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Human artificial chromosome (HAC)-based vectors offer a promis-
ing system for delivery and expression of full-length human genes
of any size. HACs avoid the limited cloning capacity, lack of copy
number control, and insertional mutagenesis caused by integra-
tion into host chromosomes that plague viral vectors. We pre-
viously described a synthetic HAC that can be easily eliminated
from cell populations by inactivation of its conditional kineto-
chore. Here, we demonstrate the utility of this HAC, which has
a unique gene acceptor site, for delivery of full-length genes and
correction of genetic deficiencies in human cells. A battery of
functional tests was performed to demonstrate expression of
NBS1 and VHL genes from the HAC at physiological levels. We also
show that phenotypes arising from stable gene expression can be
reversed when cells are “cured” of the HAC by inactivating its
kinetochore in proliferating cell populations, a feature that pro-
vides a control for phenotypic changes attributed to expression of
HAC-encoded genes. This generation of human artificial chromo-
somes should be suitable for studies of gene function and
therapeutic applications.

gene delivery vector | gene therapy | transformation-associated
recombination cloning

Most advanced current gene therapy systems, such as ade-
novirus-, lentivirus-, and retrovirus-derived vectors, use
cDNA or “minigene” constructs (reviewed in refs. 1-5) that
cannot recapitulate the physiological regulation of complex en-
dogenous loci. Viral episomal vectors carrying HSV-1 and EBV
amplicons can deliver and express full-length genes as large as
approximately 150 kb in size (1, 2). However, several concerns
limit the use of HSV-1 and EBYV viral vectors: absence of strong
copy number control, undesired immunological responses, and
occasional integration into the host genome, causing insertional
mutagenesis and gene silencing (6).

Human artificial chromosomes (HACs) represent another ex-
trachromosomal gene delivery and gene expression vector system
(7-11). Although this technology is less advanced than virus-
derived vectors, HACs have several potential advantages over
currently used episomal viral vectors for gene therapy applica-
tions. First, the presence of a functional centromere provides
long-term stable maintenance of HACs as single-copy episomes
without integration to the host chromosomes. Second, there is no
upper size limit to DNA cloned in a HAC: entire genomic loci
with all regulatory elements can be used. Finally, HAC vectors
minimize adverse host immunogenic responses and the risk of
cellular transformation.

Recent advances have produced a variety of HACs via two
different approaches. The “top-down” approach involves modi-
fication of human chromosomes in living cells to produce chro-
mosome derivatives (11-18). The “bottom-up” approach involves
de novo kinetochore assembly from 50- to 100-kb blocks of
centromeric alpha-satellite (i.e., alphoid) DNAs. These are multi-
merized in human cells, forming HACs with sizes of approximately
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1 to 3 Mb (7, 8, 10, 19). Several groups have reported successful
expression of full-length genes in HACs (9-11, 20, 21). However, in
most cases, genes to be expressed were cotransfected with an
alphoid DNA array into human cells and were incorporated into
the forming HAC in vivo. Therefore, gene copy number and lo-
cation of the gene on the HAC were not predetermined. These
factors greatly limited the application of de novo-generated HACs
as gene delivery vectors.

Recentla/, this limitation was overcome by construction of an
alphoid*®-HAC carrying loxP sites (22, 23). This circular HAC
contains approximately 6,000 copies of the tetracycline operator
(tetO) sequence embedded in a synthetic alphoid DNA array.
Although the HAC is mitotically stable, tethering certain tetra-
cycline repressor fusion proteins (tetR-KAP1 or tTS) (22, 24)
inactivates the centromere, resulting in HAC loss. Thus, the
alphoid"*©-HAC and any genes it carries can be eliminated from
cell populations, allowing for a regulated “hit-and-run” induction
of phenotypic changes.

To minimize problems caused by the lack of certain genes from
libraries of BAC and YAC clones or the presence of genes
fragmented on multiple vectors, we developed a method for di-
rect gene cloning from genomic DNA. Transformation-associated
recombination (TAR) cloning allows isolation of any specific allele
of a gene of interest as a predetermined DNA fragment (25, 26).

