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Whether hESC-derived neurons can fully integrate with and func-
tionally regulate an existing neural network remains unknown.
Here, we demonstrate that hESC-derived neurons receive unitary
postsynaptic currents both in vitro and in vivo and adopt the
rhythmic firing behavior of mouse cortical networks via synaptic
integration. Optical stimulation of hESC-derived neurons express-
ing Channelrhodopsin-2 elicited both inhibitory and excitatory
postsynaptic currents and triggered network bursting in mouse
neurons. Furthermore, light stimulation of hESC-derived neurons
transplanted to the hippocampus of adult mice triggered post-
synaptic currents in host pyramidal neurons in acute slice prep-
arations. Thus, hESC-derived neurons can participate in and
modulate neural network activity through functional synaptic
integration, suggesting they are capable of contributing to neural
network information processing both in vitro and in vivo.
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mbryonic stem cells (ESCs) (1, 2) and induced pluripotent

stem cells (iPSCs) (3-5) can be directed to regional- and
transmitter-specific neuronal subtypes (6-13), which correct the
behavioral deficits associated with disease phenotypes in animal
models after transplantation (9, 10, 14, 15). It is generally be-
lieved that functional integration into existing circuitry is re-
quired for their long-term therapeutic potential. Both mouse (m)
ESC- and hESC-derived neurons express basic functional prop-
erties, such as action potential (AP) firing and synaptic currents
(6, 11, 16, 17). In addition, when deposited on the dentate gyrus
of organotypic hippocampal slice cultures, they display post-
synaptic responses upon stimulation of perforant path fibers (18,
19). Similarly, in acute slice preparations from transplanted
animals, hESC- and human iPSC-derived neurons demonstrate
spontaneous postsynaptic currents (PSCs) (16, 20) that are
thought to be derived from presynaptic transmitter release from
host neurons. Thus, in vitro-generated neurons can generate APs
in response to current injection and can receive unitary synaptic
inputs from surrounding neurons.

However, complete functional integration requires more com-
plex physiological properties, including PSC-induced spiking,
presynaptic outputs to surrounding neurons, and the ability to
regulate the behavior of a preexisting neural network. Because of
technological deficiencies in stimulating groups of neurons si-
multaneously, none of these properties has been definitively
demonstrated for ESC-derived neurons from either mouse or
human. In this study, we used optogenetic targeting of hESC-
derived neurons (21, 22) to test these capabilities in vitro and
in vivo. First, we exploited the unique bursting pattern of activity
in mouse cortical cultures to demonstrate that hESC-derived
neurons not only adopt bursting behavior but can also modulate
the mouse network activity via synaptic output. Furthermore, we
show that human neurons make both excitatory and inhibitory
synaptic connections with individual mouse neurons. Lastly, we
demonstrate that hESC-derived neurons can elicit PSCs in hip-
pocampal pyramidal neurons in slices taken from transplanted
mouse brains.
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Results

hESC-Derived Neurons Adopt the Bursting Behavior of Mouse Cortical
Networks via Synaptic Integration. To address whether hESC-de-
rived neurons can fully integrate with an established neural net-
work, we first used long-term cocultures with mouse cortical
neurons from embryonic day 16 pups. A unique feature of these
cultures is the presence of synchronized network activity referred
to as “bursting” (Fig. 1C, i) (23, 24), which may arise from deaf-
ferentation because of limited numbers of tonically active neurons
(25). Bursting has not been reported in hESC-derived neuron
cultures (6, 17, 22), which continuously add tonically active neu-
rons from progenitor cells when differentiated to a “default”
dorsal forebrain phenotype (6, 17, 22). These cultures are pri-
marily comprised of both glutamatergic and GABAergic neurons
when plated alone or in coculture (6, 22) (Fig. S1 4 and B).

Current-clamp recordings from GFP-labeled mouse neurons
cultured alone (Fig. 14, Left) revealed the presence of spontane-
ous bursting as early as 7 d in vitro (div) (Fig. S24, upper trace),
which persisted for the duration of the experiment (Fig. S24, lower
trace). We thus considered cortical cultures that displayed burst-
ing to qualify as an established neural network. For cocultures, we
plated whole hESC-derived neuroepithelial aggregates (21div)
onto 7div mouse cultures. These aggregates contain dividing
neural progenitors, as well as postmitotic neurons expressing
Channelrhodopsin-2 (ChR2)-mCherry (Fig. 14, Right). Table S1
illustrates that, compared with measurements for human neurons,
mouse neurons demonstrated significantly larger capacitance (P <
0.001, n = 4), lower input resistance (R;,; P < 0.001, n = 4), and
more hyperpolarized resting membrane potentials (RMPs) (P <
0.001,n = 4) at each time point. Furthermore, mouse neurons had
larger inward and outward voltage-gated currents at all times
tested (Fig. 1B; 8-wk time point shown).

