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The canonical function of the human telomerase protein (hTERT) is
to synthesize telomeric DNA, but it has other biological activities,
including enhancing cell proliferation, decreasing apoptosis, reg-
ulating DNA damage responses, and increasing cellular prolifera-
tive lifespan. The mechanistic relationships among these activities
are not understood. We previously demonstrated that ectopic
hTERT expression in primary human mammary epithelial cells
diminishes their requirement for exogenous mitogens, thus giving
them a proliferative advantage in a mitogen-depleted environ-
ment. Here, we show that this phenotype is caused by a combina-
tion of increased cell division and decreased apoptosis. In addition,
we use a panel of hTERTmutants to demonstrate that this enhanced
cell proliferation can be uncoupled not only from telomere elon-
gation, but also from other telomerase activities, including cellular
lifespan extension and regulation of DNA damage responses. We
also find that the proliferative function of hTERT, which requires
hTERT catalytic activity, is not caused by increased Wnt signaling,
but is accompanied by alterations in key cell cycle regulators and is
linked to an hTERT-catalyzed decrease in the levels of the RNA
component of mitochondrial RNA processing endoribonuclease.
Thus, enhanced cell proliferation is an independent function of
hTERT that could provide a new target for the development of
anti-telomerase cancer therapeutic agents.
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The human telomerase protein (hTERT) is a reverse tran-
scriptase that uses the telomerase RNA (hTR) as a template

to add DNA repeats onto chromosome ends (1). This elongation
of telomeres by hTERT stops loss of chromosome ends during
each cell division, prevents senescence, and endows cancer cells
with limitless replicative potential (1, 2). Indeed, hTERT is ex-
pressed at very low levels in normal somatic cells, and is up-
regulated and reactivated in a majority of human tumors (3).
In addition to its canonical role in stabilizing telomeres,

hTERT may promote tumorigenicity through other functions (4,
5). Novel functions of hTERT were first suggested by in vivo
studies in mice (6, 7). Murine TERT (mTERT) overexpression in
transgenic mice causes spontaneous tumorigenesis in the mam-
mary gland, with intraepithelial neoplasia progressing to invasive
carcinomas (7). This phenotype is unlikely to be an effect of the
overexpressed mTERT on telomeric DNA for two reasons. First,
in contrast to human chromosomes, murine chromosomes have
sufficiently long telomeres (8) that phenotypes caused by loss of
telomeric DNA are not evident for at least four mouse gen-
erations after genetic inactivation of telomerase (9). Second,
telomerase is normally active in most somatic murine tissues (10),
including the breast epithelium (11), thereby providing constitu-
tive telomere stability (12). Thereafter, studies in primary human
mammary epithelial cells (HMECs) identified an apparently
telomere-independent function of hTERT that enables HMECs
to proliferate in mitogen-deficient conditions, a hallmark of cancer
(2, 13). Thus, in addition to the telomere elongation function of
hTERT, its unique functions could promote carcinogenesis in
a subset of tissues, especially in the mammary gland.
There are additional studies demonstrating alternative bi-

ological activities of telomerase. mTERT overexpression in the
skin epithelium of mice causes proliferation of quiescent hair
follicle stem cells (14, 15). This stimulation of proliferation is

caused bymTERTacting as a cofactor in the β-catenin–containing
transcriptional complex and thereby directly enhancing Wnt sig-
naling (16, 17). Transgenic mice overexpressing mTERT in ker-
atinocytes have an increased incidence of carcinogen-induced
epidermal tumors and improved wound healing (6). Ectopic telo-
merase expression can also confer resistance to antiproliferative
and proapoptotic stimuli (18–21) and enhance proliferation of
diverse cell types such as mouse embryonic fibroblasts (18), car-
diac myocytes (22), and human fibroblasts (23). Furthermore,
hTERT can function as a RNA-dependent RNA polymerase that
can bind to non-hTR RNAs, such as the RNA component of
mitochondrial RNA processing endoribonuclease (RMRP), and
use them as templates to generate double-strandedRNAs that are
processed into siRNAs (24). hTERT can also alter chromatin
structure and thereby affect DNA damage responses (25), as well
as localize to the mitochondria and impact mitochondrial DNA
damage and apoptosis (21, 26, 27).
The discovery of these varied novel hTERT functions (4, 5)may

