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Since the inception of next-generation mRNA sequencing (RNA-
Seq) technology, various attempts have been made to utilize
RNA-Seq data in assembling full-length mRNA isoforms de novo
and estimating abundance of isoforms. However, for genes with
more than a few exons, the problem tends to be challenging and
often involves identifiability issues in statistical modeling. We have
developed a statistical method called “sparse linear modeling of
RNA-Seq data for isoform discovery and abundance estimation”
(SLIDE) that takes exon boundaries and RNA-Seq data as input
to discern the set of mRNA isoforms that are most likely to present
in an RNA-Seq sample. SLIDE is based on a linear model with a
design matrix that models the sampling probability of RNA-Seq
reads from different mRNA isoforms. To tackle the model uni-
dentifiability issue, SLIDE uses a modified Lasso procedure for
parameter estimation. Compared with deterministic isoform as-
sembly algorithms (e.g., Cufflinks), SLIDE considers the stochastic
aspects of RNA-Seq reads in exons from different isoforms and
thus has increased power in detecting more novel isoforms. An-
other advantage of SLIDE is its flexibility of incorporating other
transcriptomic data such as RACE, CAGE, and EST into its model
to further increase isoform discovery accuracy. SLIDE can also work
downstream of other RNA-Seq assembly algorithms to integrate
newly discovered genes and exons. Besides isoform discovery,
SLIDE sequentially uses the same linear model to estimate the
abundance of discovered isoforms. Simulation and real data stu-
dies show that SLIDE performs as well as or better than major
competitors in both isoform discovery and abundance estimation.
The SLIDE software package is available at https://sites.google.
com/site/jingyijli/SLIDE.zip.

mRNA isoform discovery ∣ single-end vs. paired-end sequencing ∣ fragment
length distribution ∣ GC contents ∣ penalized estimation

The recently developed next-generation mRNA sequencing
(RNA-Seq) assay, with deep coverage and base level resolu-

tion, has provided a view of eukaryotic transcriptomes of unpre-
cedented detail and clarity. Unlike microarrays, RNA-Seq data
have novel splice junction information in addition to gene expres-
sion, thus facilitating whole-transcriptome assembly and mRNA
isoform quantification. RNA-Seq data includes both single-end
and paired-end reads, where a single-end read is a sequenced
end of a cDNA fragment from an mRNA transcript, and a paired-
end read is a mate pair corresponding to both ends of a cDNA
fragment.

In the mRNA isoform discovery field, one of the most widely
used software packages is Cufflinks (1). It builds a set of genes
and exons solely from RNA-Seq data first, and subsequently uses
a deterministic approach to find a minimal set of isoforms that
can explain all the cDNA fragments indicated by paired-end
reads. Cufflinks mainly uses qualitative exon expression and junc-
tion information in its isoform discovery, lacking a quantitative
consideration of RNA-Seq data. Although Cufflinks gives very
useful results, we note that the isoforms it discovers based on de
novo assembled genes and exons can be heavily biased by differ-

ent types of RNA-Seq data noise (2–5). Two recently published
modENCODE (Model Organism Encyclopedia of DNA Ele-
ments) (6) consortium papers (7, 8) also raise concerns about
relying solely on RNA-Seq reads in isoform discovery and have
suggested using manual annotations to scrutinize the results.

In the mRNA isoform quantification field, the question is to
estimate the abundance of isoforms in a given set. Available
abundance estimation methods include direct computation (9,
10) and model-based approaches. Many model-based studies (1,
11–14) have used maximum-likelihood approaches to estimate
isoform abundance. There are also efforts on formulating the
abundance estimation problem as a linear model (15), where
the independent and dependent variables are isoform expression
levels and categorized RNA-Seq read counts, respectively. In
particular, binary values have been used in the design matrix
to relate categorized reads to different isoforms, but that design
matrix misses the quantitative relationship between read quanti-
ties and isoform abundance.

