testicular injury (e.g., sterilization, necrosis, germ cell
depletion, interstitial tissue damage, and BTB disrup-
tion) more than 5 decades ago (Parizek and Zahor,
1956; Parizek, 1957, 1960; Setchell and Waites, 1970;
Hew et al., 1993b; Siu et al., 2009a; Wong et al.,
2010b). However, the disruptive effects of cadmium on
male reproductive function in rodents and humans,
particularly after low-dose exposure, such as at 5 to 50
�g/rat/day (i.e., at approximately 30- to 60-fold less
than the short-term doses), were not known until re-
cently (Telisman et al., 2007; Wirth and Mijal, 2010).
Indeed, recent correlation studies have linked ele-
vated and statistically different cadmium levels in
blood and seminal plasma in infertile men with re-
duced semen quality (i.e., low sperm count and abnor-
mal sperm motility) (Wu et al., 2008; Benoff et al.,
2009; Rouiller-Fabre et al., 2009; Wirth and Mijal,

2010). For instance, it was shown that the mean sem-
inal plasma cadmium level in infertile patients was
0.282 �g/l (n 
 132 men; range, 0.241– 0.348 �g/l)
versus 0.091 �g/l (n 
 14 men; range, 0.073– 0.102
�g/l) in artificial insemination donors and 0.092 �g/l
(n 
 35 men; range, 0.080 – 0.111 �g/l) in general
population volunteers (Benoff et al., 2009), illustrat-
ing a 3-fold increase in the seminal plasma cadmium
level in infertile men versus unaffected subjects. Fur-
thermore, the seminal plasma cadmium level in heavy
smokers is also positively associated with male infer-
tility compared with healthy subjects (Wu et al.,
2008). In addition, administration of an environmen-
tally relevant and low dose of cadmium to rats was
also shown to induce asthenozoospermia (reduced
sperm motility and quality), which is associated with
infertility (Benoff et al., 2008). These findings, as
summarized herein, are significant because they sup-
port the notion that the current trend of declining
semen quality, such as sperm count and sperm motil-
ity among men in industrialized nations, is caused, at
least in part, by low-level exposure to environmental
toxicants such as cadmium.

4. Cellular Targets of Cadmium in the Testis. Setch-
ell and Waites (1970) first reported that the BTB is the
primary ultrastructural target of cadmium toxicity in
the testis, with BTB disruption occurring before hemor-
rhage of microvessels in the interstitial tissue (but not in
the brain or the epididymis in these rats) after the
administration of �7 mg of CdCl2/kg b.wt. s.c. to adult
rats (234–373 g b.wt.). In a subsequent study that used
rats at �300 g b.wt. treated with CdCl2 at 3 mg/kg b.wt.
i.p. to assess BTB integrity by a combination of tech-
niques, including electron microscopy, histological and
dual-labeled immunofluorescence analysis found the
BTB to be disrupted by �10 h after treatment. However,
microvessels in the interstitium were not disrupted until
�20 h after treatment (Wong et al., 2004, 2005a). Most
notably, actin filament bundles at the basal ES adjacent
to the TJ were found to be disrupted (Wong et al.,
2005a); these findings are consistent with those of an
earlier report in which rats were exposed to cadmium at
1 mg/kg b.wt., where actin filaments at the BTB were
also found to be disrupted (but not actin filaments in
peritubular myoid cells) (Hew et al., 1993b). Collectively,
these findings (Setchell and Waites, 1970; Hew et al.,
1993b; Wong et al., 2004, 2005a) thus illustrate that
although the BTB is one of the tightest blood-tissue
barriers, it is more susceptible to cadmium-induced
damage than the TJ barrier in microvessels located in
the interstitium, the blood-brain barrier, or the blood-
epididymal barrier, and cadmium does not disrupt actin
filaments in other tissues indiscriminately, but only at
the ES in the seminiferous epithelium.

Hew et al. (1993a) reported that cadmium at 1 mg/kg
b.wt. i.p. induced failure of spermiation in rats with
disrupted spermatid transport because elongated sper-
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matids remained embedded within the seminiferous ep-
ithelium in late-stage VIII and stages IX and X, imply-
ing that cadmium is disrupting the apical ES at the
Sertoli-spermatid interface, which is known to be crucial
to spermatid transport across the epithelium during the
epithelial cycle (Mruk and Cheng, 2004b). The possibil-
ity that the apical and basal ES are cellular targets of
cadmium in the testis was not pursued until almost 3
decades later, when we first reported that Sertoli cell
BTB dynamics were regulated by TGF-�3 (Lui et al.,
2001), which was mediated by p38 MAPK downstream.
The use of a specific p38 MAPK inhibitor, such as 4-[4-
(4-fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl]phenol
(SB202190), was shown to block the TGF-�3-induced
TJ permeability barrier disruption (Lui et al., 2003b).
Subsequent in vivo studies using the cadmium model,
which is known to disrupt the Sertoli cell TJ permeability
barrier in vitro (Janecki et al., 1992; Chung and Cheng,
2001) have shown that the cadmium-induced BTB disrup-
tion is associated with an activation of TGF-�3 and also an
activation of p38-MAPK (Lui et al., 2003c; Wong et al.,
2004). More important, the cadmium-induced BTB disrup-
tion can either be partially blocked and delayed with the
use of a p38-MAPK inhibitor, SB202190 (Lui et al.,
2003c), or it can be worsened with the use of the JNK
inhibitor dimethylaminopurine (which blocks the pro-
duction of �2-macroglobulin, a nonspecific protease in-
hibitor, in the seminiferous epithelium) (Wong et al.,
2005a). In addition, cadmium was shown to induce dis-
ruption of actin filament bundles at the basal ES by
electron microscopy (Wong et al., 2005a). Taken collec-
tively, these findings illustrate that the basal ES (a
testis-specific AJ type) at the BTB is one of the cellular
targets of cadmium-induced toxicity in the testis. These
findings are also in agreement with studies in epithelia
other than the testis, such as the small intestine, kidney,
liver, and skin, which imply that cell junctions are the
target of different classes of reproductive toxicants, in-
cluding cadmium (Fiorini et al., 2004; Zefferino et al.,
2008; Pinton et al., 2009; Choi et al., 2010; Li et al.,
2010). In addition, there is mounting evidence that both
AJ (and/or TJ) (Prozialeck and Lamar, 1999; Prozialeck,
2000; Prozialeck et al., 2003; Jacquillet et al., 2007;
Thompson et al., 2008; Siu et al., 2009b,c; Calabro et al.,
2011) and gap junction (Fukumoto et al., 2001; Jeon et
al., 2001; Guan et al., 2007; Tang et al., 2009; Vinken et
al., 2010) are targets of cadmium toxicity in multiple
epithelia in different organs, such as the kidney, heart,
liver, ovary, and testis.