have critical implications not only for tumorigenesis and telo-
merase-targeted anticancer therapeutics (28) but also for tissue
regeneration (29), genetic disorders associated with hTERT
defects (30), as well as normal biological processes such as tissue
homeostasis and organismal aging (31). A key to realizing this
potential lies in determining whether these hTERT functions are
mediated by the same or different biochemical or molecular ac-
tivities, as this would not only help us understand how hTERT
performs its diverse roles, but also determine whether these dif-
ferent pathways could provide multiple independent therapeutic
targets. We addressed this question by using a panel of hTERT
mutants (32–35) and demonstrated that the ability of hTERT to
enhance proliferation, which was a result of increased cell division
and decreased apoptosis, could be genetically uncoupled from its
functions in telomere elongation, lifespan extension, and DNA
damage responses. We also identified telomere elongation-de-
ficient mutants that were still able to extend cellular lifespan. This
ability was compromised when we knocked down the levels of
a telomere-capping protein, hPOT1 (human Protection of Telo-
meres 1), suggesting that the lifespan extension by the telomere
elongation-defective mutants was likely because they retain the
ability to recruit telomere-capping proteins. Finally, we found that
enhanced cell proliferation by hTERT, which requires hTERT
catalytic activity, was not because of alteredWnt signaling but was
linked to its ability to modulate RMRP levels. Our results
therefore provide critical genetic support for the idea that many
hTERT functions may involve separate mechanisms of action.
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Results
hTERT Enhances Proliferation by Increasing Cell Division and Survival
in Mitogen-Deficient Conditions. We have previously shown that
expression of hTERT in HMECs increases cell proliferation in
complete growth medium and more dramatically in mitogen-
limiting conditions (13) (Fig. 1A). The relative contributions of
cell division and cell death to increased cell proliferation were
determined by staining for BrdU incorporation and annexin V
expression, respectively. In mitogen-limiting conditions, control
cells showed a small percentage of cells in S phase (i.e., BrdU-
positive) and an almost equal percentage of apoptotic (i.e.,
annexin V-positive) cells, which together account for their very
slow overall rate of proliferation (Fig. 1 B and C). In contrast,
cells expressing hTERT displayed a significantly larger percent-
age of S-phase cells and a relatively low percentage of apoptotic
cells, thus explaining their greater overall proliferation rate (Fig.
1 B and C).

Enhanced Cell Proliferation and Telomere Elongation Are Separable
Functions of hTERT. Our earlier work suggested that hTERT’s
ability to enhance cell proliferation might be independent of
telomere elongation, because this phenotype was observed in
early passage HMECs that do not have critically short telomeres
(13). We proposed that hTERT has at least two independent
cellular functions, one necessary for telomere elongation and
another involved in stimulating cell proliferation. To test this
hypothesis, we evaluated a panel of 15 hTERT mutants (SI
Appendix, Table S1) for their effects on these two functions. We
asked if we could find separation of function mutations that
would prevent hTERT from elongating telomeric DNA yet not
alter its ability to enhance cell proliferation. The identification of
such a mutant would constitute strong genetic evidence that
telomere elongation and enhancement of cell proliferation are
independent functions of hTERT.
The panel included hTERTDN (34) that harbors inactivating

amino acid substitutions in the catalytic domain, a carboxyl-ter-
minal HA epitope-tagged protein (hTERT-HA) that renders it
unable to maintain telomeres (23, 35), and a set of mutants that
contain six amino acid substitutions. These substitutions were in
“functional” domains that are essential for hTERT catalytic ac-
tivity in vitro and/or telomere elongation and cellular lifespan
extension in vivo, or in “linker” regions that are dispensable for
hTERT activity, telomere elongation, and lifespan extension (SI
Appendix, Fig. S2 A and B) (32, 33). These mutants were trans-
duced into HMECs, and the cells assayed for hTERT catalytic
activity, telomere elongation, and enhancement of cell pro-
liferation in mitogen-limited medium.