Here, we describe the combination of the TAR gene-cloning
technology with the alphoid'**°-HAC vector for gene delivery. We
report a complete cycle starting with selective gene isolation,
followed by gene loading into the HAC, and eventually leading to
complementation of gene deficiencies in a human cell line (Fig. 1).
This approach is useful for studies of gene function and potentially
for gene therapy. As a proof of principle, genomic copies of two
average-size cancer-associated genes—V’HL mutated in von Hip-
pel-Lindau syndrome (VHL; MIM 193300) and NBSI mutated in
Nijmegen breakage syndrome (NBS; MIM 251260)—were iso-
lated by TAR cloning and loaded into the unique loxP site of the
alphoid"®*°-HAC in CHO cells. HAC transfer into human cells
deficient in NBSI and VHL reveals that both genes are expressed
normally and complement the defective endogenous alleles.

Results

Isolation of Genomic Regions Containing NBS1 and VHL Genes from
Human Genome by TAR Cloning. The TAR cloning scheme for
isolating the NBSI and VHL genes is shown in Fig. 14. For
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cloning purposes, TAR vectors were designed containing short
targeting hooks specific to 5’ and 3’ sequence ends of the genes
(SI Materials and Methods). Human genomic DNA was trans-
formed into yeast spheroplasts along with linearized TAR vectors.
Recombination between the hooks and genomic DNA fragments
results in isolation of NBSI and VHL genes as circular YACs with
insert sizes of approximately 55 kb and 25 kb, respectively. Five in-
dependent TAR YAC isolates were obtained for each gene. The
cloned NBS! locus contains approximately 5 kb sequence upstream
of the ATG codon and 1.5 kb sequence downstream of the stop
codon. The cloned VHL locus contains approximately 10 kb se-
quence upstream of the ATG codon and 7.3 kb sequence down-
stream of the stop codon. PCR analysis and physical char-
acterization of the TAR isolates for each gene confirmed that the
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Fig. 1. A scheme of consecutive experimental steps from selective gene
isolation to its expression in gene-deficient human cells. (4) Direct TAR iso-
lation of the NBST and VHL genes from human genomic DNA. TAR vectors
contain two gene targeting hooks (yellow and blue boxes). (B) Retrofitting of
the circular YAC containing the full-length gene by the pJBRV1 vector con-
taining a 3' HPRT-loxP-eGFP cassette. Recombination of the BamHI-linearized
pJBRV1 vector with a YAC in yeast leads to replacement of the ColE1 origin of
replication by the F’ factor origin of replication, allowing subsequent prop-
agation in BAC form. (C) Gene loading into a unique loxP site of the
alphoid*®©-HAC by Cre-loxP recombination in CHO cells. (D) MMCT of
alphoid™t°-HAC/NBS1 or VHL from CHO into gene-deficient cells for com-
plementation analysis (E) Elimination of the alphoid®*©-HAC/NBS1 or VHL
from cells by expression of the tTS fusion construct. (F and G) Analysis of
TAR clones containing the full-length NBST gene for the presence of exons
before (F) and after (G) retrofitting. (H and /) Analysis of TAR clones containing
the full-length VHL gene for the presence of exons before (H) and after (/)
retrofitting.
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clones contain all exons (Fig. 1 F and H) and did not reveal any
structural rearrangements. Analysis of the NBSI genomic segments
is shown in Fig. S1.

Conversion of NBS1- and VHL-YACs into BACs with a LoxP Cassette for
Gene Loading into Alphoid™®-HAC. A yeast-bacteria-mammalian
cell shuttle vector, pJBRV1, was constructed to retrofit YAC
gene isolates into YAC/BACs (Figs. S2 and S3). The vector
contains a 3’ HPRT-loxP-eGFP cassette, allowing gene loading
into a unique loxP site of the alphoid***°~-HAC in CHO cells. An
F’ factor origin of replication allows YAC propagation as a BAC
molecule. Conversion of the YAC into a BAC is advantageous
because purification of circular DNA molecules is much easier
from Escherichia coli than from yeast cells. The protocol for
retrofitting is shown in Fig. 1B and Fig. S2. Integrity of NBSI-
and VHL-containing BACs was confirmed by PCR amplification
of all exons (Fig. 1 G and I) and analysis of their inserts by pulse-
gel electrophoresis (Fig. S1D).

