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We develop and validate the XYGJ-OS functional, based on the
adiabatic connection formalism and Görling-Levy perturbation
theory to second order and using the opposite-spin (OS) ansatz
combined with locality of electron correlation. XYGJ-OS with local
implementation scales as N3 with an overall accuracy of 1.28 kcal∕
mol for thermochemistry, bond dissociation energies, reaction bar-
rier heights, and nonbonded interactions, comparable to that of
1.06 kcal∕mol for the accurate coupled-cluster based G3 method
(scales as N7) and much better than many popular density func-
tional theory methods: B3LYP (4.98), PBE0 (4.36), and PBE (12.10).

ACM ∣ DHDF ∣ GGA ∣ LDA ∣ MAD

Obtaining chemical accuracy (∼1 kcal∕mol) to quantify key
chemical quantities (e.g., heats of formation, bond dissocia-

tion energies, and reaction barrier heights) using quantum me-
chanics (QM) has been a major focus in the development of the
theory. This has led to, for example, the Gn method (1, 2) that
approaches this chemical accuracy. Because G3 is a coupled-clus-
ter based method, it scales on the order of N7, where N measures
the system size, limiting to fairly small species for routine use.

The desire to predict unique physiochemical phenomena (e.g.,
solvation, catalysis, self-assembly, and drug design) in practical
(large) systems has brought about a second major focus of the-
oretical development, leading, for example, to divide-and-con-
quer formulations to attain more efficient scaling (3), but with
much lower accuracy than Gn.

Density functional theory (DFT) in the framework of Kohn-
Sham (KS) scheme (4, 5) provides a “shortcut” to the many-body
problem.Many density functional approximations (DFAs), provide
typical scaling of N3 ∼N4, while yielding significantly more accu-
rate results than Hartree-Fock (HF) theory, the lowest level wave
function based method with similar scaling, but they still lead to
significant errors for some systems. For example, current DFAs
lead to a poor description of London dispersion (van der Waals
attraction), which is essential to predict the packing of molecules
into solids, and the binding of drug molecules to proteins. These
DFAs are also poor in predicting the magnitude of reaction
barriers.

In this article, we develop and present a unique functional,
XYGJ-OS, that provides a good combination of high accuracy
and speed. XYGJ-OS involves a doubly hybrid density functional
(DHDF), containing both a nonlocal orbital-dependent compo-
nent in the exchange term (HF-like exchange), and also informa-
tion about the unoccupied KS orbitals in the electron correlation
part (PT2, perturbation theory up to second order) using the
opposite-spin (OS) ansatz to include the locality of electron cor-
relation. XYGJ-OS provides accuracy comparable to that of Gn
for the test datasets and speed with N2 ∼N3 for the local imple-
mentation. Hence XYGJ-OS is both accurate and fast.

Theory
The Holy Grail in KS-DFT is to find the exact, yet unknown,
exchange-correlation functional Exc½ρ� using density ρ as the basic
variable (4, 5). In practice, an approximate Exc must be adopted,
which is often partitioned into the exchange and correlation parts

Exc½ρ� ≈ EDFA
x ½ρ� þ EDFA

c ½ρ�: [1]

EDFA
x has been extended to include a portion of nonlocal EHF

x ,
where the superscript “HF” emphasizes that the exchange part
has the same form as in Hartree-Fock theory (6). The exchange-
correlation potential υxc in the nth cycle of the self-consistent-
field (SCF) process to solve the KS equation is obtained as a func-
tional of ρ of the previous cycle.