In this study, we propose a statistical method called “sparse
linear modeling of RNA-Seq data for isoform discovery and
abundance estimation” (SLIDE) that uses RNA-Seq data to dis-
cover mRNA isoforms given an extant annotation of gene and
exon boundaries, and to estimate the abundance of the discov-
ered or other specified mRNA isoforms. The extant annotation
can come from annotation databases [e.g., Ensembl (16) or
UCSC Genome Browser (17)], can be supplemented by other
transcriptomic data such as RACE or CAGE (18, 19), or can even
be inferred from RNA-seq de novo assembly algorithms (1, 20).
SLIDE is based on a linear model with a nonbinary design matrix
modeling the sampling probability of RNA-Seq reads from
mRNA isoforms. When modeling the design matrix, we consid-
ered the effects of GC content, cDNA fragment lengths, and read
starting positions. This linear model, coupled with the carefully
defined design matrix, gives SLIDE a stochastic property of mak-
ing use of exon expression quantitatively in isoform discovery.
The SLIDE model can also be easily extended to incorporate
other transcriptomic data [e.g., RACE (18), CAGE (19), and
EST (21)] with RNA-Seq to achieve more comprehensive results.
The SLIDE software package is available at https://sites.google.
com/site/jingyijli/SLIDE.zip.
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Results
Linear Modeling for RNA-Seq Data. SLIDE is designed as a tool for
discovering mRNA isoforms and estimating isoform abundance
from RNA-Seq reads, on top of known information about gene
and exon boundaries. For isoform discovery, SLIDE considers
all the possible isoforms by enumerating exons of every gene.
For example, a gene of n nonoverlapping exons has 2n − 1 possible
isoforms, each composed of a subset of the n exons. However, be-
cause of the possible occurrence of alternative splicing within
exons, isoforms of the same gene may have partially overlapping
but different exons. Hence, for ease of enumeration, we define a
subexon as a transcribed region between adjacent splicing sites in
any annotated mRNA isoforms (Fig. 1A). With this definition,
every gene has a set of nonoverlapping subexons, from which we
can enumerate all the possible isoforms including annotated ones.

We formulate the task of discovering isoforms for a given gene
as a sparse estimation problem where the sparseness applies to
the isoforms expected from RNA-Seq data. Because exon expres-
sion levels and the existence of possible exon–exon junctions are
the key for isoform discovery and they can be inferred from the
starting and ending positions of RNA-Seq reads mapped to a re-
ference genome, we are motivated to transform RNA-Seq reads
into a summary that captures the key information. For a paired-
end read, we exact four genomic locations s1, e1, s2, and e2, where
s1 and e1 are the starting and ending positions of its 5′ end, and s2
and e2 are the starting and ending positions of its 3′ end (Fig. 1B).
Note that a paired-end read uniquely corresponds to a cDNA
fragment with both ends sequenced, that is, s1 and e2 are the start-
ing and ending positions of the fragment, respectively. We next
categorize paired-end reads into paired-end bins defined as four-
dimensional vectors: Bin (i, j, k, l) contains reads whose s1, e1, s2,
and e2 are in subexons i, j, k ,and l, respectively (see Methods for
details). For single-end reads, we can similarly categorize them
into two-dimensional single-end bins. The so-defined bin counts
provide all the exon expression and junction information.

SLIDE is built upon a linear model whose design matrix F
models conditional probabilities of observing reads in different
bins given an isoform. For paired-end data, modeling F requires
distributional assumptions on the two ends (i.e., s1, e2) of a cDNA
fragment in an mRNA transcript, or equivalently on the frag-
ment’s 5′ end (i.e., s1) and its length (i.e., e2 − s1). For s1, uniform
distribution assumptions have been widely used. However, after
considering the high correlation observed between sequencing
read coverage and genome GC content (2), we assume the den-
sity of s1 is uniform within subexons and proportional to the GC
content between subexons. We specify the distribution of the frag-
ment length, e2 − s1, by assuming e2 to follow a Poisson point pro-
cess given s1 fixed. Consequently, e2 − s1 is modeled as truncated
Exponential after taking into account the size selection step in
RNA-Seq protocols (see Methods). Another widely used frag-
ment length distribution is Normal distribution (1), which is also
implemented in SLIDE and compared with truncated Exponen-
tial (see SI Text).