Loading of NBST and VHL Genes into Alphoid**®-HAC by Cre-loxP-
Mediated Recombination in CHO Cells. The alphoid*“*°-HAC with
a unique gene loading site was used for this purpose. This HAC
was identified among several HAC clones carrying a loxP cassette
(s) (23) by Southern blot hybridization. To insert §en0mic copies
of the NBSI and VHL genes into the alphoid*°-HAC, the ap-
propriate BAC constructs and a Cre-recombinase expression vec-
tor were cotransfected into Aprt-minus CHO cells carrying the
HAC and HPRT-plus colonies were selected on HAT medium
(Fig. 1C). Insertion of genes into the HAC was confirmed by
PCR by using specific primers (Table S1) to detect reconstitution
of the HPRT gene, which accompanies Cre/Lox targeting. FISH
images of alphoid'>-HAC/NBS1 and alphoid“*°~-HAC/VHL
are shown in Fig. 2 4 and B. The HACs are maintained auton-
omously and the HAC signal colocalizes with NBSI and VHL
gene signals on metaphase chromosome spreads. Immunocyto-
chemistry detected homogeneous pNBS1 expression in the nu-
cleus of all cells (Fig. 2 C and D). Western blot analysis of the
alphoid“'°-HAC/NBS1 clone with human-specific antibodies
against pNBS1 revealed that the NBSI gene inserted into the
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Fig. 2. Expression of NBST and VHL genes loaded into the HAC in CHO cells.
(A) FISH analysis of the alphoid™**-HAC/NBS1 in CHO cells with specific probes
for the BAC vector (in red) and for gene sequences (green). (B) FISH analysis of
alphoid™*°-HAC/VHL in CHO cells. (C) Immunocytochemical staining of CHO
cells and (D) isogenic cells with the alphoid™*°-HAC/NBS1 using Abs against
pNBS1 (red) and GFP (green). (E) Western blot analysis of a CHO clone con-
taining alphoid™*°-HAC/NBS1 with human-specific Abs against pNBS1. NBST
inserted into the alphoid®™*-HAC produces a protein of the predicted size.
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alphoid“*®-HAC expresses a protein of the predicted size (Fig.
2F). Because antibodies against human pVHL produce a band
with the mobility of hVHL on Western blots in naive CHO cell
lysates, we used RT-PCR analysis to prove expression of the
VHL gene. RT-PCR products of the predicted size were obtained
(Fig. S4A4), and their identity was confirmed by sequencing.

Functional Complementation of Genetic Deficiency by Alphoid®-
HAC/NBS1. To prove its use as a genetic complementation vec-
tor, the NBS1-containing HAC was transferred to NBS1-deficient
GMO07166 (657del5) human cells via microcell-mediated chro-
mosome transfer (MMCT; Fig. 1D). FISH analysis confirmed that
alphoid™®*©-HAC/NBS1 propagates autonomously without detect-
able integration into chromosomes (Fig. 34). Western blot analysis
confirmed that this clone expresses pNBS1 (Fig. 3B). To prove the
functionality of the conditional kinetochore and confirm that
pNBS1 is expressed from the HAC, we targeted the tTS tran-
scriptional repressor to the HAC centromere in the alphoid'*©-
HAC/NBS1-containing GM07166 cells (Fig. 1E). This targeting
results in a high frequency of HAC loss, as described previously
(23, 24) (Fig. S5). Based on FISH and Western blot analysis, cells
that lost the HAC no longer expressed pNBS1 (Fig. 3B).

We used physiological tests to prove that alphoid®*°-HAC/
NBS1 produces functional pNBS1. pNBS1 plays a critical role in
damage responses to DNA double-strand breaks (DSBs). Within
seconds of generation of DSBs, histone H2A.X molecules are
phosphorylated by ATM and ATR on serine residues. The re-
sulting y-H2A.X spreads along megabase chromatin domains
flanking the DSB site (reviewed in refs. 27, 28). pNBS1 then
recruits the Mrel1/Rad50/NBS1 complex to the break site. Al-
though y-H2A.X foci formed in NBS1-deficient GM07166 cells
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after irradiation, as expected (ref. 29 and references therein),
MREI11 protein did not colocalize with y-H2A.X (Fig. 3 F-H). In
contrast, in GM07166 cells bearing alphoid'**°~-HAC/NBSL, lo-
calization of NBS1 and MREI11 to damage-induced y-H2A.X
foci was observed (Fig. 3 F—H). This colocalization was lost in
GMO07166 cells that had been “cured” of the HAC (Fig. 3 F-H).
As a control, we examined colocalization of y-H2A.X and 53BP1
in the same cells. As shown by others, 53BP1 localization to
damage foci is not affected by absence of pNBS1 (ref. 29 and
references therein). Indeed, y-H2A.X and 53BP1 irradiation-
induced foci colocalized independently of the presence of func-
tional pNBS1 in GM07166 cells (Fig. 3 F—H and Fig. S6).