On the other hand, Görling and Levy (GL) (7, 8) argued that
the same KS scheme should work as well in terms of KS orbitals
φi and eigenvalues εi. GL proposed a formally exact KS scheme
based on perturbation theory, where Exc was expressed as:

Exc½ρ� ¼ EHF
x ½fφig� þ∑

∞

j¼2

Ec;j½fφig;fεig;fυ1ðrÞ;υ2ðrÞ;⋯;υj−1ðrÞg�;

[2]

Ec;2 ¼ EGL2
c ¼ ∑

∞

i¼1

jhΦs;0jV̂ ee − υ1jΦs;iij2
Es;0 − Es;i

: [3]

Here EGL2
c stands for the GL perturbation theory up to the sec-

ond order, fΦs;0;Es;0g and fΦs;i;Es;ig are the wave function and
energy for the ground state and the ith excited state of an N-elec-
tron KS system, respectively; V̂ ee is the operator of electron-elec-
tron repulsion, and the υ1 potential may be determined from the
“exchange-only” KS equation (8). With knowledge of the poten-
tials υjðrÞ, Eq. 2 gives the formally exact exchange-correlation
energy as functional of the KS orbitals φi and eigenvalues εi, with
which the approximate EDFA

xc ½ρ� defined in [1] can be compared.
However, in practice, such a procedure is difficult to apply to
higher than second order due to the unfavorable scaling with the
system size, and in many cases perturbation theory is nonconver-
gent. Thus the scheme must be simplified to make it applicable
for including higher-order contributions.
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The adiabatic connection method [(ACM), ref. 9, 10], which
defines a family of partially interacting N-electron systems with
a coupling constant for a fixed ρ, provides a powerful tool for
developing and understanding Exc (6, 11–13). ACM suggests
that Eq. 2 up to second order, while being more appropriate for
coupling close to zero, is only exact if the potential energy of ex-
change-correlation depends linearly on the coupling strength,
whereas [1] is more associated with full electron-electron cou-
pling (13, also see SI Text for more discussion). To go beyond
the linear approximation and to take advantages of both [1]
and Eq. 2, we define an empirical DHDF that combines Eq. 2
(j ¼ 2) with [1]:

EDHDF
xc ½ρ� ¼ c1ELDA

x þ c2ΔEGGA
x þ c3EHF

x þ c4ELDA
c

þ c5ΔEGGA
c þ c6EPT2

c : [4]

Here fELDA
x ;ELDA

c g are the exchange and correlation components
within the local density approximation (LDA), and fΔEGGA

x ;
ΔEGGA

c g are the corresponding correction terms to LDA within
the generalized gradient approximation (GGA). The meta-GGA
functionals that include kinetic energy density or the Laplacian of
density can also be used in place of GGAs. Such a combination
suggests that only the energetically most important double exci-
tation PT2 term in Eq. 2 need be calculated explicitly, the higher-
order correlations are embedded into the parameterized terms
such as ðEDFA

xc − EHF
x Þ (12). Other examples of DHDFs include

MC3BB (14), B2PLYP (15), B2GP-PLYP (16), and ωB97X-2
(17), which are derived and constructed differently (see below
and SI Text for more discussion).

Several key issues distinguish our approach from GL perturba-
tion theory (7, 8) and other DHDFs (14–23).

i. Instead of seeking for fφi;εi;υjg self-consistently and order
by order via Eq. 2, we use a conventional DFA defined in
[1] to generate fφi;εig and to evaluate Exc defined in Eq. 4
in a post-SCF manner. In fact, the GL perturbation theory,
Eq. 2, was built on KS orbitals with a local effective potential,
while we have extended it to include hybrid functionals with
generalized KS orbitals (12, 13).

ii. EPT2
c differs from EGL2

c in that the singles contribution is not
explicitly calculated, but we argue (12, 13) that it can be rea-
sonably absorbed into the parameterization in Eq. 4. Higher-
order contributions Ec;j (j > 2) are also implicitly included via
the parameterization.

iii. Neglecting the nonlocal exchange-correlation effects
ðEHF

x ;EPT2
c Þ in Eq. 4 leads to a pure DFA, while neglecting

the local exchange-correlation effects, Eq. 4 gives an approx-
imation to GL2. Hence our DHDF may be regarded as an
interpolation approach between a pure DFA and GL2, while
both of them are in the framework of the KS scheme. As
different orbitals are used to construct the PT2 term, neglect-
ing the local exchange-correlation effects in other DHDFs
(14–23) will bring back the conventional MP2, such that these
DHDFs may be regarded as an interpolation approach be-
tween a DFA and MP2, the wave function based lowest level
correlation method. These functionals go beyond the frame-
work of the KS scheme (23).