We then use a linear model as approximation to the observed
bin proportions,

bj ¼ ∑
K

k¼1

Fjkpk þ ϵj; j ¼ 1;⋯;J; [1]

where bj is the observed proportion of reads in the jth bin, Fjk ¼
Prðjth binjkth isoformÞ (i.e., the conditional probability of obser-
ving paired-end reads in the jth bin given that they are from the
kth isoform), pk is the proportion of the kth isoform to be esti-
mated, and ϵj is the error term with mean 0. Besides, J and K are
the numbers of bins and isoforms, respectively (see Methods).
This is the core linear model used in SLIDE for both isoform
discovery and abundance estimation of discovered isoforms. For
isoform discovery, usually K > J, so the model is unidentifiable.
But based on biological knowledge, we expect the model to be
sparse and achieve sparse estimation by a modified Lasso (22)
method (see Methods). For abundance estimation, only the
proportions of discovered isoforms are parameters in the linear
model, and their number is often far less than K , so there is no
identifiability issue anymore. SLIDE then does the parameter
estimation by nonnegative least squares. Compared with maxi-
mum-likelihood approaches used by other abundance estimation
methods, SLIDE has the computational advantage of fitting a
linear model as an intrinsic element.

Simulation Results. A simulation study is used to assess the accu-
racy of SLIDE on isoform discovery and abundance estimation.
We simulated reads from genes and true mRNA isoforms ex-
tracted from Drosophila melanogaster annotation (September
2010) of UCSC Genome Browser (17). For illustration purposes,
we focus on the 3,421 genes on chr3R. Based on our defined sub-
exons, those genes consist of 34.2% with 1–2 subexons, 57.6%
with 3–10 subexons, and 8.2% with more than 10 subexons. Be-
cause the estimation for genes with 1–2 subexons is trivial due to
their small numbers of possible isoforms, and genes with more
than 10 subexons only constitute a small proportion and their es-
timation is computationally costly, we applied SLIDE to the sub-
set of 3–10 subexons, 1,972 genes in total. We generated 500 × 50
(runs) paired-end reads for each gene from annotated isoforms of
randomly defined proportions, and then we applied SLIDE to the
simulated reads for isoform discovery and abundance estimation.

The isoform discovery results of all 50 runs are in Fig. 2A. We
divided genes into groups by their numbers of subexons n
(n ¼ 3;⋯;10). For each gene, SLIDE returns a vector of esti-
mated proportions of all its possible isofoms. We define isoforms
whose estimated proportions exceed threshold 0.1 as discovered
isoforms and evaluate them by the UCSC annotation. (Note that
other thresholds 0.05 and 0.2 return similar results.) For each
gene, the precision rate is defined as TP∕ðTP þ FPÞ, and the
recall rate is TP∕ðTP þ FNÞ, where TP is the number of true
positives (discovered isoforms that are also in the annotation),
FP is the number of false positives (discovered isoforms that are
not in the annotation), and FN is the number of false negatives
(undiscovered isoforms that are in the annotation and have every
exon observed). For each group of n-subexon genes, we calcu-
lated their average precision and recall rates as presented in
Fig. 2A. The results show that SLIDE maintains high precision
rates (>80%) and good recall rates (>60%) in all groups of genes.
In particular, for genes with three and four subexons, the preci-
sion and recall rates are greater than 98% and 92%, respectively.
As n increases, the precision and recall rates decrease, and the
variance between different simulation runs increases. This obser-
vation is reasonable because with the increase of n, the number
of possible isoforms increases exponentially, as does the difficulty
of isoform discovery.

To illustrate the abundance estimation accuracy of SLIDE, we
applied it to 317 multi-isoform genes on chr3R in the UCSC

A

B

Fig. 1. (A) Definition of subexons: transcribed regions between adjacent
alternative splicing sites. (B) A two-exon mRNA transcript. s1, e1, s2, and e2,
genomic positions associated with a paired-end read. r, the read end length;
L1 and L2, the exon lengths.
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annotation (798 isoforms in total), with the same simulated
paired-end reads. From reads of each simulation run, SLIDE
estimates the 798 isoform proportions normalized by each gene.
We calculated the Pearson correlation between the estimates
and the true isoform proportions used in the simulation, and we
found that the correlation coefficients of the 50 runs range from
0.92 to 0.95. We also illustrate the abundance estimation accuracy
of SLIDE by a scatter plot of the median estimated isoform pro-
portions over the 50 runs vs. true isoform proportions in Fig. 3A
(R ¼ 0.99).