Analysis of three proteins—ATM, KAP1, and p53—that
should be modified in response to irradiation revealed phos-
phorylation of the predicted amino acid residues in the analyzed
cells (Fig. 3E). We then analyzed kinetics of the disassembly of
y-H2A.X foci, which closely parallels the rate of DSB repair. The
kinetics slows down in NBS1-deficient cells similar to that in cells
deficient for ATM and 53BP1 (30). GM07166 cells bearing
alphoid"**®-HAC/NBS1 showed a more efficient disassembly of
foci compared with cells without HAC after 24 h (Fig. 3 C and
D). The dynamics of foci disassembly in the cells without and
with the HAC was identical to that observed in cultured lympho-
cytes from patients with NBS and normal individuals, correspond-
ingly (31). Thus, these results indicate a higher rate of rejoining of
DSBs in GMO07166 cells bearing alphoid''°-HAC/NBS1. Alto-
gether, our observations demonstrate that the alphoid**®-HAC/
NBS1 vector expresses a functional protein.

Functional Complementation of Genetic Deficiency by Alphoid®**-
HAC/VHL. When transferred to 786-0 renal carcinoma cells

1Gy / Y H2A.X
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GMO07166  Ngs1/HAC

Fig. 3. pNBS1 expression in NBS1-deficient cells. (A)
FISH analysis of the alphoid®™*°-HAC/NBS1 in GM07166
cells with specific probes for the BAC vector (red) and
NBST1 gene sequences (green). (B) Western blot analysis
of NBS1-deficient GM07166 cells, alphoid®*°-HAC/NBS1-
containing GM07166 cells before and after HAC elimi-
nation from the cells by expression of the tTS fusion
construct. (C and D) Kinetics of disassembly of y-H2A.X
foci in NBS1-deficient GM07166 cells and the same cells
with alphoid®*°-HAC/NBS1. (C) Immunostaining of irra-
diated cells. Cells were stained with anti—y-H2A.X anti-
bodies (red) and with DAPI (blue) after exposition to 1 Gy
IR and then collected after the times indicated. (D)
Quantitative analysis of disassembly of y-H2A.X foci. Cells
were collected after the time indicated, and the average
number of y-H2A.X foci was quantified over time. (E)
Western analysis of GMO07166 cells and cells with
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before and after HAC loss were fixed 2 h after irradiation
with 3 Gy and were double-stained with anti—y-H2A.X,
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NBS1 is colocalized with y-H2A.X in cells carrying the
alphoid™®-HACNBS1. (G) y-H2A.X and MRE11 are colo-
calized in foci in a pNBS1-dependent manner. (H) 53BP1
foci formation is not affected by absence of pNBS1.
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(RCCs) via MMCT, alphoid**°-HAC/VHL propagated auton-
omously without integrating into host chromosomes (Fig. 44).
These cells are VHL-negative as a result of a frameshift mutation
in the coding region of the gene (311delG). Expression of VHL
in 786-0 cells bearing alphoid'*'>-HAC/VHL was confirmed by
RT-PCR by using primers that specifically amplify the WT but
not the mutant allele of VHL (Fig. S4B). To prove that VHL is
expressed from the HAC, a vector expressing a tTS fusion was
introduced into cells to induce HAC loss (23, 24). Several GFP-
negative clones were selected. Based on FISH and RT-PCR
analyses, these clones lost the VHL along with the HAC.