Assuming LDA and GGA in Eq. 4 are SVWN (24, 25) and
BLYP (26, 27), respectively, we previously developed XYG3
(12), a DHDF which is remarkably accurate for a wide range of
systems and important chemical properties (12, 13, 28–31).
Nevertheless, the PT2 term in XYG3 and other DHDFs is eval-
uated in a way similar to MP2:

EPT2
c ¼ 1

4∑
ij
∑
ab

jhφiφjjφaφbi − hφiφjjφbφaij2
εi þ εj − εa − εb

; [5]

where the subscripts (i, j) and (a, b) denote the occupied and
unoccupied KS spin-orbitals, respectively, leading to a formal
scaling as N5, as opposed to a formal scaling of N4 as in B3LYP
(24–27, 32, 33). This unfavorable scaling raises an issue for the
practicality to apply DHDFs to large systems.

Density fitting approximations have often been used in electro-
nic structure theories to reduce computational expense. In the
so-called “resolution-of-the-identity” RI-MP2 method (34, 35),
the product of occupied and virtual orbitals (ia pair) is expanded
with auxiliary functions, such that numerous 4-center 2-electron
integrals based on molecular orbitals (MO) are replaced by fewer
3 and 2-center integrals with cheaper transformation from atomic
orbitals (AO) to MO. RI-MP2 is about 5–20 times faster than
conventional MP2 (36, 37). Nevertheless, RI-MP2 reduces only
the prefactor, it does not change the scaling. Similarly, we have
RI-XYG3, which retains the original accuracy but is faster for
small systems with large basis sets.

Here we propose a unique OS ansatz for DHDF, that yields a
balanced description of nonlocal correlation effects while consid-
erably reducing computational time. Our OS ansatz is motivated
by the observation that the most important electron correlation
effects involve correlations of the OS electrons in the same orbi-
tal. The OS ansatz leads to N4 scaling (36, 37) [using auxiliary
basis expansions (34, 35) and Laplace quadrature approximations
(38)]. It should be emphasized that as the same-spin (SS) corre-
lation is very important in accurate description of open-shell
systems and magnetic properties, such contributions cannot be
simply neglected. In XYGJ-OS, the SS correlation effects are
included within the standard DFA.

In recognition of the “nearsightedness of electron correlation”
as emphasized by Kohn (39), we then build upon XYGJ-OS to
introduce the local approximation for the OS electron correlation
by utilizing the sparsity of the RI expansion coefficients, integral
matrices, and Laplace transform matrices. The local implemen-
tation of XYGJ-OS scales as N3 while retaining the accuracy of
the original XYGJ-OS (see SI Text for more discussion).

Thus our proposed functional form (XYGJ-OS) is

EXYGJ-OS
xc ½ρ� ¼ exEHF

x þ ð1 − exÞES
x þ ðeVWNEVWN

c þ eLYPELYP
c Þ

þ ePT2EPT2
c;os : [6]

In Eq. 6 we normalize the HF exchange and Slater exchange (24),
while eliminating the ΔEGGA