We identified a domain in the amino-terminal region of
hTERT that was essential for telomere elongation but dispens-
able for enhancing cell proliferation. This 6-amino acid sub-
stitution mutation starts at +32 in domain IA of the N-terminus
of hTERT (32). Although the IA mutant (hTERTIA−) was cat-
alytically active in vitro (Fig. 2A), it was unable to elongate
telomeres in vivo (Fig. 2B), possibly because of an inability to
interact with an accessory protein(s) necessary for localization to
the telomere, as has been observed with similar N-terminal
mutants (36). In mitogen-limited conditions, HMECs expressing
hTERTIA− proliferated at an increased rate like that seen with
cells expressing WT hTERT (Fig. 2C). We observed a compa-
rable trend in BrdU incorporation (Fig. 2D). To further explore
why an increased number of HMECs expressing hTERTIA− are
in S phase, we examined the levels of key cell cycle modulators in
these cells. We observed that cells expressing WT hTERT or
hTERTIA− show increased cyclin D1, cyclin A2, and E2F1
protein levels (Fig. 2E). We also observed increased hyper-
phosphorylation of pRB (Fig. 2E), suggesting increased cyclin-
dependent kinase activity in these cells. Thus, hTERTIA− ex-
pression caused alterations in cell cycle proteins and was sufficient
to confer a proliferative advantage to HMECs despite being un-
able to elongate telomeres.
Cells expressing hTERT-HA had a similar separation of func-

tion phenotype. The hTERT-HA mutant is catalytically active in
vitro (23, 35) (SI Appendix, Fig. S1A), yet unable to maintain
telomeres in vivo (23, 35). We found that hTERT-HA conferred
a cell proliferation advantage in a mitogen-deficient medium,
and promoted increased BrdU incorporation, compared with
vector-transduced cells (SI Appendix, Fig. S1 B and C). The
results with hTERT-HA were more variable than seen with other
mutants, and its efficacy in mediating a proliferation advantage
appeared intermediate compared with WT hTERT. Neverthe-
less, these results with hTERT-HA were interesting in light of
previous results in fibroblasts showing that hTERT-HA can
substitute for WT hTERT and collaborate with H-ras to promote
tumorigenesis in vivo in a telomere length-independent manner
(23). Together, the data from the hTERTIA− and hTERT-HA
mutants showed that the cell proliferation and telomere elon-
gation functions of hTERT were separable.

Telomerase Catalytic Activity Is Necessary for Enhancing cell
Proliferation. Analysis of the remaining mutants showed that
there was substantial overlap in hTERT functional domains
required for these two biological activities. This included the
domains necessary for catalytic activity: the RNA binding
domains (SI Appendix, Fig. S2C) and the enzyme’s active site. In
one extensively studied mutant, hTERTDN, the essential aspartic
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Fig. 1. Ectopic hTERT expression enhances cell proliferation. HMECs were transduced with the indicated retroviral vectors, and grown in complete medium
(A) or mitogen-limited (i.e., minimal) medium (A–C). (A) Cell proliferation in complete medium (CM) or minimal medium (MM) was measured by using crystal
violet staining (SI Appendix, SI Materials and Methods). The graph represents averages of triplicates ± SD from one representative of three independent
experiments. (B) Cells were labeled with BrdU. Representative flow cytometry profiles and percentages of BrdU-positive cells are shown. (C) Cells were stained
for annexin V. Representative flow cytometry profiles and percentages of annexin V-positive cells are shown. Graphs in B and C represent averages ± SEM of
three experiments.
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acid and valine residues at positions 710 and 711 in the active site
are substituted with alanine and isoleucine, respectively (34).
This mutant was catalytically inactive (Fig. 3A), failed to main-
tain telomeres (Fig. 3C, lanes 3 and 9) or extend lifespan (Fig.
6B), and was unable to enhance cell proliferation (Fig. 3B) (13).
We introduced these two substitution mutations into hTERTIA−,
thus eliminating its enzymatic activity (Fig. 3A). We found that
the hTERTIA−/DN double mutant did not enhance cell pro-
liferation (Fig. 3B), which suggested that hTERTIA− was not
a gain-of-function mutant and confirmed the essential contri-
bution of catalytic activity to the proliferation phenotype.
Two other mutants, hTERTN-DAT 116 and hTERTC-Term, which

are defective in telomere elongation (Fig. 3C), likely because
they are unable to interact with accessory proteins necessary for
telomere recruitment (36), also abrogated proliferation en-
hancement (Fig. 3D). Of significance was that hTERTN-DAT 116

and hTERTC-Term were catalytically active (Fig. 3E), indicating

that hTERT catalytic activity, although necessary, was not suf-
ficient for proliferation enhancement.
None of the mutations in hTERT linker domains, which are