Several specific tests based on the known functions of pVHL
were carried out to prove functional stable expression of pVHL
from the HAC in recipient cells. A critical role of pVHL in
down-regulation of HIF, CyclinD1, and Cdk1/CDC2 is well
documented (32-35). pVHL has E3 ubiquitin ligase activity and
targets a-subunits of HIF for rapid degradation by the protea-
some under normoxia. Those subunits are stabilized by hypoxia
(reviewed in ref. 36). We compared the levels of HIF2a,
CyclinD1, and CDC2 expression in VHL-deficient and isogenic
cells containing alphoid“*“°~-HAC/VHL by Western blot analysis.
As predicted, levels of HIF2a, CyclinD1, and CDC2 were sig-
nificantly lower in cells carrying alphoid*“‘°~-HAC/VHL (Fig.
4B), suggesting that pVHL expressed from the HAC restores
their normal down-regulation. Indeed, 786-0 cells cured of the
alphoid“‘°-HAC/VHL vector by centromere inactivation ex-
pressed the VHL-regulated proteins at their original elevated
levels (Fig. 4B). PGK1 and CA9 expression is regulated by
hypoxia and more specifically by the HIF1-a isoform (PubMed
ID no. 15964822). Because the 786-0 cell line lacks expression of
HIF1-a, no reduction of CA9 and PGKI1 was observed after
induction of pVHL in 786-0 cells (Fig. 4B).

Three additional tests confirmed the functional expression of
pVHL in recipient alphoid*“*°~-HAC/VHL cells. In RCCs, he-
patocyte growth factor (HGF) and FBS stimulate branching
morphogenesis, cell invasiveness, and cell migration via a VHL-
dependent pathway (37, 38). We therefore assessed those phe-
notypes in the VHL-deficient 786-0 RCC parental cell line and
its ‘isogenic derivative containing the alphoid®*®-HAC/VHL
vector (Fig. 4 C-E). Addition of exogenous HGF resulted in
branching of VHL-deficient 786-0 cells in a growth factor-re-
duced Matrigel assay. In contrast, stable expression of pVHL
from the alphoid®“*°-HAC/VHL vector abrogated this morpho-
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logic response of 786-0 cells to HGF (Fig. 4D). Similarly,
the relatively high basal level of invasiveness of VHL-deficient
786-0 cells was markedly stimulated by addition of FBS. This
response was dramatically su}())pressed in the isogenic 786-0 cell
line containing the alphoid***”-HAC/VHL vector (Fig. 4C). Fi-
nally, migration of 786-0 cells with alphoid**°-HAC/VHL was
also reduced relative to the parental cell line (Fig. 4F).

This battery of functional tests shows that the VHL gene
expressed from the alphoid™°-HAC/VHL produces a functional
product that complements the VHL-deficiency in 786-0 cells.

Proximity of CENP-A Chromatin Is Compatible with Gene Expression.
During de novo HAC formation, input DNA is multimerized and
then assembled into different types of chromatin, including
arrays of CENP-A nucleosomes that are interspersed with those
carrying different modifications of histone H3 (39). To better
understand the chromatin structure of regions flanking the NBS1
gene in the alphoid“® HAC, alphoid*“‘°-HAC/NBS1 was
transferred back to human HT1080 cells (Fig. S7) via MMCT.
The alphoid*©-HAC was generated in this host and its chro-
matin structure in those cells has been previously characterized
(22). After MMCT, two clones (NBS1 no. 3 and NBS1 no. 6)
were selected (Fig. 5). Immuno-FISH analysis confirmed the
assembly of CENP-A centromeric chromatin on the HAC
sequences (Fig. 5C). ChIP analysis of these clones showed
a chromatin pattern similar to that in the original alphoid®™-
HAC clone (AB2.2.18.21) (22) for CENP-A chromatin as well as
H3K4me3 (a marker for transcriptionally active chromatin),
H3K4me2 (a marker for open chromatin) and H3K9me3 (a
marker for heterochromatin) on alphoid**'” DNA (Fig. 5 4 and
B). These results confirm that the alphoid**°-HAC/NBS1 re-
tained its kinetochore chromatin structure after several rounds
of MMCT and gene insertion. ChIP analysis of regions flanking
the NBSI gene revealed a robust level of CENP-A chromatin
enrichment at the 3’ end of NBSI in clone NBS1 no. 3 and
a lower, but still significant, enrichment in clone NBS1 no. 6 (Fig.
5A). This indicates that the CENP-A chromatin domain extends
to beyond the gene insertion site. CENP-A enrichment at the 3’
NBSI sequence may be explained by the ability of CENP-A
chromatin to spread onto noncentromeric DNA (16, 39, 40). The
observed stable gene expression in the HAC suggests that close
proximity of the CENP-A domain does not prevent expression of
Pol Il-transcribed genes.
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Fig. 4. pVHL expression in VHL-deficient cells.
(A) FISH analysis of the alphoid®*°-HAC/VHL in
VHL-deficient 786-0 RCC4 cells. (B) Effect of pVHL
on the level of HIF2-a, CyclinD1, and Cdk1/CDC2
proteins. Immunoblots of whole cell extracts
isolated from the 786-0 cell line, the same cell
line containing alphoid®*®-HAC/VHL before and
after induction of HAC loss. CA9 and PGK1 pro-
786-0 teins, which are not affected by pVHL status in
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Fig. 5. Immuno-FISH and ChIP analyses of the
alphoid™*©-HAC/NBS1. (A) ChIP analysis of cen-

