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Abstract
Next-generation sequencing technology provides new opportunities and challenges in the search
for genetic variants that underlie complex traits. It will also presumably uncover many new rare
variants, but exactly how these variants should be incorporated into the data analysis remains a
question. Several papers in our group from Genetic Analysis Workshop 17 evaluated different
methods of rare variant analysis, including single-variant, gene-based, and pathway-based
analyses and analyses that incorporated biological information. Although the performance of some
of these methods strongly depends on the underlying disease model, integration of known
biological information is helpful in detecting causal genes. Two work groups demonstrated that
use of a Bayesian network and a collapsing receiver operating characteristic curve approach
improves risk prediction when a disease is caused by many rare variants. Another work group
suggested that modeling local rather than global ancestry may be beneficial when controlling the
effect of population structure in rare variant association analysis.
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Introduction
Data for Genetic Analysis Workshop 17 (GAW17) were simulated on the basis of the exome
sequencing data from the 1000 Genomes Project [Almasy et al., 2011]. Of the 3 billion
bases of the human genome, the exomes are the most intensely annotated regions. The
annotated information includes the starting and ending positions of translated bases,
functions of translated products, and reported genetic variations and phenotypic changes that
can be caused by genetic variations. This information can be easily retrieved using public
database tools, such as the National Center for Biotechnology Information (NCBI),
Ensemble, Vega, and the University of California Santa Cruz (UCSC), genome browsers.
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Many public database sources provide various types of information on genes and gene
products. For example, NCBI’s Clusters of Orthologous Groups of proteins (COGs) provide
clusters of conserved sequences (orthologs) across species. The functional group that a gene
belongs to can be found in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.ad.jp/kegg), BioCarta
(http://www.biocarta.com/genes/allPathways.asp), Reactome
(http://www.reactome.org/ReactomeGWT/entrypoint.html), and Gene Ontology (GO)
(http://www.geneontology.org/). Protein motif information can be found in web databases
such as PROSITE (http://ca.expasy.org/prosite/), Pfam (http://pfam.sanger.ac.uk/), and
InterPro (http://www.ebi.ac.uk/interpro/). Protein interaction information can be located in
the Biomolecular Object Network Databank (BOND)
(http://bond.unleashedinformatics.com/) and the Database of Interacting Proteins (DIP)
(http://dip.doe-mbi.ucla.edu/dip/Main.cgi). For nonsynonymous variants, the functional
effect of the nucleotide changes can be predicted using web database programs such as
PolyPhen (http://genetics.bwh.harvard.edu/pph2/) and SIFT (http://sift.bii.a-star.edu.sg/).

In population-based association studies of complex traits, various types of biological
information can be used in many ways [Rebbeck et al., 2004; Ioannidis et al., 2009; Chen
and Thomas, 2010]. However, such information is frequently limited to a description of the
causality of the identified genetic variations located in a gene. Common features of multiple
genes can be used to group genes and to test for the association with a target phenotype,
such as in a pathway analysis. Prior knowledge that predicts the severity of changes
resulting from a genetic variation can be incorporated into a statistical model by using
different weights or prior probabilities. Biological information can also be used to prioritize
a subset of genetic variants for subsequent functional analyses.

The contributors to Group 6 of GAW17 discussed the incorporation of known biological
knowledge into genetic association studies of exome sequence data. Here, we summarize the
nine individual contributions and the group discussion from the meeting (two of the papers
are presented here as personal communications). The primary scientific questions addressed
and the corresponding methods used by the individual contributors are presented in Table I.
Although the study goals and approaches vary, the nine contributions can be grouped into
four categories according to research similarity: (1) association tests between genetic
variants and traits, (2) prioritization of genetic variants based on functional annotation, (3)
construction of causal regulatory network and disease prediction using multiple risk factors,
and (4) distribution inference of rare variants across populations.

The plausible biological scenario of having a biological pathway underlying the phenotype
of interest was simulated for GAW17. Specifically, from the vascular endothelial growth
factor (VEGF) pathway, 9 genes for Q1, 13 genes for Q2, and 15 genes for a binary trait
were selected, and 51 variants of these genes were used as the causal variants for simulating
the traits. In addition, the effect sizes of the selected causal variants were determined by the
predicted impact of a mutation to protein function.