It is noted that many cell adhesion molecules at cell
junctions are Ca2	-dependent proteins, such as E-cad-
herin and occludin, which are also integral membrane
proteins at the BTB (Cheng and Mruk, 2002). Using the
techniques of equilibrium microdialysis and circular di-
chroism spectroscopy to study the interactions of Cd2	

with E-cadherin, it was shown that Cd2	 bound to a
13-amino acid residue peptide corresponding to a puta-

tive Ca2	-binding motif of E-cadherin (Prozialeck and
Lamar, 1999), illustrating that Cd2	 interacts with the
Ca2	-binding sites in Ca2	-dependent E-cadherin,
thereby substituting Ca2	 in these cell adhesion mole-
cules. This, in turn, disrupts E-cadherin-based AJ in
epithelia and endothelia, consistent with the hypothesis
that E-cadherin may be a direct molecular target for
cadmium toxicity (Prozialeck, 2000). This finding also
explains earlier observations that short-term exposure
of rodents to cadmium led to hemorrhagic injury
(Parizek and Zahor, 1956; Wong et al., 2005a) because
Cd2	 blocks the function of Ca2	-dependent adhesion
molecules (e.g., cadherins, occludins) at the TJ permea-
bility barrier in microvessels, causing tissue hemor-
rhage in the interstitial tissue. In fact, based on mount-
ing evidence in the field, the vascular system has
recently been declared to be a target of metal toxicity,
including cadmium (Prozialeck et al., 2008). The notion
that Ca2	-dependent cell adhesion molecules (e.g., cad-
herins, occludins) are the target of cadmium toxicity is
also supported by the unusual vulnerability of the BTB
to cadmium toxicity with BTB disruption preceding mi-
crovessel damage in the interstitium by as much as 10 to
14 h (Wong et al., 2005a). Unlike the endothelial TJ that
confers barrier function in microvessels and capillaries
in which cadherin-based AJs are shielded behind the TJ
fibrils, which are constituted of Ca2	-independent cell
adhesion molecules (e.g., claudins; see Table 1) (Wong
and Cheng, 2005), the BTB is composed of coexisting TJ
and basal ES. Thus, cadherins [e.g., N-cadherin and
E-cadherin, which are localized at the BTB (Lee et al.,
2003, 2004)] are readily accessible by incoming cad-
mium. Yet cadmium must “work” its way through the
endothelial TJ barrier, perhaps by initially mediating its
disruptive effects via Ca2	-dependent TJ proteins (e.g.,
occludins) before it can “reach” cadherins in the AJ lying
behind the TJ to cause extensive damage, leading to
hemorrhage. This explains the time difference between
the disruption of the BTB and of the microvessels lo-
cated in the interstitium of the testis after cadmium
exposure (Setchell and Waites, 1970; Wong et al.,
2005a).

Recent studies have also demonstrated that the FAK/
occludin/ZO-1 protein complex at the BTB (Siu et al.,
2009c) is a putative target of cadmium toxicity (Siu et
al., 2009b). It is known that cadmium can perturb the
Sertoli cell TJ permeability barrier in vitro (Janecki et
al., 1992; Chung and Cheng, 2001). However, a knock-
down of FAK by RNAi in the Sertoli cell epithelium with
a functional TJ permeability barrier that mimics the
BTB in vivo can desensitize these cells to CdCl2 expo-
sure (Siu et al., 2009b). This effect is probably mediated
by the inability of the Sertoli cell to maintain the proper
phosphorylation status of the occludin/ZO-1 complex as
a result of FAK knockdown, altering the kinetics of
protein endocytosis and recycling because integral mem-
brane proteins (e.g., occludin) and adaptors (e.g., ZO-1)
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at the site became mislocalized, moving away from the
cell-cell interface and into the cell cytosol (Siu et al.,
2009b). These findings are also consistent with the con-
cept that cell adhesion molecules (e.g., E-cadherin) (Pro-
zialeck and Lamar, 1999; Prozialeck, 2000; Prozialeck et
al., 2002, 2003) and intercellular junction proteins (Fu-
kumoto et al., 2001; Jeon et al., 2001; Fiorini et al., 2004;
Thompson et al., 2008) are the target of cadmium toxic-
ity in multiple epithelia and endothelia including the
BTB.

5. Molecular Mechanisms of Cadmium-Induced Tes-
ticular Injury. Mounting evidence illustrates the im-
portance of environmental toxicant-induced oxidative
stress (e.g., induced by exposure to cadmium, BPA) in
mediating disruption of cell junctions, such as the TJ,
basal ES, desmosome and gap junctions, at the BTB that
leads to reproductive dysfunction (Wong and Cheng,
2011). Besides directly acting on enzymes (e.g., superox-
ide dismutase, catalase, glutathione peroxidase) that
modulate oxidative stress, toxicants (e.g., cadmium) can
also induce oxidative stress via changes in cytokines, as
well as mitogen-activated protein kinases (MAPK) (see
Fig. 9). For instance, cadmium is known to activate
TGF-�2 and -�3 and p-p38 MAPK in the testis before
extensive cellular damage can be detected in the semi-
niferous epithelium (Wong et al., 2004). In fact, an in-
crease in oxidative stress was seen in �80% of clinically
proven infertile men who had long-term exposure to
environmental toxicants (e.g., cadmium, smoking),
which are emerging as a major contributing factor in
male infertility (Kiziler et al., 2007; Tremellen, 2008;
Venkatesh et al., 2011). In addition, recent studies have
shown that flavonoids (antioxidants, such as genistein,
myricetin, and quercetin) can protect the intestinal TJ
barrier function from oxidative stress-induced barrier
disruption caused by inflammatory cytokines, enteric
bacteria, and chemicals (e.g., acetaldehyde) (Suzuki and
Hara, 2011), illustrating the damaging effects of oxida-
tive stress on TJ barrier function. In this context, it is of
interest to note that estrogens (or phytoestrogens) act as
scavengers of free radicals, protecting the testis and the
liver from oxidative stress-induced injury (Hamden et
al., 2008, 2009). Thus, the protective role of estrogens in
environmental toxicant-induced oxidative stress that
leads to testicular injury must be carefully evaluated.

Studies in the past decade have shown that an acti-
vation of phosphatidylinositol 3-kinase (PI3K), a lipid
kinase that activates PKB in the PI3K/PKB/mTOR
(mechanistic target of rapamycin, a Ser/Thr kinase) sig-
naling pathway is crucial to regulate cell growth, prolif-
eration, differentiation, apoptosis, and intracellular pro-
tein trafficking in multiple epithelia (Kwiatkowska,
2010; Cockcroft and Garner, 2011). In adult rat testes,
PI3K is localized intensely at the apical ES, as well as at
the basal ES, and it is activated during adjudin-induced
spermatid loss that mimics spermiation (Siu et al.,
2005). Emerging evidence in the field based on multiple