This simulation study shows satisfactory performance of
SLIDE in isoform discovery and abundance estimation. Further
simulation studies with lowly expressed genes are in SI Text.

mRNA Isoform Discovery on modENCODE Data. The main feature of
SLIDE is discovery of mRNA isoforms fromRNA-Seq data. Four
modENCODE (6) D. melanogaster RNA-Seq datasets (Table 1)
are used in the real data analysis. Again, for illustration purposes,
we focus on the 1,972 genes with 3–10 subexons on chr3R of D.
melanogaster. To avoid the effects of high false positive and
negative rates of RNA-Seq data in lowly expressed genes (23),
we applied SLIDE to genes with RPKM (number of reads per
kilobase per million of mapped reads) (10) greater than 1.

We compare SLIDE with Cufflinks (version 0.9.3) in terms of
their isoform discovery precision and recall rates, evaluated by
the UCSC annotation in a similar way to the simulation study
(see SI Text). We note that SLIDE and Cufflinks target the
isoform discovery problem from two different aspects. SLIDE
discovers isoforms from given gene and exon structures, whereas
Cufflinks contructs isoforms from its de novo assembled genes
and exons. Hence, we carried out the comparison in two ways:
(i) SLIDE with input genes and exons from the UCSC annotation
vs. Cufflinks; (ii) SLIDE with input genes and exons assembled

by Cufflinks vs. Cufflinks. The former is to evaluate the overall
performance of the two methods under their default settings,
whereas the latter is to specifically compare their isoform con-
struction performance given the same set of genes and exons.
The comparison results on dataset 1 (Table 1) are summarized
in Fig. 2 B and C. (See SI Text for results on other datasets.)

Fig. 2B, corresponding to the first comparison, shows that
SLIDE with input genes and exons from the annotation has
significantly higher precision and recall rates than Cufflinks’. In
the second comparison, with de novo genes and exons assembled
by Cufflinks, SLIDE has better precision and recall rates than
Cufflinks has for genes with three and four subexons, and for
the rest of genes, the two methods have similar performance
(Fig. 2C). We observe that the overall precision and recall rates
in Fig. 2C are worse than those of SLIDE in Fig. 2B. These results
remind us of the concerns voiced by other researchers about con-
structing isoforms based on de novo genes and exons built solely
from RNA-Seq data (7, 8). We speculate that results of the sec-
ond comparison are not enough to illustrate the isoform construc-
tion performance of SLIDE and Cufflinks, because the similarly
low precision and recall rates observed in Fig. 2Cmight have been
dominated by the disagreement between the de novo assembled
genes/exons and the annotation. Hence, we performed an addi-
tional comparison on a smaller set of 246 genes whose de novo
exons assembled by Cufflinks agree with the annotation. This
comparison provides a direct evalulation on the isoform construc-
tion performance of SLIDE and Cufflinks. We found that iso-
forms discovered by SLIDE have an average precision rate of
93% and a recall rate of 96%, both higher than the average pre-
cision rate (89%) and recall rate (94%) of isoforms found by
Cufflinks. This result demonstrates that SLIDE has higher acur-
racy than Cufflinks has in isoform construction from a given set
of genes and exons. For more details, see SI Text.
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Fig. 2. Isoform discovery results. (A) Precision and recall rates of SLIDE on 50 simulated datasets, with different colors for groups of genes with n subexons
(n ¼ 3;⋯;10) and every point representing the average precision and recall rates of every group on one dataset. (B) Precision and recall rates of SLIDE (using
annotated genes/exons) and Cufflinks on dataset 1. Numbers, group indices of genes (i.e., numbers of subexons); squares/stars, SLIDE/Cufflinks results. (C)
Precision and recall rates of SLIDE (using Cufflinks assembled genes/exons) and Cufflinks on dataset 1.
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Fig. 3. Abundance estimation results. (A) p vs. median ðp̂Þ of 798 isoforms on 50 simulated datasets. p, true isoform proportion; median ðp̂Þ, median of
the 50 estimated isoform proportions. (B) SLIDE vs. SIIER estimates of the 798 isoforms on dataset 1. (C) SLIDE vs. Cufflinks estimates of the 798 isoforms
on dataset 1.
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By a detailed inspection of the isoforms discovered by
Cufflinks, we find that many discovered isoforms are fragments
of annotated isoforms in public databases. This is mainly due
to the difficulty in de novo construction of gene boundaries.
Cufflinks also has troubles in detecting lowly expressed genes
de novo. By contrast, SLIDE can discover correct isoforms even
with a small number of reads, based on existing gene boundary
information. For instance, when applied to dataset 1, SLIDE has
discovered isoforms in 1,084 genes (RPKM > 1) out of the total
1,972 genes, whereas Cufflinks has only found isoforms in 801
genes. These observations confirm again the importance of hav-
ing correct gene boundaries in isoform discovery. Another ad-
vantage of SLIDE is the usage of a stochastic approach to simul-
taneously detect isoforms with alternative starts/ends [e.g.,
(1,2,3,4) and (2,3,4)], where Cufflinks will only discover the long-
est one (1). However, when there are significant RNA-Seq data
biases in 5′ and 3′ ends of mRNA transcripts, the deterministic
approach of Cufflinks may be more robust. In the future, with the
continuing development of sequencing technology and promising
improvement in RNA-Seq signal-to-noise ratios, we would expect
the stochastic approach of SLIDE to be preferred.