Similar to previous studies, current-clamp recordings from
hESC-derived neurons plated alone (Fig. 14, Center) showed no
bursting activity after 6 wk of culture (Fig. 1C, ii) or at any time
point recorded (2 wk: 0 of 242; 4 wk: 0 of 211; 6 wk: 0 of 67; 8 wk:
0 of 53). In contrast, human neurons in coculture with mouse
cortical neurons displayed prominent bursting activity in co-
culture (Fig. 1C, iii and iv, and E). Importantly, bursting mea-
sured in current-clamp mode is indicated by AP generation (Figs.
1C and 2 and Figs. S1B and S4). However, we also use bursting
generally to refer to any synchronized postsynaptic activity
measured in voltage-clamp, regardless of whether summation
currents were observed. Because hESC-derived neurons dem-
onstrated progressively hyperpolarized RMPs during the study
period (Table S1), we quantified the proportion of bursting cells
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Fig. 1. hESC-derived neurons adopt the bursting activity of a preexisting neural network. (A) Differential interference contrast and/or epifluorescent images of
mouse cortical cultures (Left), hESC-derived neuronal cultures (Center), or mouse-human cocultures (Right) after 4 wk in vitro. (B) Representative traces of mouse
(Upper) or human neuron (Lower) that received 500-ms voltage steps from —50 to +50 mV at 8 wk of coculture. (C) Representative current-clamp recordings from
amouse or human neurons at various time points. Bursting activity was routinely observed in mouse neurons (i) and human neurons between 4 (iii) and 8 wk (iv)
of coculture, whereas no bursting was observed in hESC-derived cultures alone (ii). (D) Recordings in voltage-clamp display similar results as those in current-
clamp but provide a uniform driving force (=70-mV holding potential) for quantification of the proportion of bursting cells. (E) Pooled data demonstrate
a progressive increase in the proportion of hESC-derived neurons that display bursting at various times in coculture. Data are means + SEM. (Scale bars, 100 um.)

using voltage-clamp at a holding potential of —70 mV. Under
these conditions, we still observed bursting behavior in mouse
(Fig. 1D, i) and human (Fig. 1 D, ii) neurons in coculture but not
in human neurons alone (Fig. 1D, ii). Fig. 1E illustrates that
bursting was observed in few hESC-derived neurons in coculture
for 2 wk, a majority of cells at 4 wk, and nearly all neurons after 6
and 8 wk of coculture. Interestingly, human cells displayed sig-
nificantly smaller burst amplitudes than mouse neurons (Fig. S3
A and B), even when corrected for differences in cell size (Fig.
S3C). Lastly, we observed the presence of “superbursts” (25) in
both mouse (Fig. S2B, upper trace) and cocultured human (Fig.
S2B, lower trace) neurons, which exhibited long-duration depo-
larizations lasting multiple seconds with regenerative spiking.
Thus, hESC-derived neurons can develop synchronized bursting
activity but only in the presence of an established mouse cor-
tical network.

To determine whether bursting activity in human neurons was
attributable to functional integration with the existing mouse
network (and not a newly generated human network), we used
dual patch-clamp recording of neurons of both species cocul-
tured for 6 and 8 wk. Fig. 2 4 and B illustrates the presence of
nearly simultaneous bursting in a mouse (upper trace) and
hESC-derived neuron (lower trace) when bursts were sponta-
neously generated by the culture. Similar results were obtained
from two mouse neurons that also displayed simultaneous
bursting (Fig. S4). All dual recordings in which both cells dis-
played bursting (n = 9) also demonstrated simultaneous burst-
ing. Interestingly, activity in the mouse cell generally preceded
that of the human cell by a mean duration of 61.4 + 9.5 ms (Fig.
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2B; range: —1.8-410.1 ms). Furthermore, all bursts recorded in
both mouse and human neurons were eliminated by the applica-
tion of the AMPA receptor antagonist 6-cyano-7-nitroquinoxa-
line-2, 3-dione (CNQX) (Fig. 2F; 50 pM). Thus, hESC-derived
neurons became part of the existing cortical network via excitatory
synaptic integration.