studies has shown that aberrant activation of PI-3K is
the hallmark of the oxidative stress-induced junction
disruption (Wong and Cheng, 2011) (Fig. 11). The acti-
vation of PI3K, such as during cadmium-induced oxida-
tive stress in the testis, can modulate the activity of
c-Src and/or FAK downstream (Fig. 11). Earlier studies
have illustrated that both of these nonreceptor protein
tyrosine kinase are localized to the BTB (Lee and Cheng,
2005; Siu et al., 2009c), FAK being a component of the
occludin-ZO-1 adhesion protein complex (Siu et al.,
2009b,c) and c-Src structurally interacts with desmog-
lein-2/desmocollin-2 adhesion (Lie et al., 2010b) and con-
nexin-43/plakophilin-2 complexes (Li et al., 2009b) at
the BTB. Thus, it is likely that both c-Src and FAK are
being used to maintain the proper phosphorylation sta-
tus of integral membrane proteins, such as occludin, at
the site (Cheng and Mruk, 2009b; Siu et al., 2009b). It is
known that occludins that are assembled into TJ fi-
brils must be properly phosphorylated at Ser, Thr, and
Tyr residues (Sakakibara et al., 1997; Tsukamoto and
Nigam, 1999), and changes in their phosphorylation
status would move occludins away from TJ fibrils and
toward the basolateral region of epithelial cells (Cord-
enonsi et al., 1997; Sakakibara et al., 1997), destabi-
lizing cell adhesion at the BTB and leading to its dis-
ruption. In vitro studies using Sertoli cells that mimic
the BTB in vivo have shown that treatment of these cells
with either BPA or cadmium indeed inactivated c-Src (Li
et al., 2009d) or FAK (Siu et al., 2009c), respectively, and
these changes enhanced protein endocytosis at the Ser-
toli-Sertoli cell interface, moving integral membrane
proteins (e.g., occludin, N-cadherin) away from the cell
surface and into the cell cytosol, destabilizing the TJ
barrier and resulting in its disruption (Li et al., 2009d;
Siu et al., 2009c).

C. Regulation of Blood-Testis Barrier Dynamics during
Spermatogenesis: a Model Based on Studies
Using Cadmium

On the basis of recent studies in the field that were
discussed above, cadmium-induced testicular injury is
initially mediated via its direct effects on the activation
of cytokines [e.g., TGF-�3] and/or the induction of oxi-
dative stress in Sertoli cells at the BTB. As discussed in
section IV.D, cytokines play a high-level commanding
role in regulating BTB function, and this can also mod-
ulate cellular oxidative stress (see Fig. 11). This, in turn,
may activate either FAK- or the PI3K-c-Src-PAR-based
signaling pathway (Fig. 11). At the molecular level, ac-
tivated FAK or c-Src will alter the phosphorylation sta-
tus of adhesion protein complexes at the BTB, which can
accelerate endocytic vesicle-mediated intracellular traf-
ficking events aided by polarity proteins (e.g., 14-3-3,
PAR6, Cdc42). The net result of these changes destabi-
lizes cell adhesion at the BTB, leading to its disruption,
and more cadmium can make its way into the apical
compartment to induce additional activation of FAK and
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c-Src at the apical ES, leading to germ cell loss from the
epithelium. This thus induces male reproductive dys-
function as a result of premature germ cell loss, leading
to reduced sperm count, poor semen quality, and even-
tually male infertility. In short, the model depicted in
Fig. 11 provides a detailed roadmap for the intervention
of cadmium toxicity in the testis by targeting different
potential candidate molecules, such as FAK, c-Src, and
polarity proteins.

VI. Drug Transporters, Blood-Testis Barrier
Function, and Male Contraception

A. Introduction

As noted above, the BTB is a unique ultrastructure in
the seminiferous epithelium, critical to spermatogene-
sis, particularly for the differentiation of spermatogonia

into spermatocytes to initiate cell cycle progression that
leads to meiosis (Mruk et al., 2008; Lie et al., 2009a), the
reinitiation of spermatogenesis after toxicant-induced
aspermatogenesis and infertility (Mok et al., 2011a) and
spermiogenesis (Cheng and Mruk, 2010a; O’Donnell et
al., 2011). In addition, studies from different transgenic
mouse models, such as AR-KO mice or Sertoli cell-selec-
tive AR KO mice have demonstrated that loss of AR in
Sertoli cells that leads to infertility is manifested by
meiotic arrest, which is accompanied by a disruption of
the BTB (Meng et al., 2005; Verhoeven et al., 2008, 2010;
Willems et al., 2010a). Collectively, these findings illus-
trate the significance of the BTB in meiosis and spermi-
ogenesis. However, the unusual features of the BTB,
which make it one of the tightest blood-tissue barriers in
the mammalian body, also pose a major obstacle in de-

FIG. 11. A schematic drawing illustrating the molecular mechanism underlying BTB disruption induced by a toxicant (e.g., cadmium, BPA). Left,
seminiferous epithelium of a normal tubule with an intact BTB. However, toxicants enter the Sertoli cells not at the BTB but instead at the plasma
membrane via junction-associated “pores” and/or drug transporters. These toxicants can induce oxidative stress, which, in turn, mediates their effects
on kinases (e.g., FAK, c-Src) causing unwanted protein endocytosis, which can destabilize the BTB. Alternatively, toxicants can also activate MAPK
(e.g., p38 MAPK, ERK), which can also induce unwanted protein endocytosis. These effects can also be mediated via changes in the homeostasis of the
Eps8 and Arp2/3 protein complex, compromising the optimal endocytic vesicle-mediated protein trafficking events, destabilizing cell adhesion at the
BTB. The net result leads to a disruption of the BTB, which in turn affects germ cell adhesion in the basal and apical compartment of the epithelium,
causing exfoliation of germ cells. These findings also illustrate potential targets that can be tackled to therapeutically manage toxicant-induced BTB
disruption and the subsequent male reproductive dysfunction (e.g., reduced sperm count). For instance, the unwanted acceleration of protein
endocytosis induced by cadmium or BPA can be prevented by modifying the action of polarity proteins (e.g., 14-3-3, PAR3, PAR6) and/or Arp3/3
complex to stabilize the BTB integrity. Functional studies can now be designed based on this hypothetical model to block or to therapeutically manage
toxicant-induced BTB disruption.

BLOOD-TESTIS BARRIER AND MALE CONTRACEPTION 49



livering male contraceptives, in particular drugs that
exert their effects on postmeiotic spermatids that are
sequestered behind the BTB. The BTB also restricts the
delivery of therapeutic drugs to the seminiferous epithe-
lium, such as for treatment of germ cell tumors, even
though there are some advances using adjuvant chemo-
therapy in recent years (Mruk and Cheng, 2008; Wong et
al., 2008b; Diamantopoulos and Kortsaris, 2010; Mok et
al., 2011b; Powles, 2011). For instance, adjudin was
shown to be a highly potent male contraceptive that
disrupts germ cell adhesion, most notably elongating/
elongated spermatids, to be followed by round spermato-
cytes and spermatocytes, causing transient infertility
(Cheng et al., 2001, 2005; Mruk and Cheng, 2004a;
Mruk, 2008; Cheng and Mruk, 2010b). However, less
than 1% of the drug administered to adult rats by ga-
vage could reach the testis (Cheng et al., 2005), thereby
narrowing the margin between efficacy and toxicity.
Moreover, an earlier study in rats to assess the perme-
ability of the BTB to different test chemicals and drugs
(e.g., salicylic acid, barbiturates, sulfonamides) have
shown that the passage of nonelectrolytes and acidic
drugs across the barrier is dependent on their molecular
sizes and partition coefficients, respectively (Okumura
et al., 1975). Thus, a thorough understanding of the
biology and regulation of drug transport across the BTB
is crucial to develop safe, reversible, and dependable
male contraceptives.