>

HT1080

tromeric chromatin in  alphoid™*°-HAC/NBS1
clones 3 and 6. Normal mouse IgG (Top), anti-
bodies against CENP-A, H3K4me2, H3K4me3, and
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H3K9me3 were used for analysis. The assemblies
of these proteins on the alphoid DNA of the
original alphoid®™*-HAC in AB2.2.18.21 cell line
(Left), the alphoid™™©-HAC carrying the human
NBST gene in NBS1 no. 3 and NBS1 no. 6 cell lines
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3" of NBS1
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(Right), are shown. The bars show the percentage
recovery of the various target DNA loci by immu-
noprecipitation with each antibody to input DNA.
Error bars indicate SD (n = 2 or 3). Analyzed loci
are alphoid®™ (alphoid DNA with tetO motif on
the alphoid™*©-HAC), bsr (the marker gene in the
HAC vector sequence), and 3’ and 5’ ends of NBST.
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rDNA (55 ribosomal DNA), alphoid™2' (centro-
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% of input

(pericentromeric satellite 2) were used as controls. :
Immunoprecipitated DNAs were quantified by 10 _ﬂ

1l

real-time PCR. (B) Positions of probes for ChIP

analysis in the original HAC and in the HAC car- 12
rying the NBST gene are shown by colored boxes.
(C) Immuno-FISH analysis of metaphase chromo-
some spreads containing the alphoid®™*-HACs. Cells
with the original alphoid®™*°-HAC (AB2.2.18.21)
and with alphoid®*©-HAC carrying the NBST gene
(clones 3 and 6) were used for analysis. Immu-

% of input

HT1080
AB2.2.18.21 NBS1#3

nolocalization of the centromeric protein CENP-A on metaphases was performed by indirect immunofluorescence with anti-CENP-A antibody and Alexa 488-
conjugated secondary antibody (green). HAC-specific DNA sequence (BAC) was used as a FISH probe to detect the HAC (red). CENP-A and BAC signals on the
HACs overlap one another.

Discussion

HACG:s represent a unique system for delivery and expression of
full-length genes that has several advantages over currently used
episomal virus-based vectors. Several groups have reported
successful expression of full-length genes in HACs (9-11, 20, 21).
The most advanced top-down HAC vectors are truncated
derivatives of chromosome 21. Determination of the structure of
one such derivative, 5-Mb 21ApqHAC, opened the way for its
use in clinical applications (18). Recently, this HAC was suc-
cessfully used for delivery and expression of several full-length
human genes, including the 2-Mb Duchenne Muscular Dystro-
phy (DYS) gene (41). However, a common limitation of all
HACG:s constructed so far is the inability to induce HAC loss to
enable transient gene expression or to have a negative control for
phenotypic changes attributed to expression of the gene loaded
into the HAC.

In our previous work, we developed a synthetic alphoid'**©-
HAC with a conditional centromere that can be inactivated (22).
This HAC contains a unique loxP site that allows selection for
gene loading (23).

In the present study, we analyzed the capacity of the
alphoid™*©-HAC to deliver genomic copies of average-size genes
into human cells and complement genetic deficiencies. We found
that the VHL and NBSI genes obtained by TAR clonin%can be
efficiently and accurately introduced into the alphoid**®-HAC,
resulting in artificial chromosomes that can be propagated in-
definitely in CHO cells. Because CHO cells exhibit a high effi-
ciency of microcell formation, this enables transfer of the HAC
to other cell types, including mouse ES cells, via MMCT (23, 42).

The HACs were transferred into cell lines derived from patients
with deficiencies in VHL or NBSI. Functional expression of
pVHL and pNBSI in recipient cells was demonstrated by a set of
specific tests based on the known functions of proteins. Impor-
tantly, corresponding controls could be conducted following
specific elimination (i.e., curing) of the HAC from the cells fol-
lowing targeted inactivation of the kinetochore.