Data
Three quantitative traits (Q1, Q2, and Q4) and one binary trait were simulated for GAW17,
and 200 replicates were included. All four traits were analyzed by two work groups of
Group 6; Q1, Q2, and the binary trait were analyzed by two work groups; only the binary
trait was analyzed by two work groups; Q1 and Q4 trait were analyzed by one work group;
and no information on traits was used by two work groups (Table II). All but two work
groups [Y. Hu et al., personal communication, 2011; Raska and Zhu, 2011] used all 200
replicates. One work group included all individuals including family members [Kang et al.,
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2011], seven work groups included 697 unrelated individuals, and one work group did not
use individual information [Hu et al., personal communication, 2011]. Five work groups
used a subset of single-nucleotide polymorphisms (SNPs), whereas the others used all of the
available genotype data for the 24,487 SNPs. Covariates such as Age, Smoking status, Sex,
and Ethnicity were used by four work groups. Additional biological knowledge from
external sources was used by two work groups (Table II). Seven work groups used the
answer information, and two work groups [Hu et al., personal communication, 2011; Raska
and Zhu, 2011] did not use it.

Results
Testing Association Between Genetic Variants and Traits

Various statistical methods for conducting association analyses between genetic variants and
traits were investigated by four work groups [Kumari and Chen personal communication,
2011; Lorenzo Bermejo et al., 2011]; Tong et al., 2011; Yang and Chen, 2011]. Each applied
different test statistics to identify associated SNPs and compared the performances of
different approaches in terms of empirical power and type I error. Each work group
discussed how to deal with rare variants or the effect of the inclusion of rare variants in the
analyses. Table III lists the methods used by each work group and whether biological
knowledge was incorporated.

Test Statistics
Yang and Chen [2011] conducted a single-SNP association analysis using linear regression
models with Q1. They used an additive effect model for each SNP and included Age and
Smoking status as covariates in their models. They also conducted association tests by
combining p-values of individual SNPs in a gene, genomic region, or pathway. SNPs having
p-values below a predefined threshold were included in the combined p-value analysis using
the truncated product method of Zaykin et al. [2002]. Yang and Chen [2011] investigated
three different approaches: (1) analysis of common variants only, (2) analysis of rare
variants only, and (3) an analysis that combined two p-values from common and rare
variants.

Tong et al. [2011] compared single-SNP analysis with gene-based analysis. For single-SNP
analysis, they applied linear regression to the three quantitative traits (Q1, Q2, and Q4) and
used a logistic regression model for the binary trait. For the gene-based analysis, they used
three approaches. First, they applied a regression model using multilocus genotypes that
were defined as a combination of genotypes from all SNPs in a gene. Second, they classified
the multilocus genotypes into three categories by comparing each multilocus genotype with
a null multilocus genotype (i.e., a set of multilocus genotypes with no rare alleles). The
significance for the three genotype categories was tested using permutation. Third, they used
a defined similarity score-based test statistic for the binary trait. The similarity score
between two distinct multilocus genotypes was computed as

(1)

where nik and njk are the number of minor alleles of the ith and jth distinct genotypes at the
kth SNP, L is the number of SNPs in a compared multilocus genotype, and wk is a weight
function. The weight is given as the inverse of the rare allele frequency so that a pair of
genotypes sharing a rare allele has a higher similarity score than pairs that share only a
common allele. Both Tong et al. [2011] and Yang and Chen [2011] applied a false discovery
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rate (FDR) controlling procedure to account for multiple tests [Benjamini and Hochberg,
1995].

Population stratification is one of the common causes of inflated type I error in genetic
association analyses. Kumari and Chen [personal communication, 2011] proposed the
following two-stage approach: filtering to select a subset of SNPs followed by the
association tests. To eliminate the effect of population structure, they computed the principal
components (PCs) from 1,000 SNPs in the genes that were not selected in the filtering stage.
They chose the five PCs that explained the greatest genomic variance among individuals to
serve as ancestry covariates. The trait values and combined genotype values were then
regressed on those ancestry covariates, and the residuals were used for the testing.