B. Background and Classification of Drug
Transporters, Their Function, and Cellular
Distribution in the Testis

Drug transporters are required for a therapeutic drug
(e.g., male contraceptive) and/or an environmental toxi-
cant (e.g., cadmium, bisphenol A) to pass through a
blood-tissue barrier (e.g., the BTB) (Dallas et al., 2006;
Miller et al., 2008; Hartz and Bauer, 2010; Kis et al.,
2010; Burger et al., 2011; Mruk et al., 2011; Niemi et al.,
2011; Su et al., 2011a), unless its entry is mediated
through a ligand-receptor mechanism (Mruk and Cheng,
2008; Wong et al., 2008b). Drug transporters are best
studied in cancer cells, because many tumors display
resistance to different classes of chemotherapeutic
drugs. This is because drug transporters in cancer cells
can prevent the entry of therapeutic drugs that are
“harmful” to these cancer cells and/or pump “harmful”
chemotherapeutic drugs out of cells (i.e., eliminating
therapeutic drugs from a growing tumor) (Leslie et al.,
2005; Löscher and Potschka, 2005; Miller et al., 2008;
Poguntke et al., 2010; Robey et al., 2010; Shukla et al.,
2011). Subsequent studies have shown that normal cells
and tissues, such as the brain, liver, and testes (includ-
ing Sertoli cells) and different germ cells (including sper-
matogonia, spermatocytes, developing spermatids) ex-
press high levels of different drug transporters (Leslie et
al., 2005; Löscher and Potschka, 2005; Koshiba et al.,
2008; Setchell, 2008; He et al., 2009; Mruk et al., 2011;

Su et al., 2011a). Besides drugs (e.g., male contracep-
tives), cations, anions, electrolytes, steroids (e.g., cor-
ticosteroids), small biomolecules, and even xenobiot-
ics, toxicants and certain sex hormones (e.g.,
estrogens, androgens) can enter or be eliminated from a
cell (e.g., Sertoli cell) via drug transporters (Löscher and
Potschka, 2005; Cérec et al., 2007; Koshiba et al., 2008;
Setchell, 2008; Su et al., 2011a), illustrating their sig-
nificance in conferring a unique microenvironment in
the apical compartment behind the BTB for meiosis and
postmeiotic spermatid development during spermiogen-
esis. Approximately 60% of the �800 drug transporters
known to exist to date in mammalian cells and tissues
are integral membrane proteins (Rochat, 2009; Hosoya
and Tachikawa, 2011; Mruk et al., 2011). Drug trans-
porters can be categorized into 1) ATP-binding cassette
(ABC) transporters (i.e., ATP-dependent drug transport-
ers) and 2) solute carrier (SLC) transporters, the trans-
port function of which does not require the consumption
of ATP (Löscher and Potschka, 2005; Su et al., 2011a).
Drug transporters can also be broadly classified as ei-
ther efflux or influx pumps that transport drugs out of a
cell (or prevent drugs from entering altogether) or into a
cell, respectively.

1. ATP-Binding Cassette Drug Transporters in the
Testis. All ABC drug transporters found in the testis
are efflux pumps. These include 1) multidrug resistance
proteins (MDRs; e.g., P-glycoprotein, also known as
MDR1), 2) multidrug resistance-related proteins (MRP;
e.g., MRP1), and 3) breast cancer resistance protein
(BCRP, also known as ABCG2).

a. Multidrug resistance proteins. P-Glycoprotein (also
known as MDR1 or ABCB1) is the best studied MDR in
the testis. It is the product of the MDR1 gene in humans,
and of mdr1a (or Abcb1a) and mdr1b (or Abcb1b) genes
in mice and rats (Setchell, 2008). P-Glycoprotein is an
ABC transporter. This efflux pump displays drug resis-
tance to a wide variety of drugs and compounds in can-
cer and normal cells, including Sertoli cells at the BTB
(Miller et al., 2008; Aller et al., 2009; Kis et al., 2010;
Mruk et al., 2011). In mammalian testes, P-glycoprotein
is highly expressed by Sertoli cells, Leydig cells, macro-
phages, peritubular myoid cells, spermatogonia, and
late spermatids, but it is not expressed by spermatocytes
and round or early spermatids (Trezise et al., 1992;
Melaine et al., 2002; Bart et al., 2004; Su et al., 2009). In
studies using the mdr1a(�/�) and mdr1b(�/�) dou-
ble-KO mice versus wild-type mice, P-glycoprotein was
shown to actively pump the anti-Parkinson drug budip-
ine out of the brain, but there was a 3.1-fold higher
retention of budipine in the cerebrum of KO mice versus
wild-type (Uhr et al., 2005). It is noteworthy that in
these mdr1a(�/�) and mdr1b(�/�) double-KO mice, the
penetration of steroids (e.g., aldosterone, cortisol, corti-
costerone, and progesterone) was also significantly en-
hanced in the testis versus wild-type animals (Uhr et al.,
2002). However, the entry of cortisol (Karssen et al.,
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2001) or prednisolone (Karssen et al., 2002) into the
testis was unaffected in mdr1a(�/�) single-KO mice,
illustrating that mdr1b alone can supersede the lost
function of the mdr1a gene. These findings also illus-
trate that the BTB constituted by Sertoli cells deter-
mines the steroidal microenvironment, such as how
much steroid is available in the apical compartment for
meiosis and spermiogenesis. Recent studies by immuno-
histochemistry and dual-labeled immunofluorescence
analysis have shown that P-glycoprotein localized most
abundantly to the BTB in the seminiferous epithelium,
as well as to the apical ES, in all stages of the epithelial
cycle in the rat testis (Su et al., 2009). P-Glycoprotein
also colocalizes with TJ (e.g., occludin, claudin-11,
JAM-A, ZO-1) and basal ES (e.g., N-cadherin, �-catenin)
proteins in the seminiferous epithelium in adult rat
testes in vivo and also at the Sertoli-Sertoli cell interface
in vitro in cells that had a functional TJ barrier (Su et
al., 2009). After treatment of adult rats with adjudin to
induce germ cell loss via a disruption of the apical ES
(Cheng et al., 2005; Mruk et al., 2008; Cheng and Mruk,
2010b; Mok et al., 2011b), a transient surge in the ex-
pression of P-glycoprotein was detected by immunoblot
analysis (Su et al., 2009). Such an increase in P-glyco-
protein expression is probably needed to pump adjudin
(or its metabolite) out of the testis to avoid damage to
germ cell adhesion in the epithelium. In addition, it was
shown that P-glycoprotein interacted with occludin,
claudin-11, and JAM-A at the BTB by coimmunoprecipi-
tation. More importantly, this protein-protein interaction
was induced significantly after treatment of rats with ad-
judin at the time of germ cell loss, most notably elongating/
elongated spermatids, from the epithelium in the apical
compartment (Su et al., 2009). The molecular mechanism
underlying this increase in association between P-glyco-
protein and occludin-, claudin-11-, and JAM-A-based ad-
hesion protein complexes at the BTB is not known, but it
may be used to “close up” physiological “pores” at the BTB
to disallow further entry of adjudin into the apical com-
partment to disrupt apical ES function.