There are other isoform discovery methods that use sparse
estimation but with different methodology (15, 24). A numerical
comparison between SLIDE and IsoLasso (15) shows that
SLIDE has higher accuracy in isoform discovery. For detailed
comparison information, please see SI Text.

mRNA Isoform Abundance Estimation on modENCODE Data. Another
feature of SLIDE is to estimate the abundance of mRNA
isoforms discovered or other specified (e.g., annotated) from
an RNA-Seq sample. Because of the lack of ground truth of
isoform abundance in datasets 1–4 (Table 1), to evaluate the
abundance estimation performance of SLIDE, we compare its
estimates to those of two popular methods: statistical inferences
for isoform expression in RNA-Seq (SIIER) (12) and Cufflinks
(1). Note that SLIDE returns estimates of mRNA isoform pro-
portions that are equivalent and convertible to the common
abundance measure, isoform RPKMs (10) used in SIIER.

In the comparison between SLIDE and SIIER, both methods
estimate the isoform abundance of the 317 chr3R genes with
multiple isoforms in the UCSC annotation. In dataset 1, after
removing 25 genes with high expression variance among exons
(see SI Text), we obtain a scatter plot of the two sets of estimates
in Fig. 3B (R ¼ 0.88). A similar comparison is carried out
between SLIDE and Cufflinks, and the results are in Fig. 3C
(R ¼ 0.85). The results show that SLIDE obtains estimates simi-
lar to those of SIIER and Cufflinks. For more discussions on the
results, see SI Text.

Miscellaneous Effects on Isoform Discovery. Using datasets 1–4
(Table 1), we study the following critical issues affecting isoform
discovery from RNA-Seq data.

1. GC content variation. To study the usefulness of considering
GC content variation in isoform discovery, we additionally
implemented another version of F, assuming the cDNA frag-
ment starting position s1 as uniform across all subexons. Note
that our default F assumes the density of s1 as uniform within
subexons but proportional to GC content between subexons,
as motivated by observed high correlation between read cover-
age and GC content variation (2, 4) (see SI Text). Isoform dis-
covery results on dataset 1 by SLIDE based on the two version
of F are compared in Table 2. Recall rates are similar in both
results, but precision rates are improved with the considera-
tion of GC content. These results indicate that GC content
can provide SLIDE with useful information in modeling F,
and thus support various attempts of using GC content infor-
mation to correct RNA-Seq data noise (3, 4).