not required for catalytic activity (SI Appendix, Fig. S2A) or
telomere maintenance (32, 33), inactivated its ability to enhance
cell proliferation (SI Appendix, Fig. S2C). Therefore, we were
unable to identify in this mutant set a domain of hTERT
uniquely required for enhancing cell proliferation.
Finally, mutation of the hTERT 14–3-3 binding domain (37),

which results in a predominantly cytoplasmic localization (33),
had no effect on catalytic activity (SI Appendix, Fig. S2A).
However, this mutant was unable to enhance proliferation (SI
Appendix, Fig. S2C). Thus, hTERT-enhanced proliferation re-
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quired nuclear localization and was probably unrelated to po-
tential functions in the cytoplasm or mitochondria (21, 26, 27).

Cellular Lifespan Extension by hTERT Is Independent of Telomere
Elongation. Normal somatic human cells undergo a limited
number of cell divisions before senescence. The stepwise erosion
of telomeres during successive cell divisions is thought to un-
derlie the counting mechanism that triggers irreversible stress
responses, cellular senescence, and a permanent proliferative
arrest. Expression of hTERT is therefore thought to promote
extension of proliferative lifespan by preventing telomere loss (38).
The discovery of hTERT mutants that cannot elongate telo-

meres but nevertheless greatly prolong the proliferative lifespan
of primary human fibroblasts is not entirely consistent with this
hypothesis (39, 40). Our observations with HMECs confirmed
these previous experiments in fibroblasts. Three mutants,
hTERTIA−, hTERTN-DAT 116, and hTERTC-Term, were catalyti-
cally active but defective in telomere elongation (Fig. 2 A and B
and Fig. 3 C and E). Despite being unable to elongate telomeres,
late passage HMECs expressing hTERTIA− or hTERTN-DAT 116

did not show large, flat, vacuolated cells indicative of senescence,
were negative for senescence-associated β-gal activity (SA-β-gal;
Fig. 4A), and could be passaged for at least 5 mo (Fig. 4B).
Vector-transduced HMECs always underwent irreversible se-
nescence in approximately 6 wk (Fig. 4B). Cells expressing
hTERTC-Term were heterogeneous. Late passage hTERTC-Term

populations always showed some areas of large, flat, vacuolated
cells with positive staining for SA-β-gal (SI Appendix, Fig. S3A).
At later passages, cells expressing hTERTC-Term exhibited a brief
plateau in proliferation, but eventually they demonstrated an
extended lifespan (SI Appendix, Fig. S3B). When assayed at
approximately 4 mo after senescence of vector control cells,
HMECs with hTERTIA−, hTERTN-DAT 116, or hTERTC-Term all
continued to express hTERT catalytic activity at levels similar to
cells with WT hTERT (Fig. 4C and SI Appendix, Fig. S3C).
Nevertheless, telomeres in cells expressing each of these mutants
continuously shortened (Fig. 4D and SI Appendix, Fig. S3D).
This showed that extended lifespan was not caused by activation
of the alternative lengthening of telomeres mechanism of telo-
mere elongation, and ruled out the possibilities that it was caused
by reversion of the mutations or endogenous hTERT activation.

Telomere Elongation-Independent Lifespan Extension by hTERT
Occurs Without Chromosomal Instability or DNA Damage Activation
and Is Dependent on Telomere Capping. All of the aforementioned
mutants that conferred extended lifespan retained catalytic ac-
tivity (Figs. 2A and 3E), and it remained possible that they could
stably maintain very short telomeres that were sufficient to re-

cruit telomere-binding proteins of the shelterin complex, such as
the hPOT1 protein (41, 42). These proteins, together with
hTERT, localize to chromosome ends creating a telomere “cap.”
This cap is thought to distinguish natural chromosome ends from
double strand breaks, thereby preventing the DNA rearrange-
ments typically associated with broken chromosome ends and the
triggering of a senescence-associated DNA damage response
(41, 42). We therefore first examined HMECs transduced with
WT hTERT, hTERTIA−, hTERTN-DAT 116, or hTERTC-Term for
chromosome instability. We analyzed 20 metaphases from these
HMECs at 4 mo after senescence of control cells. None showed
chromosome abnormalities indicative of telomere dysfunction.
In contrast, telomere-associated events were observed in many
metaphases of the late passage (i.e., senescing) control HMECs
(SI Appendix, Fig. S4A). This indicated that the chromosomes in
HMECs with hTERTIA−, hTERTN-DAT 116, or hTERTC-Term