hESC-Derived Neurons Regulate the Excitability of an Existing Mouse
Cortical Network via Synaptic Output. We next asked whether hu-
man neurons could influence mouse network activity via synaptic
output. A train of 10 light pulses delivered at 10 Hz to specifically
activate hESC-derived neurons was sufficient to induce spiking
in the human cell (Fig. 2 C and D, lower trace) and bursting
behavior in the mouse neuron (Fig. 2 C and D, upper trace).
Light-induced bursting was highly repeatable (Fig. 2C), and
light-induced APs (LI-APs) in hESC-derived neurons preceded
bursting activity in mouse cells by a mean duration of 73.7 + 6.2
ms (range: 38.2-107.9 ms; Fig. 2D, see below). Furthermore,
light-induced bursting mimicked the spontaneous bursting ac-
tivity even when applied within seconds of a spontaneous burst
(Fig. 2E). We hypothesized that light-induced bursting was at-
tributable to multiple hESC-derived neurons simultaneously
triggering PSCs in mouse cells. Indeed, in mouse cells in which
light stimulation did not induce bursting, multiple PSCs were
triggered immediately following the light pulse (Fig. S54). In
addition, dual patch-clamp recordings from two human neurons
revealed simultaneous excitation upon light stimulation (Fig.
S5B). Thus, human neurons are capable of regulating overall
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Fig. 2. hESC-derived neurons display a reciprocal synaptic relationship with dissociated mouse cortical cultures. (A) Dual patch-clamp recordings from mouse
(upper trace) and human (lower trace) that display repeatable, nearly simultaneous bursting in both cells when bursts were generated spontaneously by the
culture. (B) Expanded time scale demonstrates that mouse activity preceded human activity (mean: 61.4 + 9.5 ms). (C) Repeated 10-Hz light stimulations
produced APs in hESC-derived neurons (Lower) and coincident bursting activity in mouse neurons (Upper). (D) Expanded time scale demonstrates that the first
light stimulus preceded bursting by a mean duration of 73.7 + 6.2 ms. (E) Dual patch-clamp recordings from a human (Upper) and mouse (Lower) neuron in
which a spontaneous burst was triggered by the culture, followed by a light-induced burst generated by human neurons. (F) All spontaneous bursts and light-
induced bursts (but not light-induced APs) were eliminated by application of CNQX (50 uM).

network activity, likely via synaptic output of multiple human
neurons firing simultaneously in response to optical stimulation.

As mentioned, spontaneous and light-induced bursts were
eliminated by application CNQX, whereas LI-APs remained
(Fig. 2F). However, in some dual recordings (two of nine), light-
induced PSCs (LI-PSCs) were observed in the mouse neuron
after application of CNQX (Fig. 34). A 1-Hz light stimulus was
still able to trigger escaped action currents in the human cell
(Fig. 3 A and B, upper traces), as well as individual PSCs in the
mouse neuron that had relatively long-duration decay constants
(tr = 20.2 £ 1.7 ms; Fig. 3B, middle trace). LI-PSCs in these pairs
occurred with a mean delay from light onset of 13.9 + 1.2 ms
(range: 9.7-20.2 ms) and 4.0 + 0.5 ms from AP onset (range: 1.1-
6.6 ms). Furthermore, these currents were completely blocked by
picrotoxin (50 pM), suggesting that they were GABAergic in
nature (Fig. 3 A and B, lower traces).

Similar results were found in multiple mouse neurons recor-
ded alone where a current-voltage (I-V) relationship revealed
a mean reversal potential of —41 + 2.7 mV (Fig. 3C), in good
agreement with the reversal potential of chloride for the
solutions used (—44 mV). In cultures lacking high-frequency
PSCs, we were also able to detect LI-PSCs in mouse cells with
faster kinetics (t = 4.1 + 0.7 ms; Fig. 3D), indicative of excitatory
PSCs. In the presence of the NMDA receptor antagonist D-2-
amino-5-phosphonopentanoic acid (APS5) (25 pM), a I-V re-
lationship curve revealed a reversal potential of 2.6 + 0.7 mV,
close to the reversal potential for AMPA receptors. Under these
conditions, LI-PSCs in mouse neurons occurred after a mean
delay of 17.7 + 1.4 ms from light onset (range: 9.7-32.8 ms). Fig.
3E demonstrates the increase in percentage of mouse neurons
that displayed evidence of LI-PSCs, which reached 31.5 + 5% by
8 wk in coculture. Although the fraction of LI-PSCs observed did
not significantly change between 6 and 8 wk (P = 0.32, n = 4),
incidence at these time points was significantly greater than
the 4-wk time point (Fig. 3E; P = 0.02, n = 4). However, the
incidence frequency determined may underestimate the per-
centage of synaptically connected cells because of the high
degree of spontaneous activity in many of the mouse neurons
(Fig. S6), which made LI-PSCs difficult to resolve in some
cases. Taken together, hESC-derived neurons regulate mouse
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network excitability via excitatory (glutamatergic) and/or inhi-
bitory (GABAergic) synaptic connections.