2. Read/fragment length effects. To explore the effects of RNA-
Seq read lengths on isoform discovery, we applied SLIDE to
datasets 2 and 3. The two datasets are generated from the
same Kc167 sample of similar sequencing depth but with dif-
ferent read lengths: 37 bp (dataset 2) vs. 76 bp (dataset 3). We
compare the isoform discovery results on both datasets in
Fig. 4A. The precision and recall rates for genes with 3–9 sub-
exons are surprisingly higher with the 37-bp data than the
76-bp data. This result contradicts our expectation that RNA-
Seq data with longer read length would provide more informa-
tion on exon junctions that are crucial to isoform discovery.
Trying to find a plausible explanation, we checked the empiri-
cal distribution of cDNA fragment lengths in single-exon
genes for both data, and found the distribution close to
Nð166;262Þ and Nð127;132Þ for the 37-bp and 76-bp data,
respectively. The fact that the 37-bp data contain more long
fragments is a result of different experimental protocols, and is
likely to be a reason for the observed unexpected comparison
results. A simulation study with different read and fragment
lengths reveals that the fragment length distribution has larger
effects than the read length has on isoform discovery, and to
some extent confirms our real data observation (see SI Text).

3. Paired-end vs. single-end RNA-Seq data. Compared with
single-end RNA-Seq data, the more recent paired-end data
provides more information on exon junctions and thus is
expected to return isoform discovery results with higher pre-
cision rates. But if both single-end and paired-end data are
available for the same RNA-Seq sample, the former can pos-
sibly complement the latter by providing more exon expression
information, helping capture lowly expressed exons in rare

Table 1. modENCODE datasets used in the analysis

Dataset Type Sample Read length Total number of reads
Sequence Read Archive

(http://www.ncbi.nlm.nih.gov/sra) numbers

1 paired-end ML-DmBG3-c2 37 bp 25,094,224 SRX003838, SRX003839
2 paired-end Kc167 37 bp 18,602,220 SRX003836, SRX003837
3 paired-end Kc167 76 bp 20,118,748 SRR070261, SRR070269, SRR111873
4 paired-end and

single-end
embryo 16-17h 76 bp 23,388,810 and

27,913,445
SRR023600, SRR035402, SRR023720, SRR023715,

SRR023751, SRR023707, SRR023826

Table 2. Comparison of isoform discovery results by SLIDE with two versions of F

n 3 4 5 6 7 8 9 10

without GC precision 0.93 0.90 0.87 0.80 0.83 0.75 0.71 0.49
recall 0.91 0.89 0.83 0.77 0.71 0.68 0.61 0.36

with GC precision 0.94 0.92 0.90 0.82 0.87 0.79 0.74 0.56
recall 0.91 0.89 0.84 0.78 0.71 0.67 0.60 0.38
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isoforms, and thus resulting in isoform discovery results with
higher recall rates. Because SLIDE has the flexibility of input-
ting both single-end and paired-end RNA-Seq data (seeMeth-
ods), we tested these hypotheses by applying it to dataset 4,
which has both single-end and paired-end data from the same
sample and of similar numbers of reads (Table 1). We speci-
fically compare the results of SLIDE on (i) paired-end data,
(ii) single-end data, and (iii) both paired-end and single-end
data in Fig. 4B. From the figure, we observe that using
paired-end data alone has the highest precision rates for all
the genes, whereas using both data has the best recall rates.
These results confirm our intuitive hypotheses that paired-
end data alone gives more precise information than single-
end data does in isoform discovery; however, single-end data
does provide extra exon expression information as well as
noise when it is used in addition to paired-end data, hence
resulting in higher recall rates and lower precision rates.

Discussion
We have proposed a sparse linear model approach (SLIDE) cap-
able of discovering mRNA isoforms of given genes and estimating
the abundance of discovered or other specified isoforms from
RNA-Seq data. Compared to existing approaches (1, 12), SLIDE
(i) discovers isoforms from all possible ones based on known gene
and exon boundaries (e.g., from the UCSC annotation), (ii) uses a
stochastic approach with a quantitatively modeled design matrix
F (i.e., conditional probabilities of observing RNA-Seq reads
from mRNA isoforms) in isoform discovery, (iii) uses the same
linear model subsequently for abundance estimation on discov-
ered or other specified isoforms, and (iv) can be used as a down-
stream isoform discovery tool of de novo gene and exon assembly
algorithms. Other widely used isoform discovery methods (1, 20)
find isoforms based on their own de novo genes and exons solely
assembled from RNA-Seq reads, and thus their discovered iso-
forms are highly dependent on the accuracy of de novo assembly.
SLIDE can avoid possible de novo assembly errors (2) by using
known gene and exon boundaries; it can also integrate de novo
assemblies with known ones to prevent the risk of missing iso-
forms involving novel exons. SLIDE will also benefit from
ongoing efforts of improving D. melanogaster transcriptome
annotations (6).