were protected from telomere-associated DNA rearrangements
despite the lack of telomere elongation.
We further assessed the cells for activation of a DNA damage

response resulting from telomere dysfunction by measuring for-
mation of phospho-H2AX foci (43, 44). At 4 mo after senes-
cence of control cells, cells expressing hTERT mutants that
extended lifespan did not show more DNA damage foci than
cells expressing WT hTERT (Fig. 5A and SI Appendix, Fig. S4B).
As a control, we showed that all these cells remained able to
assemble DNA damage foci after γ-irradiation (Fig. 5A and SI
Appendix, Fig. S4B), demonstrating that the cellular responses to
damaged DNA were intact. Together, these results showed that
hTERT mutants that were unable to carry out telomere elon-
gation could extend lifespan of HMECs without causing chro-
mosome instability and activation of a DNA damage response,
consistent with chromosome capping.
Finally, we directly tested whether inhibiting expression of

hPOT1 could affect the ability of these hTERT mutants to ex-
tend lifespan. We stably transduced HMECs expressing the
aforementioned hTERT mutants at 4 mo after senescence of
control cells with an hPOT1 or control shRNA vector (45). By
using quantitative real-time RT-PCR (qPCR), we observed 60%
to 80% knockdown of endogenous hPOT1 mRNA expression in
HMECs expressing WT hTERT, hTERTIA−, or hTERTN-DAT 116

(Fig. 5B). For HMECs expressing hTERTC-Term, we obtained
cell populations expressing the control shRNA vector but were
unable to isolate cells expressing the hPOT1 shRNA vector in
two independent transduction attempts, suggesting that they may
have a critical requirement for hPOT1. Furthermore, although
we were able to isolate HMEC populations expressing hTERTIA−

plus hPOT1 shRNA, these cells proliferated very slowly. We
observed many large, flat, vacuolated cells, within 1 to 2 d after
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drug selection, and staining for SA-β-gal confirmed that a ma-
jority of these cells were senescent (Fig. 5C). In contrast,
knockdown of hPOT1 in HMECs expressing WT hTERT or
hTERTN-DAT 116 did not cause the rapid onset of senescence
(Fig. 5C). However, these cells still proliferated more slowly than
those expressing control shRNAs (SI Appendix, Fig. S5A). We
therefore assessed them for apoptosis by measuring the per-
centage of annexin V-positive cells by flow cytometry, and ob-
served an increased cell death in all cells expressing hPOT1
shRNAs (Fig. 5D and SI Appendix, Fig. S5B). Thus, hPOT1
knockdown in cells expressing these hTERT mutants results in
decreased cell numbers associated with senescence and/or apo-
ptosis. These results demonstrate that extended-lifespan cells
with short telomeres still require shelterin proteins, such as
hPOT1, and link the lifespan extension conferred by telomere
elongation-defective hTERT mutants to chromosome capping.

Cellular Lifespan Extension by hTERT Can Be Uncoupled from En-
hanced Proliferation. We examined the abilities of these mutants
(telomere elongation-negative and lifespan extension-positive)
to cause enhanced proliferation in mitogen-limiting conditions
at late passage, 4 mo after the controls had become senescent.
As we had observed in young cells, hTERTIA− increased pro-
liferation similar to WT hTERT, whereas hTERTN-DAT 116

and hTERTC-Term did not (Fig. 5E and SI Appendix, Fig. S4C).
Thus, lifespan extension was observed with one mutant,

hTERTN-DAT116, and to a lesser extent with a second, hTERTC-Term,
which were both defective in enhancing cell proliferation. Hence,
lifespan extension and proliferative advantage functions of
hTERT were independent.
An important conclusion, therefore, is that chromosome

capping was insufficient to explain the proliferation advantage
imparted by hTERT. At least two mutants that retained this
capping function, hTERTN-DAT 116 and hTERTC-Term (as evi-
denced by lifespan extension without chromosome dysfunction),
did not enhance cell proliferation. Conversely, hTERT-HA
largely retains the proliferation function of hTERT (SI Appendix,
Fig. S1 B and C), yet is unable to maintain telomeres (23, 35) or
cause lifespan extension (SI Appendix, Fig. S1D). Thus, chro-
mosome capping by hTERT was also not necessary for enhanc-
ing proliferation.