x contribution. The correlation part
consists of EVWN

c (25), ELYP
c (27), and EPT2

c;os , where the first term
includes both the SS and OS effects while the second and third
terms include only OS components. Our concept is that the com-
bination of VWN, LYP, and PT2-OS yields a balanced description
of both local and nonlocal spin dependent correlation terms.
To determine the optimal four parameters in Eq. 6, we use the
experimental heats of formation (HOF) data for the G3/99 set
of 223 molecules (1, 2) as the training set, leading to
fex;eVWN;eLYP;ePT2g ¼ f0.7731;0.2309;0.2754;0.4364g.
Results and Discussion
We emphasize that we use the fully optimized B3LYP orbitals to
generate the density and to calculate each term in Eqs. 4 or 6 (12,
13, 29–31). But the choice of LDA ¼ SVWN and GGA ¼ BLYP
in Eqs. 4 or 6, as well as using B3LYP orbitals as input, is not
unique. We find that any conventional DFAs defined in [1] can
also serve the same purpose, leading to similar performance,
albeit with a reoptimized set of mixing parameters. In our meth-
od, we assume that our KS wave function is the zeroth-order wave
function in the GL perturbation theory that gives the correct
ground-state electron density. Instead, MC3BB is a multicoeffi-
cient method, which mixes the total energies from the conven-
tional MP2 and a conventional DFA calculation. Hence there
are two independent SCF calculations in the MC3BB type of
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DHDFs, which lead to two sets of different orbitals, yielding two
different densities. In MC3BB, the SCF-HF orbitals are used for
MP2 evaluation (14), while it is well known that HF wave function
is the one-determinantal wave function which gives the lowest
expectation value with the fully interacting Hamiltonian. It has
been shown recently (23) that the B2PLYP family of functionals
works in a way which is technically similar to MP2. These func-
tionals adopt orbitals that minimize the one-determinantal wave
function based on the so-called density-scaled one parameter
hybrid approximation. Hence, the density from the B2PLYP type
of functionals is by construction not meant to be the true density.
In contrast to what was originally proposed (15), there is no
singles’ contribution by construction in the B2PLYP family of
functionals, and its theoretical basis is provided by the multide-
terminant extension of the Kohn-Sham scheme (23). On the
other hand, the key idea of the XYG3 type of functionals is to
combine the GL perturbation theory and the standard KS scheme
in the framework of ACM. In XYG3, only the energetically most
important double excitation PT2 term in Eq. 2 is calculated ex-
plicitly using orbitals generated from a conventional DFA in [1].
Our present OS ansatz further reduces the computational cost by
only calculating the most important electron correlation effects
contributed by the OS electrons in the same orbital. XYGJ-OS
presents a unique combination of speed and accuracy. Hence, we
propose that the current DHDFs shall be categorized into three
types (13), as represented by MC3BB (14), B2PLYP (15), and
XYG3 (12). The former two go beyond the KS scheme.

It is possible to carry out a SCF calculation for any orbital-
dependent Exc using, for example, the direct optimization
approach to compute the optimized effective potential (OEP) as
proposed by Yang and coworkers (40). It was found that such a
SCF procedure can often lead to unphysically unbound state with
too low total energy mainly due to the near-degeneracy of the
orbitals in the single excitation terms. This unbound issue can be
largely remedied by calculating only the double excitation terms
in the post-SCF manner (40). This procedure is indeed the cal-
culation approach adopted by the XYG3 type of functionals.
Furthermore, we note that extra terms will appear when formu-

lating the analytical gradients for doing geometry optimization
with our functionals, which, however, will not impose any prac-
tical difficulty in implementation as compared to other types of
DHDFs.

We find that XYGJ-OS is remarkably accurate for a broad
range of systems and important chemical properties (1, 2,41–45)
other than HOF which are not used in fitting the parameters.
Table 1 (more details are in SI Text) compares the overall perfor-
mance of some representative DFT methods, showing that
XYGJ-OS is the best or nearly best for essentially all properties,
leading to chemical accuracy (1.28 kcal∕mol) comparable to the
G3 theory (which contains four empirical parameters involving
the number of electron pairs) (1.06) and much better than MP2
(7.49 kcal∕mol).

Heats of Formation. The 223 molecule G3/99 set (1, 2) provides a
test of accuracy for the main group covalent systems. XYGJ-OS
gives mean absolute deviation (MAD) of 1.65 kcal∕mol, lying be-
tween those of G2 (1.89) and G3 (1.06) theories. Note that the
MADs for HOF listed in Table 1 associated with XYG3, B2PLYP,
B2PLYP-D, and ωB97X-2(LP) are taken from the original
refs. 12, 17, 22, which were obtained by using the way these func-
tionals were parameterized. It was shown that HOF calculations
with DHDFs are most prone to the basis set effects (29). The
results with the G3Large basis set (1) used for optimization of
the XYGJ-OS functional can be found in SI Text, where severe
basis set dependences are clearly shown.