We have also explored various factors that may affect the per-
formance of SLIDE on isoform discovery. Our results suggest
that (i) the consideration of GC content variation in modeling
F can improve the precision, (ii) the cDNA fragment size se-
lection protocol and the resulting cDNA fragment lengths have
larger effects than read lengths have on both the precision and
recall, and (iii) paired-end RNA-Seq data provides more accurate
information than single-end data does in isoform discovery, but
the addition of single-end data would help with the discovery of
rare isoforms.

As demonstrated by the isoform discovery and abundance
estimation results, SLIDE shows great promise as a tool for
handling the two tasks sequentially with a shared linear model.
The modeled design matrix F is also shown to be a good quanti-
tative representation of sampling RNA-Seq reads from mRNA
isoforms, in contrast to the binary representation used in other
isoform discovery methods (1, 11, 15, 20). We still lack the infor-
mation to model irregular systematic RNA-Seq biases, such as
low read coverage in transcript ends and significant read coverage
variation unexplained by GC content. But we expect SLIDE to
have increased power when such modeling becomes possible with
the standardization of RNA-Seq protocols and the improvement
of technology. Finally, SLIDE can be easily extended to incorpo-
rate mRNA isoform information from EST (21), CAGE (19), and
RACE (18) data in addition to RNA-Seq data to refine its linear
model and obtain more accurate isoform discovery results.

Methods
Linear Model Formulation and Identifiability Issue. In the linear modeling of
paired-end RNA-Seq data, we first categorize reads into paired-end bins.
For an n-subexon gene, possible paired-end bins are fði;j;k;lÞ;1 ≤ i ≤ j ≤
k ≤ l ≤ ng, whose total number is mp ¼ nþ 3ðn2Þ1ðn≥2Þ þ 3ðn3Þ1ðn≥3Þþ
ðn4Þ1ðn≥4Þ. Then RNA-Seq data is transformed into bin counts (i.e., number
of reads in each bin), which are further normalized as bin proportions b.
Second, we enumerate all the possible isoforms of an n-subexon gene as
I1;⋯;I2n−1, and denote p as the isoform proportions to be estimated. Third,
we relate unknown p to observed b by a design matrix F, where
Fjk ¼ Prðjth binjkth isoformÞ (i.e., the conditional probability of observing
reads in the jth bin given that the reads are from the kth isoform). (See next
section for the modeling of F). Then, we write the following linear model:

bj ¼ ∑
2n−1

k¼1

Fjkpk þ ϵj; j ¼ 1;⋯;mp; or b ¼ Fpþ ϵ; [2]

where ϵ ¼ ðϵ1;⋯;ϵmp
Þ is the random noise whose components are indepen-

dent and have mean 0.
We note that the linear model (Eq. 2) becomes unidentifiable when

mp < 2n − 1 or equivalently n ≥ 9. The model may also be unidentifiable
when n < 9 due to possible collinearity of F. To solve this identifiability issue,
we reduced the number of parameters dim(p) by adding a preselection
procedure on isoforms. Also, given observed false zero bin counts of certain
junction reads, we applied a preselection procedure on observations, too.
(See SI Text for details.) We write the postselection linear model as

bj ¼ ∑
K

k¼1

Fjkpk þ ϵj; j ¼ 1;⋯;J: [3]

We note that the unidentifiability issue still exists in many genes even
after the preselection procedures, so sparse estimation is necessary (see
SI Text).
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For single-end data and the combination of both single and paired-end
data, we can derive a similar linear model (see SI Text).

Modeling of Conditional Probability Matrix.Modeling of the conditional prob-
ability matrix F ¼ ðFjkÞ, 1 ≤ j ≤ J, 1 ≤ k ≤ K is a key part in the estimation of p
(Eq. 3). In paired-end RNA-Seq data, a mate pair represents ends of a cDNA
fragment reversely transcribed from an mRNA transcript. In this sense, Fjk is
the conditional probability that cDNA fragments with ends in the jth bin
are reversely transcribed from mRNA transcripts in the kth isoform. With this
interpretation, we model F with the following three assumptions.