Enhanced Proliferation and Regulation of DNA Damage Signaling Are
Separable Functions of hTERT. It has been proposed that hTERT’s
ability to stimulate proliferation might be linked to suppression
of telomere-associated DNA damage signals, as these signals
might sensitize cells to the antiproliferative effect of diminished
mitogens (44). Our results did not support this interpretation,
because both hTERTN-DAT 116 and hTERTC-Term suppressed
DNA damage responses associated with telomere erosion (Fig.
5A and SI Appendix, Fig. S4B), yet were not sufficient to enhance
cell proliferation (Fig. 5E and SI Appendix, Fig. S4C).
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Fig. 5. Telomere elongation-independent lifespan extension by hTERT occurs without DNA damage activation or enhanced proliferation and is dependent
on telomere capping. HMECs were stably transduced with the indicated retroviral vectors (WT, WT hTERT; IA-, hTERTIA−; NDAT, hTERTN-DAT 116). (A) HMECs
passaged for 4 mo (as described in Fig. 4) were left untreated or irradiated and stained for phospho-H2AX. Phospho-H2AX foci in at least 300 cells for each of
the cell populations were scored and the average percentage of cells containing foci are shown. The images are representative of one of three independent
experiments. (B–D) After 5 mo in culture, HMECs expressing indicated hTERT constructs were stably transduced with retroviral vectors expressing hPOT1 or
control shRNAs. (B) hPOT1 mRNA levels were measured by qPCR and were normalized to HPRT1 levels in each sample. The results show the averages of
duplicates and represent the percent hPOT1 knockdown relative to HMECs with WT hTERT plus control shRNA. (C) HMECs were stained to detect SA-β-gal
activity (blue) at 4 d after drug selection. Images are representative of cells from two independent transductions. (D) Cells were stained for annexin V and
analyzed by flow cytometry. Percentages of annexin V-positive cells are shown. The graph represent averages ± SEM of three experiments. (E) HMECs
passaged for 5 mo (as described in Fig. 4) were analyzed for proliferation rates in minimal medium. Results are the averages ± SD from one assay, and were
confirmed in another growth assay with independently transduced cells.
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We further tested whether these two functions were related by
assessing formation of DNA damage foci in cells that had telo-
meres of different lengths; in early passage (i.e., passage 8) un-
infected HMECs and HMECs transduced with vector control or
WT hTERT at presenescent (i.e., passage 12) and late passages
(i.e., passage 16). In contrast to previous studies (44), we ob-
served that uninfected and presenescent HMECs did not show
high DNA damage signaling as indicated by the similar low
number of phospho-H2AX foci observed in these cell types,
irrespective of whether they were transduced with hTERT (SI
Appendix, Fig. S6 A and B). It was only at late passages that the
difference in focus number between HMECs transduced with
control vector or hTERT became apparent (SI Appendix, Fig. S6
A and B). Therefore, hTERT was able to enhance cell pro-
liferation (Figs. 1–3) at a presenescent passage (i.e., passage 11)
during which DNA damage signaling was not evident. Together,
these results showed that the proliferation advantage function of
hTERT was not related to its role in telomere-dependent DNA
damage signaling.
It has also been reported that hTERT has a telomere-in-

dependent role in DNA damage signaling (25). In these
experiments, hTERT was necessary for cells to respond normally
to intrachromosomal DNA double-stranded breaks. Separation
of function mutants, hTERTN-DAT 92 and hTERTC-DAT 1127,
retained the ability to mediate DNA damage signaling despite
being defective in telomere maintenance (25). We therefore
asked whether hTERT-enhanced cell proliferation might be re-
lated to its telomere-independent effects on DNA damage sig-
naling. We generated HMECs transduced with hTERTN-DAT 92

and hTERTC-DAT 1127. Both mutants were catalytically active
(Fig. 6A), a prerequisite for enhancing proliferation (Fig. 3), but
defective in conferring lifespan extension (Fig. 6B). Importantly,
in mitogen-limiting conditions, HMECs expressing hTERTN-DAT 92

and hTERTC-DAT 1127 were unable to enhance proliferation (Fig.
6C). We observed a similar trend in BrdU incorporation (Fig.
6D). Together, these data showed that the telomere-independent
DNA damage signaling and proliferation functions of hTERT
were separable.