hESC-Derived Neurons Make Functional Synapses with Mouse
Neurons in Vivo. To determine whether hESC-derived neurons
could form functional presynaptic connections with mouse neu-
rons in vivo, we transplanted neuroepithelial aggregates infected
with Syn-ChR2(H134R)-mCherry to the CA3 region of 2-mo-old
SCID (n = 32) mice. The hippocampus was chosen because of its
highly organized structure such that endogenous neurons could
be readily identified without additional labeling. In 50-pm slices
taken from perfused animals, many highly arborized mCherry*
neurons that coexpressed the human nuclear antigen (Fig. S7)
could be seen migrating through various strata of CA3, CA1, and
dentate gyrus (Fig. 44). For physiological analysis, we performed
acute coronal slice preparations (400 pm) to maximize the op-
portunity of maintaining intact projections from transplanted
neurons. All mCherry™ cells (n = 12) displayed inward and
outward voltage-gated currents, as well as spiking (Fig. 4B), in
response to current injection. Furthermore, a majority of hESC-
derived neurons (8 of 12) demonstrated spontaneous PSCs, in-
dicating their postsynaptic integration within the slice (Fig. 4C).
In all cases (n = 12), light stimuli triggered spikes when cells
were held at endogenous RMPs, and most (9 of 12) could re-
liably generate LI-APs up to 10 Hz (Fig. 4D).

Mouse neurons recorded near mCherry* processes (Fig. 4E)
displayed typical passive and active properties of pyramidal
neurons (Fig. 4F) and generated trains of accommodating APs in
response to current injection (Fig. 4G). In a minority of cells (3
of 91), LI-PSCs could be triggered in a repeatable fashion (Fig.
4H, i, upper trace) but with variable amplitudes (mean ampli-
tude: 36.6 = 2.4 pA; range: 11.1-61.7 pA). All displayed similar
kinetics to inhibitory PSCs detected in cultures (Fig. 41, upper
trace; compare with Fig. 3B; © = 16.9 + 0.9 ms), occurred with
a mean delay from light onset of 27.1 + 2.4 ms and were blocked
by application of 50 uM picrotoxin (Fig. 4 H and I, lower traces of
each pair). Thus, following transplantation, grafted human
neurons could reciprocally interact with the host neuronal net-
work via pre- and postsynaptic integration. Interestingly, al-
though a majority of neurons in hESC-derived dorsal forebrain
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relatively long decay constants (tr = 20.2 + 1.7 ms) and |-V relationship demonstrating a reversal potential of —41 + 2.7 mV. (D) Representative traces from
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currents. Data are means + SEM (*P < 0.05).

cultures are likely glutamatergic (6, 17) (Fig. S1), our findings
suggest that inhibitory neurons may functionally integrate more
readily after transplantation.

Discussion

Here, we used optogenetic technology to definitively demon-
strate that hESC-derived neurons are capable of complete syn-
aptic integration with a preexisting network both in vitro and
in vivo, and can modulate the excitability of a network via syn-
aptic output. In coculture with bursting mouse cortical neurons,
hESC-derived neurons progressively adopted the same bursting
behavior, whereby network-derived activation of human neurons
led to depolarization and spiking behavior. We verified that the
human neurons were part of the existing network via dual patch-
clamp recording and that bursting in human cells was driven by
synaptic activity via antagonism of glutamatergic neurotrans-
mission. Furthermore, optical stimulation of ChR2* human
neurons caused excitatory and inhibitory postsynaptic responses
in mouse neurons and could trigger bursting behavior. Lastly,
activation of ChR2* human neurons in slices taken from trans-
planted mouse brains revealed light-induced PSCs in pyra-
midal neurons.