Lorenzo Bermejo et al. [2011] evaluated an association analysis method proposed by Aitkin
[2010] using GAW17 data. Aitkin [2010] proposed an integrated Bayes/likelihood approach
using an uninformative uniform prior probability. Lorenzo Bermejo et al. [2011] compared
the performance of Aitkin’s method with standard logistic regression using unrelated
samples with 16 SNPs of the KDR gene and the binary trait. They coded the SNP genotype
as the number of minor alleles present and used the collapsed rare variants as independent
variables. For the Bayes/likelihood approach, they obtained a distribution of deviance and
deviance differences between a model with a genetic factor and the baseline model without
genetic factors using a random walk Metropolis algorithm [Metropolis et al., 1953; Hastings,
1970]. The relative significance of the genetic effect was defined by the proportion of
positive deviance differences from 10,000 sample draws. The larger the proportion, the less
significant the model.

Rare Variant Combining Methods
Analysis of rare variants requires large sample sizes to obtain reasonable power. For
individual SNPs, conventional statistical tests may not be able to obtain significant results
even with thousands of samples. To tackle the difficulty of detecting rare variants,
investigators have introduced many approaches that combine rare variants to define new
variables, and these approaches have been reviewed by Dering et al. [2011]. Three of the
Group 6 work groups adopted different rare variant collapsing approaches in their
association analyses. Although the definition of rare variants can be subjective, a minor
allele frequency (MAF) cutoff of 1% was used by Lorenzo Bermejo et al. [2011] and Yang
and Chen [2011]. When variants are combined, the grouping criteria greatly affect the
results of analysis in terms of power and interpretation. For exome sequencing data,
individual genes can be a practical grouping rule for combining rare variants; this method
was applied by three work groups. Kumari and Chen [personal communication, 2011] used
the weighted-sum method of Madsen and Browning [2009] without applying a MAF cutoff.
Lorenzo Bermejo et al. [2011] created a variable that indicates presence or absence of any
rare alleles in a gene. The question of whether or not rare variants add information to
common variants in an association analysis was also investigated by Yang and Chen [2011].

Power and Type I Error
Three work groups compared the performance of different methods by examining the
empirical power, defined as the proportion of times that an association test resulted in
significant p-values for a true associated SNP among 200 replicates. Because Q4 was not
associated with any SNP, it was used to evaluate the type I error rate. Yang and Chen [2011]
performed 1 million permutations for Q4 to obtain empirical p-values for individual SNPs,
because Q4 did not follow a standard normal distribution. Tong et al. [2011] compared both
the power of four approaches at a fixed false-positive rate (FPR) and the average FDR over
the 200 replicates; the observed FPR was calculated as the number of reported false
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positives divided by the total number of noncausal loci, and the observed FDR was
calculated as the number of reported false positives divided by the total number of
significant outcomes. Lorenzo Bermejo et al. [2011] compared the distribution of p-values
and proportions of positive deviances based on analysis of the 200 replicates.

Association Analysis Results
Yang and Chen [2011] identified four true causal genes, namely, KDR, VEGFC, FLT1, and
HIF1A, associated with Q1 by using single-locus analysis. By combining their region-based
analysis with statistics of rare and common SNPs, they also identified ELAVL4 and VEGFA
in addition to the four mentioned genes. Tong et al. [2011] detected a few genes at the
genome-wide significance level (α = 10−5) with a similar number of false positives for the
single-SNP analysis and the gene-based analyses. Kumari and Chen [personal
communication, 2011] detected FLT1 and KDR with p-values less than 10−5.

The results of Yang and Chen [2011] suggest that gene-based analysis outperforms single-
SNP analysis. The number of SNPs in a gene varies from one to hundreds. Accordingly, the
number of tests required by single-SNP analysis varies, and this affects the multiple testing
correction procedure. Single-SNP analysis was more powerful than gene-based analysis for
only a few genes that had a highly significantly associated SNP, such as ARNT and HIF3A
in the association test for trait Q1. However, Tong et al. [2011] concluded that single-SNP
analysis had greater power more frequently than gene-based analysis, which uses multilocus
genotypes as test covariates. For the binary trait, the single-SNP analysis had greater power
to detect genes in which a causal SNP allele frequency was not too low, such as FLT1,
which has a causal SNP with a MAF of 0.067. On the other hand, the gene-based method
had greater power for genes with multiple rare causal SNPs, such as FLT4 and HIF1A.
Results from both work groups showed that the performances of the two approaches varied
across all the tested genes. Some genes could be detected only by single-SNP analysis. Thus
both groups suggested using single-SNP analysis and gene-based analysis as complementary
methods. In addition, Yang and Chen [2011] conducted pathway-based analysis for the
VEGF pathway using rare SNPs only and common SNPs only and a combined analysis; all
three methods identified the pathway with significant p-values. However, the type I error
was inflated by 5.8–8.2% at the 5% significance level.