Charged Species. Charged species are not included in our training
set. The G2-1 set (2) for ionization potential (IP) contains 14
atoms and 24 molecules. XYGJ-OS gives a MAD of 1.23 kcal∕
mol, being one of the best DFT methods for calculating IP. Over
the 25 cases in the G2-1 set for electron affinity (EA) (2), XYGJ-
OS leads to MAD ¼ 1.97 kcal∕mol. Generally, increasing the
size of the basis set will increase the accuracy for EA calculation
with DHDFs. For the eight systems for proton affinity in the G2
and G3 sets (1), XYGJ-OS leads to MAD ¼ 1.68 kcal∕mol, com-
parable to the performance of conventional DFAs.

Table 1. MAD, (in kcal∕mol) for various benchmarks

Methods
HOF IP EA PA BDE NHTBH HTBH NCIE All

Time*

(223) (38) (25) (8) (92) (38) (38) (31) (493) C100H202 C100H100

DFT methods
SVWN (LDA) 130.88 15.14 17.30 5.68 18.14 12.53 17.95 3.29 67.28
BLYP 10.16 6.02 2.47 1.75 7.00 8.29 7.68 1.49 7.84
PBE 20.71 5.13 2.40 1.56 3.91 8.57 9.48 1.17 12.10
TPSS 5.01 5.36 2.41 1.66 5.88 9.04 8.26 1.14 5.33
B3LYP 6.08 3.74 2.45 1.40 5.51 4.84 4.26 0.98 4.98 2.8 12.3
B3LYP-D3 4.15 3.77 2.47 1.18 4.29 5.17 4.97 0.64 3.93
PBE0 5.64 3.84 2.97 1.25 3.67 3.56 4.38 0.71 4.36
M06-2X 2.26 2.72 2.37 1.94 1.40 1.26 1.25 0.28 1.86
XYG3† 1.81 1.31 1.84 1.61 1.57 1.29 0.75 0.32 1.51 200.0 81.4
XYGJ-OS 1.65 1.23 1.97 1.68 0.71 1.18 0.88 0.35 1.28 7.8 46.4
MC3BB 3.28 2.78 4.01 1.03 2.43 1.44 0.80 0.58 2.58
B2PLYP‡ 2.74 2.48 2.15 1.52 2.95 2.23 1.73 0.55 2.45
B2PLYP-D‡ 1.67 2.48 2.15 1.34 2.27 2.47 2.11 0.45 1.88
ωB97X-2(LP)§ 1.52 1.73 1.56 1.09 1.62 1.67 0.74 0.47 1.44
Wavefunction based methods
HF 213.42 23.19 26.46 3.09 32.70 9.08 13.51 2.37 107.71
MP2 10.63 3.49 3.59 2.13 7.73 5.42 3.91 0.60 7.49
G2 1.89 0.97 1.31 1.34 1.80 0.97 1.24 0.57 1.56
G3 1.06 1.27 1.13 1.06 1.08 0.97 1.24 0.57 1.06

HOF is heat of formation (1, 2), IP is ionization potential (2), EA is electron affinity (2), PA is proton affinity (2), BDE is bond dissociation energy (40),
NHTBH and HTBH are barrier heights for reactions (42, 43), NCIE is the binding in molecular clusters (42, 43). The basis sets used for final energetics are
G3Large unless otherwise stated. See SI Text for computational details.
*The time is single CPU hours on 2.5 GHz Xeon for linear alkane C100H202 and the C100H100 diamond structure. The basis sets used are cc-pVDZ.
†Taken from ref. 12 with 6-311+G(3df,2p).
‡HOF are taken from ref. 22 with very large basis set of CQZV3P. BDEs are calculated using the corresponding HOF.
§Taken from ref. 17 or calculated with 6-311++G(3df,3pd). BSSE corrections are included for the NCIE set.
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Bond Dissociation Enthalpy (BDE). BDE is arguably the most impor-
tant property for chemistry, carrying additional information other
than HOFs (13). XYGJ-OS leads to MAD ¼ 0.71 kcal∕mol for
the 92 reactions in the BDE92/07 set (40)! This accuracy surpasses
the MAD of the most accurate ab initio methods, G2 (1.80) and
G3 (1.09 kcal∕mol). Indeed XYGJ-OS leads to half the MAD
of XYG3 (1.57 kcal∕mol), providing strong support for the OS
ansatz and the local approximation.