The integration of hESC-derived neurons within an estab-
lished network displays interesting parallels with the in-
corporation of nascent dentate granule cells (DGCs) in mature
hippocampus. Newly born DGCs in the subgranular zone display
physiological properties distinct from mature cells, such as ele-
vated RMPs, high R;,,, reduced thresholds for long-term poten-
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tiation and depression (26, 27), and potentially increased excit-
ability (28). hESC-derived neurons exhibit similarly depolarized
RMPs, higher R;, (Table S1) (6), and potentially increased ex-
citability even after extended time periods (22). It will be in-
teresting to know whether these properties are critical for
integration and whether hESC-derived neurons display compa-
rable synaptic plasticity characteristics to those of immature
DGCs. Secondly, postsynaptic maturation, indicated by robust
dendritic spine growth of newly born DGCs, occurs 3—4 wk after
terminal differentiation (29). Our results demonstrate a signifi-
cantly greater proportion of bursting cells (i.e., postsynaptically
mature) after 4 wk compared with the 2-wk time point (Fig. 1E).
Furthermore, it is thought that DGCs require 1-2 mo of matu-
ration to fully integrate with the established circuitry in the
hippocampus (28, 30, 31). Here, integration of hESC-derived
neurons occurred over a similar time course, where significantly
greater presynaptic integration (Fig. 3E) was observed after 6-8
wk than at earlier time points.

A similar time course is observed for the improvements in
behavioral symptoms of neurodegeneration after stem cell
transplantation, supporting the idea that synaptic integration is
crucial for long-term outcomes of cell replacement in disease
models (32). Significant effects of transplanted dopamine (DA)
neurons on rotational behavior in Parkinson models are not
typically observed at 4 wk after transplantation but are observed
after 6-8 wk (7, 14), consistent with our findings for presynaptic
innervation (Fig. 3F). In addition to the temporal correlation,
hESC-derived neurons are capable of integrating synaptic
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clarity of inward currents). (G) Current-clamp recordings of CA1 neuron showing a single (Lower) and a train (Upper) of accommodating APs in response to 70
pA of current injection. (H) Voltage-clamp recording of CA1 neuron that demonstrates the presence of repeatable light-induced PSCs (upper trace) that were
blocked by picrotoxin (50 uM; lower trace). (/) Expanded time scale of currents in H illustrating the relatively long decay constants of LI-PSCs (t = 20.2 + 1.7 ms).

(Scale bars, 100 pm.)

currents to produce spiking (Fig. 1C), can make excitatory and
inhibitory connections with mouse neurons (Fig. 3 C and D), and
pre- and postsynaptically integrate in vivo (Fig. 4). Although
these data suggest that hESC-derived neurons may participate in
network information processing, future research is necessary to
demonstrate a causal link between synaptic integration and the
behavioral changes observed after transplantation.

The combination of directed neural differentiation of ESCs
and iPSCs with optogenetics may have broad utility for evalu-
ating the physiological mechanisms underlying outcomes of stem
cell transplants. Similar to previous studies that examined syn-
aptic connectivity between brain regions (33, 34), ChR2 expres-
sion could be used to map local and distant neuronal connections
between transplanted and endogenous neurons in disease mod-
els. In vivo, the use of implantable light-stimulation devices (35)
will give researchers unprecedented real-time access to examine
the physiological underpinnings of successful cell replacement
for neurodegenerative disorders. For instance, whereas the
forebrain glutamatergic or GABAergic neurons used in this
study may be useful for treatment of frontotemporal dementia,
ischemia, or epilepsy, optogenetics can be used to target a num-
ber of potentially therapeutic populations such as midbrain DA
neurons (7, 8) and spinal motor neurons (13). These methods
may be particularly necessary to interrogate more subtle, mod-
ulatory effects of metabotropic transmitters such as DA (36),
which has been the focus of many neuronal cell-replacement
studies (37). The ability to stimulate multiple neurons simulta-
neously (Fig. S4) could allow for detection of the downstream
consequences of DA release, such as its effect on sodium cur-
rents (38). This would allow for a direct demonstration of
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presynaptic integration of transplanted DA neurons, which has
been historically difficult using traditional techniques (39).