Next-generation sequencing technologies allow us to study rare variants in addition to
common variants that have been investigated in genome-wide association studies. It remains
unclear whether the data obtained from the new technology will help us find the variants that
contribute to missing heritability. Yang and Chen [2011] investigated the effect of inclusion
of rare variants in association analysis using Q1. Their analysis showed that the inclusion of
rare variants improved power by about 36% for FLT4 and by about 47% for VEGFA. On the
other hand, when common variants were close to the causal rare variants, most information
seemed to be captured by the common variants. ELAVL4, ARNT, and H1F1A had
substantially more power in the single-SNP analysis of common SNPs than in the combined
analysis. Only three genes (FLT4, VEGFA, and VEGFC, in which most of the variants are
rare) did not show such increase in power. In addition, Yang and Chen [2011] suggested that
rare-variant-only analysis had the largest type I error. These results show that rare variant
analysis using conventional regression analysis should be performed cautiously.

Lorenzo Bermejo et al. [2011] reported that both standard logistic regression and the
integrated Bayes/likelihood approach performed poorly, because they produced many false
positives and negatives. The power for 10 causal SNPs varied from 0% to 65% for logistic
regression and from 2% to 69% for the Bayes/likelihood approach at the 5% significance
level. On the basis of their comparisons, they concluded that Bayes factors might
discriminate between causal variants and markers better than p-values from logistic
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regression. When collapsing rare variants, logistic regression produced more significant
results than the Bayes/likelihood approach.

Integration of Known Biological Information
In the definition of new variables using multiple genetic variants, various types of biological
information can be used to combine or weight SNPs. The four work groups that included
association tests used a new variable defined by combining multiple SNPs, using either a
gene or a biological pathway as a group. However, many other types of biological
annotation information, such as gene ontology terms, can be adopted to combine SNPs.
Analysis of variables that combine multiple genes will be useful when identifying groups of
genes with small cumulative effects [Wu et al., 2010].

Lorenzo Bermejo et al. [2011] adopted Bayesian approaches with a noninformative prior
distribution; however, the biological information can be used to determine a much more
appropriate prior distribution. Bayesian approaches have been widely used in genetic studies
because of their ability to incorporate knowledge from external data sources into the model
specification [Beaumont and Rannala, 2004]. For example, the functional annotation of
genetic variations, such as exonic, intronic, or intergenic variations, has been used as a prior
weight in genetic association studies [Rannala and Reeve, 2001]. More recently, Bayesian
approaches for genome-wide association studies have been shown to be useful for
incorporating heterogeneous biological knowledge [Lewinger et al., 2007]. Chen and Witte
[2007] and Heron et al. [2007] also adopted an empirical Bayes model method to detect
associated SNPs. Although Bayesian approaches have several advantages, such as the
capability of handling complex likelihood functions by using Markov chain Monte Carlo
(MCMC) techniques, the intensive computation involved may limit the application of the
approaches to large-scale genetic data.

Disease Modeling by Incorporating Multiple Traits and Prediction
Common complex diseases are believed to be caused by the interplay of multiple genetic
and environmental risk factors. Statistical analyses that take this complexity into account
will likely yield novel insights into the underlying pathophysiological and etiological
processes, which will eventually promote the development of improved disease prediction
and prevention strategies.