Enhanced Cell Proliferation Occurs Independently of Increases in Wnt
Signaling But Is Linked to Decrease in RMRP Levels. Recent studies
have shown that mTERT interacts with Brg-1, which binds
β-catenin, and is thereby recruited to Wnt target genes, activat-
ing their transcription (16, 17). We addressed whether this might
contribute to the enhanced cell proliferation of hTERT-trans-
duced HMECs. We first tested whether specific Wnt pathway

genes, which have been reported to be targets of mTERT or
important in breast cancer (16, 17, 46), were responsive to Wnt
signaling in HMECs. Axin2, LEF1, WNT4, WNT11, and
SMAD7 mRNA levels were increased in HMECs treated with
the Wnt pathway activator LiCl (Fig. 7A and SI Appendix, Fig.
S7A), whereas WNT5A and WNT1 were not. Brg-1 was expressed
at equal levels in control and hTERT-transduced HMECs (SI
Appendix, Fig. S7B). However, none of the Wnt-responsive genes
was induced by hTERT (Fig. 7B and SI Appendix, Fig. S7C).
Thus, TERT-mediated Wnt transcriptional induction likely does
not contribute to enhanced cell proliferation in HMECs.
Recent studies also indicate that hTERT has terminal trans-

ferase (47) and RNA-dependent RNA polymerase (24) activities
that are dependent on its catalytic domain but hTR-independent.
We asked whether hTERT-mediated proliferation enhancement
requires hTR by stably expressing hTR shRNAs. However, we
were unable to isolate such HMEC populations, possibly because
hTR suppression triggers rapid telomerase-independent growth
arrest and apoptosis through ATM and ATR-mediated DNA
damage checkpoint responses (48, 49). As an alternative, we
used the VA13 fibroblast cell line, which lacks both hTR and
hTERT expression and maintains telomeres via the alternative
lengthening of telomeres pathway. We confirmed lack of en-
dogenous hTERT expression and expression of ectopic hTERT
(SI Appendix, Fig. S8A). Cells were grown in primary fibroblast
media, specifically omitting FGF and EGF to obtain mitogen-
limited conditions that inhibited proliferation (SI Appendix, Fig.
S8B). We observed a modest but very reproducible and statisti-
cally significant enhancement of proliferation by hTERT in three
experiments (SI Appendix, Fig. S8C), suggesting that the non-
canonical activity of hTERT that enhances proliferation is hTR-
independent.
hTERT can also use the noncoding RNA, RMRP, as a tem-

plate to generate double-stranded RNAs that are processed into
siRNAs; one consequence of this is feedback suppression of
RMRP itself (24). The biological effects of the hTERT–RMRP
pathway are unknown, and we therefore tested its role in
hTERT-enhanced cell proliferation. As a baseline, we found that
hTERT reduced RMRP expression by 60% in HMECs (SI Ap-
pendix, Fig. S9A), and that this amount of RMRP suppression
could be mimicked by transduction of HMECs with RMRP
shRNAs (Fig. 7C). Remarkably, knockdown of RMRP by
shRNAs alone was sufficient to enhance HMEC proliferation
(Fig. 7D). Transduction of RMRP shRNAs into HMECs
expressing hTERT caused only a small further decrease in
RMRP levels and a marginal additional enhancement of pro-
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liferation (SI Appendix, Fig. S9B). These data link the ability of
hTERT to modulate RMRP levels to its functions in enhancing
HMEC proliferation.

Discussion
We have used an extensive panel of hTERT mutants (SI Ap-
pendix, Table S1) to explore whether the diversity of biological
functions attributed to hTERT are mediated by the same or
different mechanisms. Our major conclusion is that the ability of
hTERT to enhance proliferation, which was caused by increased
cell division and decreased apoptosis, could be genetically sep-
arated from its functions in telomere elongation, lifespan ex-
tension, and DNA damage responses. Further, we found that
enhanced cell proliferation in mitogen-limited conditions was not
caused by altered Wnt signaling, but was accompanied by changes
in key cell cycle regulators and was linked to an hTERT-catalyzed
decrease in the expression of the noncoding RNA, RMRP.
We were also able to uncouple telomere elongation from