Materials and Methods

Cell Culture and Transplantations. Animal experiments were carried out
according to the protocols approved by the University of Wisconsin-Madison
Animal Care and Use Committee. Mouse cortical neurons (embryonic days
14.5-16.5) were provided by Dr. E.W. Dent (University of Wisconsin-Madi-
son), cultured according to previously published methods (40), and plated at
a density of 5 x 10° cells/10-mm coverslip. hESCs (WAOQ9; passages 24-35)
were cultured and differentiated to neurons essentially as described pre-
viously (6), with the addition of B27 (1:100; Invitrogen), 37.5 mM NaCl, and
0.3% glucose to differentiation media (DM). For cocultures, four to five
hESC-derived neuroepithelial aggregates (21div) were plated onto 7div
mouse cultures.

For transplantation experiments, SCID mice (8-10 wk of age) were anes-
thetized with 1% isoflurane mixed with oxygen and received 2 pL of 35div to
40div cell suspension (~5 x 10° cells/uL) unilaterally to the CA3 region of the
hippocampus using the following stereotaxic coordinates: anterior-posterior =
—2.46 mm; left-right lateral = +2 mm; and dorsoventral = —2.25 mm. Three to
4 mo following transplantation, mice were either killed for sectioning and
staining according to previously published methods (15) or were prepared
for ex vivo recordings.

Lentiviral Vectors and Transduction. Channelrhodopsin-2 constructs used were
either the Syn-ChR2-mCherry described previously (22) or Syn-ChR2(H134R)-
mCherry transfer vector created using methods described previously (41), by
replacing the CamKlla promoter with the synapsin-1 promoter. Lentiviral
production and transduction, as well as the pGK-GFP lentivirus, have been
described previously (42). Viral particles were concentrated by ultracentri-
fugation (SW28 rotor; Beckman Coulter) at 20,000 x g for 3 h, resuspended
in DM and titrated using the Lenti-X gRT-PCR kit (Clontech). hESC-derived
aggregates or 12-mm coverslips containing mouse neurons were incubated
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with respective viruses (10® transducing units/mL) for 24 h and then washed
with DM.

Immunochemical Staining. Immunolabeling of hESC-derived neurons was
performed according to previously established methods (6, 15) using the
following primary antibodies: polyclonal DsRed (1:1,000; Millipore), mono-
clonal By~-Tubulin (1:1,000; Sigma), polyclonal GABA (1:1,000; Sigma), and
a human-specific nuclear antibody (1:400; Millipore). To detect primary
antibodies, we used Alexa-Fluor secondary antibodies (1:1,000; Jackson
ImmunoResearch) conjugated to fluorophores FITC, Cy3, and Cy5, which
were visualized using a Nikon confocal workstation (D-Eclipse C1) running
EZ-C1 software (version 3.5). 3D reconstruction and surface rendering were
performed using Imaris software (version 7.3; Bitplane).

Electrophysiological Recordings and Light Stimulation. Whole cell patch-clamp
recordings were performed as previously described (22), with the following
modifications. The extracellular solution was a modified HBSS that con-
tained (in mM) 120 Nacl, 3 KCl, 2 CaCl,, 1 MgCl,, 15 Hepes, and 23 glucose
(pH 7.4, 300 mOsm). The intracellular recording solution contained the fol-
lowing (in mM): 121 K-gluconate, 22 KCl, 10 Na*-Hepes, 10 EGTA, and 4 Mg-
ATP (pH 7.2, 290 mOsm). Pharmacological antagonists picrotoxin (50 pM),
CNQX (50 pM), and AP5 (25 uM; Sigma) were applied using a gravity-fed drug
barrel system or bath applied via extracellular solution. The number of
neurons recorded at each time point ranged from 12 to 30 for each group
(human and mouse). Acute slices from transplanted SCID mice were
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prepared according to previously published methods (22), using the in-
tracellular solution described above.

Light stimulation was achieved by a custom-built LED device that used
a ~950-mW blue light-emitting diode (LED) (470 nm; Thor Labs) coupled to
a fiber optic cable that was placed 2-5 mm from ChR2-expressing neurons.
Power to the LED was delivered through a current-controlled LED driver
(Thor Labs). Light intensity could be modulated by a potentiometer and
ranged from 0.1 to 1 mW/mm?, with most stimulations using ~0.4 m\W/mm?Z.
Triggered light pulses were controlled via the open source Arduino micro-
controller platform (SmartProjects) with timing (high time and frequency)
regulated by custom Arduino programs.

Statistical Analyses. One-way ANOVA followed by Newman-Keuls post hoc
tests were used to determine whether mean differences between groups
were different and were considered significant when P < 0.05. Data are
reported as means + SEM.
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