Kang et al. [2011] used a Bayesian network (BN) approach to infer the conditional
independent relationships between the genetic and environmental risk predictors and disease
outcomes. They constructed a BN for the genes that were selected on the basis of the
association analysis. For the association analysis, they derived gene-level scores by using a
weighted-sum SNP combining method that gave more weight to rare variants. In addition,
they used another weight function that gave more importance to nonsynonymous SNPs than
to synonymous ones. Using the gene scores, they conducted a linear regression analysis for
each of the four traits, adjusting for Age, Sex, and Smoking status. Genes significantly
associated with any of the four traits were used for the BN construction. Under certain
constraints, such as a trait not having edges to genes, causal networks between genetic and
environmental factors and traits were constructed with the optimization of the BN through
MCMC analysis.

For the analysis of the GAW17 simulation data, Kang et al. [2011] showed that the BN
approach was able to successfully uncover most of the true underlying relationships between
the genetic and environmental risk predictors and the quantitative traits. To quantify the
advantage of using a joint approach (e.g., the BN approach), where multiple traits are
considered simultaneously, over a marginal approach (e.g., least absolute shrinkage and
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selection operator [LASSO]), where only one trait is considered, they calculated the area
under the curve (AUC) of both methods to avoid cutoff selection. The calculated AUC
measures how closely the detected genes agree with the true causal genes in the simulation
model. Kang and colleagues found that the AUC for the BN was 0.61, whereas the AUC for
LASSO was only 0.57. The BN approach also outperformed the conventional LASSO
approach with greater AUC in terms of selecting true disease causal genes.

Kang et al. [2011] also demonstrated that incorporating biological knowledge, such as
functional annotation of SNPs, into the analysis is beneficial. Using the BN approach, they
evaluated the combined role of genetic and environmental risk predictors in disease risk
prediction and found that genetic variants played a limited role compared to their
environmental counterparts. This finding is consistent with the findings of Wei and Lu
[2011], who also suggested a limited role of genetic variants in predicting disease outcomes
from the GAW17 simulated data. In their paper, Kang and colleagues introduced a
collapsing receiver operating characteristic (ROC) curve approach for risk prediction of the
sequencing data. The collapsing ROC curve approach is essentially an extension of the
previously developed forward ROC curve approach [Ye et al., 2011] with an additional
multistage collapsing procedure. The multistage collapsing procedure was developed on the
basis of the ideas of Li and Leal [2008]. At each stage, the procedure selects rare variants in
a stepwise manner and then collapses them into a pseudo-common variant, which is created
when no additional rare variants can further increase its accuracy. The collapsing procedure
is repeated on the remaining rare variants, and it generates a set of pseudo-common variants.
The forward ROC curve approach is then applied to all pseudo-common and common
variants to form an optimal risk prediction model. By applying the collapsing ROC curve
approach to the GAW17 simulated data, Kang and colleagues showed that additional
accuracy could be gained by considering rare variants.

Prioritization of Genetic Variants Based on Functional Annotation
One challenge of genetic studies is identifying functional genetic variants that cause
phenotypic differences in humans from tens of thousands of variants. Many of these variants
might be indirectly associated with a phenotype through linkage disequilibrium between
genotyped variants and causal variants that have a direct effect on the phenotype.
Subsequent functional analysis is required to identify the causal variants from all the
significant candidates. Biological knowledge accumulated from previous experimental
studies enables the prioritization of a subset of candidates for further analysis. Two
contributions in Group 6 [Hu et al., personal communication, 2011; Teng et al., 2011]
investigated the features of two types of functional variant groups and introduced
approaches for prioritizing candidate causal variants.

Teng et al. [2011] focused on the potential role of synonymous polymorphisms in affecting
the binding affinities of RNA-binding proteins that may change the RNA splicing form, that
is, cause alternative splicing. They proposed a statistical framework to evaluate how likely a
SNP is to affect the binding of any of the nine RNA-binding proteins whose binding
affinities had already been characterized. Among 10,113 synonymous polymorphisms
identified in the 697 individuals in the GAW17 data, they found 1,851 candidates that
potentially affected the binding affinity of at least one of the nine proteins, 182 of which
were located in alternatively spliced exons. They also showed that the average MAF of
SNPs located in alternatively spliced exons was similar to the average MAF of
nonsynonymous SNPs, both of which were significantly lower than the average MAF of the
remaining synonymous SNPs. The low MAF may indicate that the 182 identified
polymorphisms were under negative selection because of the deleterious alterations in the
gene product [Goddard et al., 2000]. Teng et al. [2011] also suggested a workflow to
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identify functional SNPs that might affect a phenotype by altering the splicing pattern of a
gene.