b. Multidrug resistance-related proteins. MRP is an-
other efflux transporter subfamily of the ABC trans-
porter, consisting of MRP1 (ABCC1), MRP2 (ABCC2),
and MRP3 (ABCC3), found in mammalian cells, as well
as in plants and bacteria (Rappa et al., 1999; Pérez-
Tomás, 2006; Paumi et al., 2009; Gu and Manautou,
2010; Wanke and Kolukisaoglu, 2010). MRP1 was found
to be expressed at relatively high levels in the mouse
testis versus other organs. It is detected in Sertoli cells,
spermatogonia, round and elongating/elongated sper-
matids, and even spermatozoa (Stride et al., 1996), but
mostly in Sertoli cells and Leydig cells of humans and
mice (Flens et al., 1996). MRP1 is the best studied MRP
in Sertoli cells, and it is known to transport a wide range
of hydrophobic xenobiotics, hydrophilic organic anion
conjugates, natural compounds (e.g., glutathione, gluc-
uronide), and steroids (Setchell, 2008) in particular sul-

fated estrogens (e.g., estrone 3-sulate) in the presence of
glutathione (Qian et al., 2001), illustrating that this
efflux pump at the BTB plays a role in determining the
levels of estrogens in the apical compartment necessary
for spermiogenesis. Indeed, MRP1(�/�) mice displayed
a significant disruption of the seminiferous epithelium
after failing to pump the anticancer drug etoposide phos-
phate out of the epithelium, with tubules becoming de-
void of almost all germ cells except spermatogonia and
early spermatocytes by day 7 after administration (Wi-
jnholds et al., 1998). In addition, MRP1 transports
heavy metals (such as the xenobiotics sodium arsenate
and antimony potassium tartrate) out of epithelial cells,
as shown in MRP1-deficient mice (Lorico et al., 2002),
illustrating it can protect the testis against infiltration
of toxicants to disrupt spermatogenesis. In short, these
studies illustrate the protective role of MRPs at the BTB
to safeguard meiosis and spermiogenesis that occurs in
the apical compartment of the seminiferous epithelium
behind the BTB.

c. Breast cancer resistance protein. As its name im-
plies, BCRP, a multidrug resistance ABC transporter,
was initially found in breast cancer cells (Robey et al.,
2009, 2010; Poguntke et al., 2010). However, it is also a
crucial drug efflux pump that limits the penetration of
different classes of drugs (Kodaira et al., 2010) or xeno-
biotics (Enokizono et al., 2008) into the testis. Recent
studies have shown that BCRP also mediates renal
urate secretion (i.e., pumping uric acid out of the epithe-
lial cells into urine), and it is a target to manage gout
disease (VanItallie, 2010). In the testis, BCRP was
found in Sertoli cells, consistent with its localization
at the BTB, as well as in round and elongating sper-
matids, peritubular myoid cells, and endothelial cells
of microvessels in the interstitium (Bart et al., 2004).
It is noteworthy that BCRP also limits the access of
phytoestrogens into the testis in rodents, because
higher concentrations of daidzein and genistein, but
not coumestrol, were found to penetrate the testis in
BCRP(�/�) mice versus wild-type animals (Enokizono
et al., 2007). These findings thus illustrate that BCRP
may play a significant role in determining the amount of
phytoestrogens and/or estrogens that can enter the api-
cal compartment behind the BTB to modulate meiosis
and spermiogenesis, because estrogens are crucial to
these events during spermatogenesis (see section
IV.B.2). In addition to ABCG2, ABCG4 (an ABC trans-
porter in human brain) is also found in the mouse brain
(Koshiba et al., 2007), and it is highly expressed in the
testis and implicated in the transport of sex steroids
across the BTB (Koshiba et al., 2008), perhaps maintain-
ing the proper testosterone to estrogen ratio at the BTB
microenvironment to regulate junction restructuring
(Fig. 9). This possibility should be vigorously investi-
gated in future studies.

2. Solute Carrier Transporters. The SLC transporter
superfamily consists of at least 47 SLC subfamilies (e.g.,

BLOOD-TESTIS BARRIER AND MALE CONTRACEPTION 51



zinc efflux, metal ion transporter, foliate transporter)
(Hediger et al., 2004), many of which are efflux pumps.
However, the 1) SLC21/SLCO) [i.e., organic anion trans-
porting polypeptide (OATP)] and 2) SLC22 [i.e., organic
anion transporter (OAT)/organic cation transporter (OCT)/
organic cation/carnitine transporter (OCTN)] subfamilies
are two of the best studied transporters (both are influx
pumps) to date, which includes studies in the testis
(Kalliokoski and Niemi, 2009; Kis et al., 2010; Klaassen
and Aleksunes, 2010; Su et al., 2011a), so that a brief
discussion is provided herein. Transport of drugs across
the cell membrane using SLC transporters does not re-
quire ATP, because the energy required for transport is
derived from a gradient created by a primary active
transport system, such as the electrochemical potential
difference created by pumping ions out of a cell, or a
glutathione electrochemical gradient, such as in oocytes)
(Li et al., 2000), as well as via “pores” found in SLC
transporters (e.g., OATs, OATPs) (Meier-Abt et al.,
2005; Carl et al., 2010; Mruk et al., 2011).

a. SLC21/SLC (organic anion transporting polypep-
tide) transporters. The OATP subfamily has at least 10
and 15 isoforms found in humans and rodents, respec-
tively, and most of them are influx pumps responsible
for drug entry into cells (Hediger et al., 2004; Kalliokoski
and Niemi, 2009; Fahrmayr et al., 2010). However,
Oatp2 can mediate bidirectional transport of organic
anions (Li et al., 2000). Oatp6b1 (Slco6b1, Tst1) and
Oatp6c1 (Slco6c1, Tst2) are two testis-specific influx
pumps expressed only by Sertoli cells, spermatogonia,
and Leydig cells (Suzuki et al., 2003). Oatp3 (Slc21a7) is
highly expressed by Sertoli cells in the testis, most no-
tably at the BTB (Augustine et al., 2005; Su et al.,
2011b); subsequent studies have shown that its expres-
sion at the BTB in the seminiferous epithelium is stage-
specific, being highest at stages VII to X and colocalizing
with putative BTB proteins (e.g., claudin-11, JAM-A,
ZO-1, N-cadherin, �-catenin) (Su et al., 2011b). How-
ever, Oatp3 is also found at the apical ES and is in-
tensely associated with developing elongating/elongated
spermatids at stages VII to VIII of the epithelial cycle,
colocalizing with apical ES proteins, laminin-�3, -�3,
and -�3 chains (Su et al., 2011b). In addition, Oatp3
structurally interacts with ZO-1, N-cadherin, and
�-catenin at the BTB, and this association is signifi-
cantly induced after exposure of adult rats to adjudin,
when germ cell adhesion is being disrupted (Su et al.,
2009). These findings thus illustrate that this drug
transporter is involved in regulating how much drug can
enter the microenvironment in the apical compartment
behind the BTB. Thus, even if a toxicant or other drug is
present in this microenvironment, developing germ cells
can determine their “fate” by pumping unwanted drugs
“in” or “out” to avoid adverse effects.