No significant changes in the level of expression of pNBS1
were detected for more than 3 mo following introduction of the

20052 | www.pnas.org/cgi/doi/10.1073/pnas.1114483108
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alphoid“*°-HAC into patient-derived cell lines (Fig. S8). Al-
though additional studies are needed to determine whether
genes inserted into the alphoid™°©-HAC may eventually be
subject to silencing, our results and those obtained with other
HACs (21, 41) support the view that proximity to a functional
kinetochore does not negatively affect gene expression. It is
possible that, in the human genome, centromeric chromatin may
be a privileged region for Pol II-transcribed genes, as previously
shown for rice centromeres (43) and suggested by the resem-
blance of the centromeric chromatin profile to the downstream
region of transcribed genes in human cells (39, 44). Indirectly,
this hypothesis is supported by our data on spreading of CENP-A
chromatin to the 3’ end of NBSI and transcriptional activity of
genes in neocentromeres (reviewed in ref. 40).

The alphoid*®®-HAC, with its conditional centromere, has
significant advantages over other expression/cloning systems
when transient expression of a gene of interest is needed. For
example, generation of iPS cells requires only transient expres-
sion of specific cellular factors such as OCT4, SOX2, KLF4,
c¢cMYC, and LIN28 (45). Therefore, the ability to eliminate the
HAC along with any stem cell-inducing genes carried on it could
provide a strategy to avoid insertional mutagenesis and cell
transformation, complications that are frequently observed dur-
ing cell reprogramming (46). To adopt the alphoid''°-HAC
vector for such purpose, a HAC inactivation module consisting
of the doxycycline-regulated tTS fusion is being incorporated
into the HAC allowing induction of its loss by a simple addition
of a ligand. For gene therapy, the HAC may be inserted into
stem cells in the laboratory and then these stem cells may be
introduced into the patient. It is worth noting that efficient for-
mation and stable maintenance of HACs has been demonstrated
in stem cells (47).

To summarize, in this work, we demonstrate the utility of an
alphoid"*©-HAC vector for delivery of full-length genes and
correction of genetic deficiencies in human cells. We also dem-
onstrate the benefit of coupling the TAR gene cloning technol-
ogy, which provides an effectively unlimited resource of full-
length human genes, with the tetO-loxP-HAC gene delivery and
expression system. Because the structure of the alphoid'*'°-HAC
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is determined, this system may be potentially useful for gene
therapy.

Materials and Methods

Construction of TAR Cloning Vectors. The TAR circularizing vectors, pVC-NBS1
and pVC-VHL, containing 5’ and 3’ sequences of the NBST and VHL genes,
were constructed by using the basic vector pVC604 (26). Details of the
construction are described in S/ Materials and Methods.

Construction of pJBRV1 Retrofitting Vector and Conversion of NBS1- and VHL-
YACs into BACs Containing a loxP Site. A diagram of the pJBRV1 vector and
retrofitting of a circular YAC into a BAC is shown in Figs. S2 and S3. Details are
described in SI Materials and Methods.

Loading of Genomic Fragments into Unique loxP Site of Alphoid™**-HAC.
Details of gene loading are described in S/ Materials and Methods.

MMCT. Alphoid™°-HAC/NBS1 and alphoid®'©-HAC/VHL were transferred
from CHO cells to GM07166 and RCC 786-0 cell lines deficient for NBS7 and
VHL genes, respectively, by using a standard MMCT protocol (23, 41, 42).
Details of MMCT are described in S/ Materials and Methods.

Alphoid*'°®-HAC Elimination by Its Targeting with Chromatin Modifiers. In-
duction of HAC loss by inactivation of its kinetochore was performed as
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previously described (23, 24). The kinetics of HAC loss in response to tTS
expression are shown in Fig. S5.

Antibodies. The antibodies used for immunoblotting and immunostaining are
described in S/ Materials and Methods.

In Vitro Invasion, Cell Migration, and Branching-Morphogenesis Assays. Cell
invasion, cell migration, and branching-morphogenesis assays of 786-0 cells
and 786-0 cells containing alphoid***°-HAC/VHL were carried out as described
previously (37, 38).

ChIP Analysis. ChIP analysis was performed as described previously (22, 24, 44).
Details of ChIP are described in S/ Materials and Methods.
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