Hu et al. [personal communication, 2011] investigated nonsynonymous SNPs in the coding
regions that do not fold spontaneously into a unique three-dimensional shape. These regions
are also called intrinsically disordered regions [Iakoucheva et al., 2002]. More than 40% of
all human proteins contain disordered regions that are known to play critical roles in many
key biological processes [Uversky and Dunker, 2010]. Hu and colleagues systematically
examined the effect of SNPs on the structural changes in terms of intrinsic disorder status.

Teng et al. [2011] and Hu et al. [personal communication, 2011] demonstrated the
usefulness of prioritization of SNPs by using previously reported biological knowledge to
identify functional genetic variations among SNPs with association signals from population
genetic studies. Teng et al. [2011] in particular showed an example of an important function
of synonymous SNPs that might be missed.

Distribution of Rare Variants Across Populations
Raska and Zhu [2011] used the GAW17 exome data to demonstrate that there is a significant
difference in genome-wide rare variant density across the seven studied populations. They
compared regression coefficients between counts of rare variants and total variant counts per
gene for each population. They also computed Tajima’s D values [Tajima, 1989] on each
gene for each population for all 3,205 genes. They found that the populations clustered by
continent for both the regression slopes and Tajima’s D values, with the African populations
showing the highest rare variant densities and the European populations showing the lowest
variant densities, findings that are consistent with the literature.

The variation in rare variant density has the potential to confound rare variant association
analyses in mixed and admixed populations. Raska and Zhu [2011] showed that this
confounding association existed when using both group-level statistics, which were used to
compare case subjects and control subjects, and individual-based statistics. They also
showed that with the group-level statistics, a mixed population had an increased rare variant
density beyond the level of the individual population. This suggests that for a rare variant
association analysis that uses a group-level statistic, diversity within case subjects or control
subjects in addition to global ancestry would have to be taken into account.

In addition to this genome-wide variation across populations, there is variance in selection
pressure throughout the genome that causes rare variant density to differ from gene to gene
within populations. Raska and Zhu [2011] found that of those genes with the lowest
Tajima’s D values, some were common across all populations, but others were population
specific. The expected rare variant density for a gene will therefore depend on both the gene
and the population of origin. As a consequence, genome-wide ancestral estimates may not
provide adequate control in association studies for admixed individuals; instead, local gene-
specific estimates may be necessary.

Discussion
The contributors in Group 6 examined various approaches for investigating the genetics
underlying the traits simulated in the GAW17 data. Because the traits were simulated using
the contributions of both common and rare variants, several work groups compared various
approaches for searching genetic variants associated with the traits, including single-variant,
gene-based, and pathway-based analyses. The performance of the different approaches was
dependent on which genes contributed to trait variation through either common variants or
multiple rare variants [Tong et al., 2011; Yang and Chen, 2011]. Novel statistical methods,
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such as principal-components-based approaches, may hold some promise, but further
investigation is warranted [Kumari and Chen, personal communication, 2011]. Biological
annotation on rare variants, such as information on splicing regulation and protein structure,
can prove useful. Integration of such information in statistical analysis will improve
statistical power to detect causal variants [Hu et al., personal communication, 2011; Teng et
al. 2011]. However, the method to most efficiently incorporate this biological knowledge
requires further investigation.

An interesting analytical approach is the application of the graphical model (e.g., a BN)
[Kang et al., 2011]. By simultaneously modeling the conditional independence of genetic
and environmental factors and multiple phenotypes, the BN approach was able to
reconstruct the underlying complex topology. More important, the reconstructed topology
was almost identical to the true topology of the genetic and environmental factors on the
phenotypes. Furthermore, integrating additional information, such as functional annotation,
into the prediction models led to improved risk prediction [Kang et al., 2011; Wei and Lu,
2011]. However, simply adding many SNPs to a prediction model does not necessarily
improve prediction power [Kang et al., 2011; Wei and Lu, 2011].