Reaction Barrier Height (RBH). We use the NHTBH and HTBH
datasets of Zhao and Truhlar as testing sets (42, 43) of RBHs.
NHTBH contains six heavy-atom transfer reactions, eight nucleo-
philic substitution reactions, five unimolecular and association
reactions, while HTBH comprises solely 19 hydrogen transfer
reactions. XYGJ-OS leads to MAD ¼ 1.03 kcal∕mol for the two
sets together, a significant improvement over B3LYP (4.55 kcal∕
mol) and MP2 (4.67 kcal∕mol). Note that the dispersion cor-
rected methods [e.g., B3LYP-D3 (46)] may deteriorate the per-
formance for RBH calculations.

We test various methods in describing the whole Hþ CH4 →
H2 þ CH3 reaction path using the coupled-cluster method with

single and double as well as perturbative triple excitations
(CCSD)(T)/6-311++G(3df,2pd) data (43) as the reference. The
results are depicted in Fig. 1A. XYGJ-OS results are nearly
identical to the XYG3 and CCSD(T) results before the barrier.
But XYGJ-OS overestimates the reaction endothermicity by
1.21 kcal∕mol.

Nonbonded Interaction (NBI).We use the NCIE dataset of Zhao and
Truhlar (42, 43) to test the XYGJ-OS performance for the descrip-
tion of NBIs. The NCIE set includes six hydrogen bond complexes,
seven charge-transfer complexes, six dipole interaction complexes,
seven weak interaction complexes, and five π-π stacking complexes.
XYGJ-OS (MAD ¼ 0.35 kcal∕mol) does quite well for NBI,
including the London dispersion dominant systems in the NCIE
dataset. For the S22 set (47), which contains larger molecules
(e.g., uracil dimer, adenine-thymine complexes) that are more
biologically related, XYGJ-OS (MAD ¼ 0.36 kcal∕mol) leads to
similar accuracy as the dispersion corrected methods (22, 46).
On average, B3LYP-D3 improves B3LYP by 0.34 kcal∕mol for
the NCIE set. While significant improvements occur for the weak
interaction complexes, and the π-π stacking complexes, B3LYP-D3
significantly overbinds the hydrogen bond complexes, and the
charge-transfer complexes (see SI Text for more discussion).

We test various methods in describing the intermolecular
potentials of the CH4-C6H6 complex calculated by various meth-
ods. The CCSD(T) results at the complete basis set (CBS) limit
are used as reference (44). As shown in Fig. 1B, XYGJ-OS data
are nearly on top of those of XYG3.

Scaling. Equally important is that XYG3 and other DHDFs
(15–19) scale formally with the fifth power of the size, while
XYGJ-OS scales formally with the fourth power, and for the local
implementation it scales formally with the third power. In con-
trast, the most accurate ab initio methods, CCSD(T), and G3,
scale as the seventh power. Indeed, Table 1 shows that the total
computational time for C100 chains and diamondoids with local
XYGJ-OS is just 3 to 4 times that for B3LYP (a part of XYGJ-
OS), with a scaling of N2.1for n-alkanes (See SI Text for more
details).

Summary
We have developed and validated here a unique doubly hybrid
density functional, XYGJ-OS, using Walter Kohn’s insight about
“nearsightedness” of electron correlation by including explicitly
only the correlation between electrons of OS and then only the
parts that are in the same region of space. We show that XYGJ-
OS achieves nearly chemical accuracy (1.28 kcal∕mol) with com-
putational costs scaling as N3. This unique combination of high
accuracy and speed leads to a practical level of calculation while
attaining chemical accuracy for large molecular systems.
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