b. SLC22 transporters (organic anion transporter/or-
ganic cation transporter/organic cation/carnitine trans-
porter). This subfamily is composed of three classes of

transporters of OATs, OCTs, and OCTNs. OCT1 (Slc22a1),
OCT3 (Slc22a3), OCTN1 (Slc22a4), OCTN2 (Slc22a5),
and OCTN3 (Slc22a6) are expressed by Sertoli cells in
the testis of either rodents or humans (Koepsell et al.,
2007; Klaassen and Aleksunes, 2010), illustrating their
likely involvement in BTB function to regulate drug
entry into the testis. OCTN2 and OCTN3, both L-carni-
tine transporters, are also highly expressed in sperma-
tozoa, particularly in the distal and proximal portion of
the sperm tail, possibly involved in L-carnitine trans-
port, which is critical for sperm maturation and metab-
olism during the epididymal transit (Kobayashi et al.,
2007). A recent study has identified Oat6 (Slc22a20) to
be an influx drug transporter specifically expressed by
Sertoli cells (and not Leydig cells or spermatids), and it
was shown to mediate the transport of estrone sulfate
and dehydroepiandrosterone sulfate across a Chinese
hamster ovary cell line stably expressing Oat6
(Schnabolk et al., 2010), illustrating its possible involve-
ment in regulating the amount of steroids in the mi-
croenvironment of the apical ES behind the BTB.

C. Are Drug Transporters the “Obstacles” of Male
Contraceptive Development?

1. Introduction. Unlike hormonal contraception (e.g.,
testosterone), which exerts its effects to disrupt the hypotha-
lamic-pituitary-testicular axis (Page et al., 2008; Huhtani-
emi, 2010; Wang and Swerdloff, 2010), or approaches that
target the epididymis (O’Rand et al., 2007; Blithe, 2008; Kopf,
2008; Mruk, 2008; Sipilä et al., 2009), the development of
nonhormonal male contraceptives, such as adjudin (Cheng et
al., 2005; Cheng and Mruk, 2010b), bisdichloroacetyl-
diamines (Hogarth and Griswold, 2010; Amory et al., 2011;
Hogarth et al., 2011), gamendazole (Tash et al., 2008a,b),
indenopyridine CDB-4022 ([4aRS,5SR,9bRS]2-ethyl-2,3,4,
4a,5,9b-hexahydro-8-iodo-7-methyl-5-[4-carbomethoxyphe-
nyl]-1H-indeno-[1,2-c]-pyridine-hydrochloride, also known as
RTI-4587-073) (Hild et al., 2004, 2007a,b; Koduri et al., 2008),
and immunological approaches that target sperm-specific
postmeiotic germ cell antigens (Suri, 2005; Mruk, 2008;
McLaughlin and Aitken, 2011), requires a better understand-
ing of the BTB because these compounds exert their effects,
at least in part, behind the BTB in the apical compartment of
the seminiferous epithelium (Mruk et al., 2008; Cheng and
Mruk, 2010b; Mok et al., 2011b). As described above, the BTB
largely dictates how much drug can enter the apical compart-
ment of the seminiferous epithelium to exert its effects be-
hind the immunological barrier. As briefly reviewed herein,
drug transporters found in the testis pose a major hurdle in
our efforts to develop a safe, effective, and reversible male
contraceptive. It seems that “nature” has also installed an
almost “bullet-proof” system in the testis to protect spermato-
genesis from being disrupted by unwanted toxicants and/or
compounds in which drug transporters are not limited to
Sertoli cells that create the BTB; they are also found at
relatively high levels in germ cells outside of the BTB (e.g.,
spermatogonia, early spermatocytes), as well as behind the
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BTB (e.g., pachytene spermatocytes, spermatids, spermato-
zoa). Thus, even if drugs can somehow get access to the
developing germ cells in the apical compartment by passing
through the BTB, they can still be actively “pumped out” to
protect spermatogenesis. Fortunately, several of the com-
pounds that are being actively investigated in the field and
that can possibly serve as potential nonhormonal contracep-
tives (e.g., adjudin, CDB-4022, gamendazole, bisdichloro-
acetyldiamines) are very potent molecules. For instance, sub-
microgram quantities of these compounds are needed to
disrupt spermatogenesis, such as by damaging germ cell ad-
hesion in the epithelium (e.g., adjudin, CDB-4022) and germ
cell metabolism. Nonetheless, if these compounds can pene-
trate the Sertoli cell BTB efficiently to exert their effects in
the apical compartment locally to perturb spermatogenesis,
this, at least in principle, should be a relatively safe contra-
ceptive approach, because the hypothalamus-pituitary-
testicular axis is not affected and changes in secondary sexual
characteristics (e.g., skeletal muscle mass/tone, sex drive),
bone density, and blood pressure should be minimal, if any.

2. Entry of Male Contraceptives into the Apical Com-
partment behind the Blood-Testis Barrier. As dis-
cussed above, drug transporters play a very critical role
in protecting the testes from xenobiotics, environmental
toxicants, drugs, and preventing potential male contra-
ceptives from damaging spermatogenesis, including
1) spermatogonial self-renewal and differentiation and
germ cell cycle progression, these events occurring out-
side the BTB because spermatogonia and early sper-
matocytes are equipped with different efflux and influx
pumps; 2) meiosis; 3) spermiogenesis; and 4) sper-
miation. Events 2 through 4 take place behind the BTB
in the apical compartment of the epithelium. However, it
was not known until recently whether any of the poten-
tial male contraceptives under development indeed pen-
etrate the BTB using one or several of the dozens of drug
transporters that are found in Sertoli cells (Mruk and
Cheng, 2008; Mruk et al., 2011; Su et al., 2011a). It was
investigated whether Oatp3 alone (an influx pump) or in
combination with other SLC transporters (influx pumps)
would regulate the entry of adjudin from the basal to the
apical compartment across the Sertoli cell BTB using an
in vitro system that mimics the BTB in vivo (Grima et
al., 1992; Janecki et al., 1992; Okanlawon and Dym,
1996). These SLC transporters included the following:

1. Slc22a5 (also known as OCTN2, involved in the
transport of carnitine and organic cations),

2. Slco6b1 (also known as testis-specific transport-
er-1 or gonad-specific transporter-1, implicated
in Schwann cell development and involved in the
transport of dehydroepiandrosterone sulfate, sex
steroids and thyroid hormones), and

3. Slco6c1 (also known as testis-specific transporter-2
or gonad-specific transporter-2, involved in the
transport of thyroxine, taurocholic acid, dehydro-
epiandrosterone, which is highly expressed by Ser-

toli cells in the testis (Collarini et al., 1992; Mizuno
et al., 2003; Suzuki et al., 2003; Augustine et al.,
2005; Ueno et al., 2010) all of which are known to
be involved in drug transport in epithelia under
normal and pathological conditions (Rochat, 2009;
Kis et al., 2010; Klaassen and Aleksunes, 2010)]

It was shown that when [3H]adjudin was placed in the
basal compartment of the bicameral unit, it was capable
of traversing the Sertoli cell epithelium (an intact TJ-
permeability barrier was established in these cultures
when barrier function was assessed by quantifying
transepithelial electrical resistance across the epithe-
lium) (see Fig. 6) and reaching the apical compartment
(Su et al., 2011b). More importantly, a 70% knockdown
of Oatp3 by RNAi, on the basis of immunoblot analysis,
could significantly reduce, by �30%, the amount of
[3H]adjudin reaching the apical compartment versus
controls in which Sertoli cells were transfected with
nontargeting control siRNA duplexes. When all four in-
flux pumps, namely Oatp3, Slc22a5, Slco6b1, and
Slco6c1, were knocked down by RNAi, the amount of
[3H]adjudin that reached the apical compartment was
reduced by �70% (Su et al., 2011b). These findings are
significant, because they have demonstrated that influx
transporters mediate the entry of a male contraceptive
(e.g., adjudin) beyond the BTB into the apical compart-
ment. Thus, much research is needed to understand the
relationship between influx/efflux pumps and BTB re-
structuring and whether drug transporters regulate
drug entry into the apical compartment via the TJ per-
meability barrier, as well as by other mechanism(s).