The GAW17 data suggest that the rare variant distribution varies across the genome,
indicating that genes may undergo balancing or positive selection [Raska and Zhu, 2011].
The difference in rare variant distribution across populations suggests that caution should be
exercised in association analyses of rare variants, even when incorporating local population
structure into the analysis, as suggested by Qin et al. [2011] and Wang et al. [2011].
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Table I

Research goals and methods used by each work group in Group 6

Work group Primary scientific question Analysis method(s)

Hu et al. [personal
communication, 2011]

To determine whether SNPs in intrinsic disordered regions can represent
disease risk

Bioinformatics

Kang et al. [2011] To determine how multiple environmental factors and genetic factors
interact to determine disease phenotype and conditioning of all other
variables

Graphical models (Bayesian
networks)

Kumari and Chen [personal
communication, 2011]

To identify group-wise association of rare variants with a disease Weighted-sum method after
adjusting for population structure
using principal components

Lorenzo Bermejo et al.
[2011]

To evaluate an integrated Bayes/likelihood approach and compare its
performance with that of standard logistic regression

Aitkin’s integrated Bayes/
likelihood approach

Raska and Zhu [2011] To determine how rare variant distribution varies across the genome and
across populations

Rare variant to total variant ratios
and Tajima’s D

Teng et al. [2011] To determine whether synonymous SNPs can be attributed to disease
risk

Bioinformatics

Tong et al. [2011] To compare SNP- and gene-based association analyses False discovery rate and similarity-
based statistics

Wei and Lu [2011] To develop and evaluate statistical approaches for genetic risk prediction
based on both common and rare SNPs

Novel grouping ROC approach

Yang and Chen [2011] To identify quantitative trait loci (QTLs), genes, or pathways using
region- and pathway-based QTL mappings and to compare the power of
several QTL mappings (i.e., rare SNPs only, common SNPs only, and
combined analysis).

P-value combination and Monte
Carlo procedure
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Table II

Data used in the studies by Group 6

Work group Traits SNPs Covariates Biological knowledge

Hu et al. [personal
communication, 2011]

None Nonsynonymous SNPs None Bioinformatics tool (VSL2) to
predict protein intrinsic disorder
status

Kang et al. [2011] Q1, Q2, Q4, and
binary trait

24,487 SNPs, synonymous
and nonsynonymous treated
separately

Smoking, Age, Sex SNP functional annotation

Kumari and Chen
[personal
communication, 2011]

Q1, Q2, and
binary trait

24,487 SNPs None Gene

Lorenzo Bermejo et al.
[2011]

Binary trait 16 SNPs in KDR gene Smoking, Age, Ethnicity None

Raska and Zhu [2011] None 24,487 SNPs None Gene

Teng et al. [2011] Q1, Q2, and
binary trait

Synonymous SNPs None Consensus sequences of RNA-
binding protein target sites (nine
RNA-binding proteins)

Tong et al. [2011] Q1, Q2, Q4, and
binary trait

24,487 SNPs Smoking, Age, Sex Gene

Wei and Lu [2011] Binary trait 161 disease-susceptibility
SNPs from GAW17 answer
sheet

None None

Yang and Chen [2011] Q1 and Q4 24,487 SNPs Smoking, Age, Sex Gene and pathway
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Table III

Summary of studies on association testing

Lorenzo Bermejo et al. [2011]

Kumari and Chen
[personal
communication,
2011] Tong et al. [2011]

Yang and Chen
[2011]

Statistics Integrated Bayes/likelihood approach Multiple correlation
coefficient,
Armitage trend test

Linear/logistic regression,
similarity score-based
statistics

Linear regression

Genome-wide analysis – Q1, Q2, binary trait Q1 Q1

Adjusting covariates Age, Smoking, Ethnicity Principal
components
computed from
1,000 SNPs

Age and Smoking for Q1
and binary trait; Age,
Smoking, and Sex for Q4

Age and Smoking

Group to combine
SNPs

Gene Gene Gene Gene/pathway

Combining SNPs Presence/absence (alleles with MAF <
1%)

Weighted-sum
statistics (Madsen
and Browning
[2009])

Multivariate, combined Combining p-values
obtained from
individual SNP tests

Multiple testing – Bonferroni False discovery rate False discovery rate
of 5%

Power Binary trait Q1, Q2, binary trait Q1 Q1

Type I error – – Q4 Q4
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