1. The density of a cDNA fragment’s starting position (or the density of s1
in Fig. 1), denoted by f, is uniform within subexons but proportional
to GC content between subexons in an mRNA transcript.

2. The cDNA fragment length (ℓ ¼ e2 − s1 in Fig. 1) distribution is modeled as
truncated Exponential with density denoted by g. This modeling choice is
based on empirical observations and Poisson point process approxima-
tions (see SI Text). SLIDE can also easily take other reasonable fragment
length distributions.

3. Starting positions and fragment lengths are assumed to be independent.

In a two-subexon gene example (Fig. 1), suppose that the two subexons
have boundaries ½a1;b1� and ½a2;b2�. Then, reads in bin j ¼ ð1;1;2;2Þ have
s1 ∈ ½a1;b1 − r þ 1� and e2 ∈ ½a2 þ r − 1;b2�. For k ¼ ð1;2Þ, we calculate
Fjk ¼ ∫ b1−rþ1

a1 fðs1Þð∫ b2−s1
a2þr−1−s1gðℓÞdℓÞds1.

For single-end data and the combination of both single and paired-end
data, F can be similarly calculated (see SI Text).

mRNA Isoform Discovery. In isoform discovery, we expect sparse parameter
estimation from the linear model (Eq. 3), because the number of mRNA iso-
forms for most D. melanogaster genes is below four (17) and far less than the
number of possible isoforms K. L1 penalization approach is widely used for
sparse estimation and has applications in high-dimensional and potentially
sparse biological data (25). We also observe that annotated isoforms often
contain a large proportion of subexons, and thus expect isoform candidates
with more subexons to be more likely true. Hence, we add an L1 penalty term
in the objective function below to limit the number of discovered isoforms
as well as to favor the “longer isoforms”:

p̂ ¼ argminp1;…;pK≥0 ∑
J

j¼1

ðbj − FjpÞ2 þ λ∑
K

k¼1

jpkj
nk

; [4]

where nk is the number of subexons in the kth isoform and Fj is the jth row
of F. With nk in the penalty term, pk would thus be favored if nk is large. We

note that this is a variant of Lasso, a regularization regression method for
cases in which the number of parameters to be estimated exceeds the num-
ber of observations andmost of the parameters are expected to be zeros (22).
The difference between our penalty term and the one in standard Lasso is
that the latter only aims to limit the number of discovered isoforms without
favoring longer ones. Discussions about choosing L1 over L0 regularization
and using different likelihoods in the linear model are in SI Text.

The selection of the regularization parameter λ (Eq. 4) is by a stability
criterion that aims to return the most stable results over different runs of
estimation (26). Because low signal-to-noise ratios in lowly expressed genes
may significantly bias the λ selection and genes of the same number of
subexons have similar dim(p) and dim(b) in Eq. 4, we group genes by their
numbers of subexons n and select an optimal λðnÞ for each group from 16
candidate values ðλiÞ16i¼1 (see Table 3). The selection procedure is described
in SI Text, and the chosen λðnÞ values for datasets 1–4 and the simulation data
are in Table 3.

R package “penalized” (27) is used in the implementation.

mRNA Isoform Abundance Estimation. The SLIDE linear model (Eq. 3) can also
be used for abundance estimation of discovered or other specified (e.g.,
annotated) isoform proportions. Because the number of discovered or anno-
tated isoforms is smaller than the number of bin proportions, the linear mod-
el is identifiable. Thus, we use nonnegative least squares without a penalty
term to estimate the isoform proportions. R package “NNLS” is used in the
implementation (28).
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Table 3. λ�n� selection results for different datasets

n 3 4 5 6 7 8 9 10

Datasets 1–2 (37 bp) 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5
Datasets 3–4 (76 bp) 0.2 0.2 0.2 0.4 0.3 0.4 0.3 0.3
Simulation data (37 bp) 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5
16 candidate λs: 10−6, 10−4, 10−3, 0.01, 0.04, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1
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