D. Drug Transporters and Blood-Testis Barrier
Dynamics: Recent Advances

As discussed in sections IV.B and IV.C, estrogens,
androgens, and/or their analogs (e.g., phytoestrogens)
are substrates of several drug transporters, and they can
be transported “into” and “out” of the apical compart-
ment , illustrating that the combined action of influx and
efflux pumps can determine, at least in part, the relative
concentrations of estrogens and androgens in the mi-
croenvironment near the BTB, such as in the apical and
basal compartment. This concept is critical in light of
earlier observations that androgens promote (Janecki et
al., 1992; Chung and Cheng, 2001; Meng et al., 2005;
Wang et al., 2006; Siu et al., 2009b; McCabe et al., 2010;
Xiao et al., 2011) and estrogens perturb (Cavicchia et al.,
1996; Li et al., 2009d, 2010) Sertoli cell BTB integrity in
in vitro and in vivo studies. However, as briefly summa-
rized and discussed herein, studies investigating the
transport of steroids using drug transporters are limited
to sulfated estrogens, DHEA, and others; further inves-
tigation must assess whether estradiol-17�, testoster-
one, and/or dihydrotestosterone can penetrate the BTB
equally well using drug pumps. It is noted that in rats,
the transit of preleptotene spermatocytes across the

BLOOD-TESTIS BARRIER AND MALE CONTRACEPTION 53



BTB that occurs at stage VIII of the epithelial cycle is
critical for cell cycle progression and meiosis (Parvinen,
1982; Hess and de Franca, 2008; Lie et al., 2009a). Thus,
primary spermatocytes can prepare themselves (e.g., di-
akinesis) for meiosis I and II to take place at stage XIV
of the epithelial cycle, to be followed by postmeiotic
spermatid development, and all these events occur in an
immune-privileged site (i.e., the apical compartment)
behind the BTB, which requires the contribution of both
estrogens and androgens, among others, such as cyto-
kines and polarity proteins (Wong and Cheng, 2009;
Cheng et al., 2011a), to regulate these events (de Kretser
and Kerr, 1988; Simpson et al., 2000; O’Donnell et al.,
2001, 2011; McLachlan et al., 2002; Carreau and Hess,
2010; Carreau et al., 2010). The recent findings that
local estrogen and androgen levels can be efficiently
managed by drug transporters and also via the action of
aromatase thus illustrate that androgen (or a proper
ratio of androgen/estrogen regulated by drug transport-
ers at different stages of the epithelial cycle such as at a
ratio of androgen/estrogen �1) in the microenvironment
above the preleptotene spermatocytes in transit across
the BTB could assist in the assembly of TJ-fibrils to
establish a “new” BTB, whereas estrogen (at a ratio of
androgen/estrogen �1) can exert its effects to compro-
mise the “old” BTB at the site beneath spermatocytes in
transit, combined with the actions of cytokines and po-
larity proteins (e.g., 14-3-3, PAR6) to facilitate endocy-
tosis and transcytosis of integral membrane proteins at
the site, disassembling the TJ fibrils (see Fig. 9). As
such, the immunological barrier can be maintained dur-
ing the transit of spermatocytes at the BTB even though
these cells are connected in clones by intercellular
bridges (Fawcett et al., 1959; Fawcett, 1961; Weber and
Russell, 1987; Tres et al., 1996; Kierszenbaum, 2002;
Hamer et al., 2003; Greenbaum et al., 2006; Chang et al.,
2010; Hermo et al., 2010).

VII. Conclusion, Outstanding Questions, and
Future Perspectives

Herein, we presented a comprehensive overview on
the structure, function, and regulation of the BTB and
its involvement in different cellular events during sper-
matogenesis, such as spermatogonial differentiation,
initiation of meiosis, or reinitiation of spermatogenesis
after environmental toxicant-induced aspermatogen-
esis. We have also highlighted in different sections re-
garding the specific areas of research that deserve at-
tention by investigators in future studies. We also
present two important hypothetical models; one in Fig. 9
that details the current concept and molecular events of
BTB restructuring to accommodate the transit of prelep-
totene spermatocytes at stage VIII of the epithelial cy-
cle, where the integrity of the immunological barrier can
be maintained. This model also reveals multiple new
targets for male contraceptive development. For in-

stance, if endocytic vesicle-mediated protein trafficking
events are perturbed, preleptotene spermatocytes will
fail to enter the apical compartment for the occurrence of
meiosis I and II, shutting down spermatogenesis with-
out any interference to the hypothalamic-pituitary-tes-
ticular axis, minimizing the risk of side effects, such as
boss loss, muscular atrophy, hypertension, and second-
ary sexual characteristics in men. Of course, this ap-
proach will require a better understanding of drug
transport mechanisms at the BTB, so that a drug (e.g., a
small-molecule inhibitor of clathrin, caveolin-1, or a crit-
ical endosome component) can be targeted to the testis
via a selected influx pump. The other model shown in
Fig. 11 summarizes the current findings in the field
underlying the molecular mechanisms of cadmium-in-
duced testicular injury or BPA-induced BTB disruption
in immature mammals. This model not only provides a
new approach to manage cadmium- or toxicant-induced
reproductive dysfunction in men, it also illustrates new
candidate molecules to induce male infertility for con-
traceptive development. For instance, small-molecule
inhibitors can be used to block the function of FAK,
lessening (or even blocking) the toxicity of cadmium to
the BTB, preventing the entry of cadmium to the apical
compartment to disrupt germ cell adhesion. This ap-
proach can also prevent the entry of preleptotene sper-
matocytes into the apical compartment for further de-
velopment, thereby disrupting spermatogenesis that
leads to infertility. However, more resources are re-
quired to advance our current state of research in this
rapidly developing field.

As a final note, there are major advances in the field
regarding the delivery of drugs behind other blood-tis-
sue barriers, in particular the blood-brain barrier, such
as antiviral drugs or chemotherapeutic drugs, using
nanotechnology for treatment of HIV/AIDS and cancer,
respectively (Destache, 2009; Hartz and Bauer, 2010;
Wong et al., 2010c; Invernici et al., 2011; Malam et al.,
2011; Roger et al., 2011). Information obtained from
these studies can possibly be applied to the delivery of
male contraceptives behind the BTB to exert their ef-
fects in the immune-privileged adluminal compartment,
which should be carefully evaluated in future studies.
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Guan K, Wagner S, Unsöld B, Maier LS, Kaiser D, Hemmerlein B, Nayernia K,
Engel W, and Hasenfuss G (2007) Generation of functional cardiomyocytes from
adult mouse spermatogonial stem cells. Circ Res 100:1615–1625.

Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223:14–26.
Guazzone VA, Jacobo P, Theas MS, and Lustig L (2009) Cytokines and chemokines

in testicular inflammation: A brief review. Microsc Res Tech 72:620–628.
Gumbiner BM (2000) Regulation of cadherin adhesive activity. J Cell Biol 148:399–

404.
Haeusgen W, Herdegen T, and Waetzig V (2011) The bottleneck of JNK signaling:

molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol
90:536–544.

Hamden K, Carreau S, Ayadi F, Masmoudi H, and El Feki A (2009) Inhibitory effect
of estrogens, phytoestrogens, and caloric restriction on oxidative stress and
hepato-toxicity in aged rats. Biomed Environ Sci 22:381–387.

Hamden K, Silandre D, Delalande C, Elfeki A, and Carreau S (2008) Protective
effects of estrogens and caloric restriction during aging on various rat testis
parameters. Asian J Androl 10:837–845.

Hameed S, Jayasena CN, and Dhillo WS (2011) Kisspeptin and fertility. J Endocri-
nol 208:97–105.

Hamer G, Roepers-Gajadien HL, Gademan IS, Kal HB, and De Rooij DG (2003)
Intercellular bridges and apoptosis in clones of male germ cells. Int J Androl
26:348–353.

Hansen CG and Nichols BJ (2010) Exploring the caves: cavins, caveolins and cave-
olae. Trends Cell Biol 20:177–186.

BLOOD-TESTIS BARRIER AND MALE CONTRACEPTION 57



Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog
Biophys Mol Biol 94:120–143.

Harris KP and Tepass U (2010) Cdc42 and vesicle trafficking in polarized cells.
Traffic 11:1272–1279.

Hartz AM and Bauer B (2010) Regulation of ABC transporters at the blood-brain
barrier: new targets for CNS therapy. Mol Interv 10:293–304.

Haugen TB, Landmark BF, Josefsen GM, Hansson V, and Högset A (1994) The
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CF (1992) The multidrug resistance and cystic fibrosis genes have complementary
patterns of epithelial expression. EMBO J 11:4291–4303.

Tsukamoto T and Nigam SK (1999) Role of tyrosine phosphorylation in the reassem-
bly of occludin and other tight junction proteins. Am J Physiol 276:F737–F750.

Tuma PL and Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol
Rev 83:871–932.

Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev
Immunol 9:799–809.

Turner TT, Jones CE, Howards SS, Ewing LL, Zegeye B, and Gunsalus GL (1984) On
the androgen microenvironment of maturing spermatozoa. Endocrinology 115:
1925–1932.

Udayakumar T, Shareef MM, Diaz DA, Ahmed MM, and Pollack A (2010) The
E2F1/Rb and p53/MDM2 pathways in DNA repair and apoptosis: understanding
the crosstalk to develop novel strategies for prostate cancer radiotherapy. Semin
Radiat Oncol 20:258–266.

Ueno M, Nakagawa T, Wu B, Onodera M, Huang CL, Kusaka T, Araki N, and
Sakamoto H.L, Kusaka T, Araki N, and Sakamoto H (2010) Transporters in the
brain endothelial barrier. Curr Med Chem 17:1125–1138.

Uhr M, Ebinger M, Rosenhagen MC, and Grauer MT (2005) The anti-Parkinson drug
budipine is exported actively out of the brain by P-glycoprotein in mice. Neurosci
Lett 383:73–76.

Uhr M, Holsboer F, and Müller MB (2002) Penetration of endogenous steroid hor-
mones corticosterone, cortisol, aldosterone and progesterone into the brain is
enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroen-
docrinol 14:753–759.

Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias
RT, Robinson RB, Rosen MR, Cohen IS, et al. (2005) Connexin-specific cell-to-cell
transfer of short interfering RNA by gap junctions. J Physiol 568:459–468.

Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, Colegio OR,
and Anderson JM (2008) The density of small tight junction pores varies among
cell types and is increased by expression of claudin-2. J Cell Sci 121:298–305.

Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, and Soto AM (2009)
Bisphenol-A and the great divide: a review of controversies in the field of endocrine
disruption. Endocr Rev 30:75–95.

VanItallie TB (2010) Gout: epitome of painful arthritis. Metabolism 59 (Suppl
1):S32–S36.

Venkatesh S, Shamsi MB, Dudeja S, Kumar R, and Dada R (2011) Reactive oxygen
species measurement in neat and washed semen: comparative analysis and its
significance in male infertility asssessment. Arch Gynecol Obstet 283:121–126.

Vergouwen RP, Huiskamp R, Bas RJ, Roepers-Gajadien HL, Davids JA, and de Rooij
DG (1993) Postnatal development of testicular cell populations in mice. J Reprod
Fertil 99:479–485.

Verhoeven G, Denolet E, Swinnen JV, Willems A, Claessens F, Saunders PTK,
Sharpe RM, and De Gendt K (2008) Contribution of recent transgenic models and
trasncriptional profiling studies to our understanding of the mechanisms by which
androgens control spermatogenesis. Immunol Endocr Metab Agents Med Chem
8:2–13.

Verhoeven G, Willems A, Denolet E, Swinnen JV, and De Gendt K (2010) Androgens
and spermatogenesis: lessons from transgenic mouse models. Philos Trans R Soc
Lond B Biol Sci 365:1537–1556.

Vesey DA (2010) Transport pathways for cadmium in the intestine and kidney
proximal tubule: focus on the interaction with essential metals. Toxicol Lett
198:13–19.

Vinken M, Ceelen L, Vanhaecke T, and Rogiers V (2010) Inhibition of gap junctional
communication by toxic metals. Chem Res Toxicol 23:1862–1867.

Vitale R, Fawcett DW, and Dym M (1973) The normal development of the blood-
testis barrier and the effects of clomiphene and estrogen treatment. Anat Rec
176:331–344.

Vogl A, Vaid K, and Guttman J (2008) The Sertoli cell cytoskeleton, in Molecular
Mechanisms in Spermatogenesis (Cheng CY ed) pp 186–211, Landes Bioscience/
Springer Science	Business Media, Austin, TX.

Vogl AW, Pfeiffer DC, Mulholland D, Kimel G, and Guttman J (2000) Unique and
multifunctional adhesion junctions in the testis: ectoplasmic specializations. Arch
Histol Cytol 63:1–15.

Waalkes MP (2003) Cadmium carcinogenesis. Mutation Res 533:107–120.
Waalkes MP, Coogan TP, and Barter RA (1992) Toxicological principles of metal

carcinogenesis with special emphasis on cadmium. Crit Rev Toxicol 22:175–201.
Wahab-Wahlgren A, Holst M, Ayele D, Sultana T, Parvinen M, Gustafsson K,
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