lifespan extension (Fig. 4 and SI Appendix, Fig. S3) as previously
seen in primary human fibroblasts ectopically expressing hTERT
mutants (39, 40). All telomere elongation-defective mutants that
conferred extended lifespan retained catalytic activity. It there-
fore remained possible that they could stably maintain very short
telomeres that were sufficient to recruit telomere-binding pro-
teins, such as those of the shelterin complex. This would support
the idea that hTERT can greatly extend cellular proliferative
lifespan in the absence of telomere elongation, possibly via
chromosome capping (41, 42). Indeed, we found that, in these
extended-lifespan cells, which have a stable karyotype, sup-
pressing expression of the hPOT1 capping protein results in se-

nescence and/or apoptosis (Fig. 5 B–D and SI Appendix, Fig. S5
A and B), consistent with previous hPOT1 knockdown studies
that have shown that it causes apoptosis in immortalized cancer
cell lines (45, 50) and senescence in primary cells (45, 50, 51).
We further observed that the phenotypes resulting from hPOT1
knockdown were rapidly lost. The loss of the senescence phe-
notype occurred within 2 wk (compare Fig. 5C vs. SI Appendix,
Fig. S5C) after knockdown, and proliferation defects were
completely lost within an additional 2-wk period. We confirmed
that hPOT1 levels remained very low at that time. The cause of
this recovery remains to be investigated, and it is possible that
a subpopulation of cells that was tolerant to low levels of hPOT1
was selected. Importantly, we also demonstrated that the lifespan
extension and proliferative functions of hTERT are separable,
and therefore mechanistically distinct. We found N- and C-ter-
minal hTERT mutants that promoted lifespan extension, but
were unable to confer a proliferative advantage in mitogen-limiting
conditions (Figs. 4 and 5 and SI Appendix, Figs. S3 and S4).
Previous studies on alternative biological functions of hTERT

showed that it could also modulate DNA damage responses.
Ectopic hTERT expression altered the posttranslational mod-
ifications on histone tails and thus promoted a chromatin
structure that facilitated DNA damage responses (25). hTERT
mutants that were unable to maintain telomeres remained active
in this DNA damage response pathway, provided they retained
catalytic activity (25). We found that the same mutants (i.e., DNA
damage response-positive and telomere maintenance-negative)
were unable to enhance proliferation (Fig. 6). Thus, the role of
hTERT in proliferation was also separable from its role in this
DNA damage response, and therefore likely involved a different
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mechanism. In sum, our analyses showed that at least four bi-
ological actions of hTERT—enhancement of cell proliferation,
telomere elongation, cellular lifespan extension, and regulation
of DNA damage responses—were genetically separable and
therefore, at least in part, functionally independent.
The most surprising conclusion that can be drawn from this

collection of studies may be that the diverse biological roles of
hTERT all require hTERT catalytic activity, even though all but
one are functionally independent of telomere elongation. Fur-
ther, an hTERT mutation that resulted in a predominantly cy-
toplasmic localization (33), but had no effect on catalytic activity
(SI Appendix, Fig. S2A), was unable to enhance proliferation (SI
Appendix, Fig. S2C). Thus, hTERT-enhanced proliferation re-
quired nuclear localization and was probably unrelated to po-
tential functions in the cytoplasm or mitochondria (21, 26, 27). In
addition to our experiments in HMECs, experiments in other
tissue types such as cardiac myocytes (22), mouse embryonic
fibroblasts (18), and human fibroblasts (23) show that catalytic
activity is necessary for hTERT to increase cell proliferation. In
contrast, the ability of mTERT to stimulate proliferation of skin
and hair follicle stem cells (14, 15) by modulating the Wnt sig-
naling pathway is independent of its catalytic activity (16, 17).
Consistent with our findings that hTERT catalytic activity and
RNA binding are required for enhanced proliferation of HMECs
(Fig. 3B and SI Appendix, Fig. S2C) (13), we found that Wnt-
responsive genes were not induced by hTERT in HMECs (Fig. 7
A and B and SI Appendix, Fig. S7) and that, therefore, their
enhanced proliferation phenotype was not related to Wnt sig-
naling. Instead we found that the hTERT–RMRP pathway,
which results in generation of siRNAs and feedback suppression
of RMRP, is linked to the enhanced cell proliferation phenotype
in HMECs (Fig. 7 and SI Appendix, Fig. S9). Thus, there may be
more than one mechanism by which hTERT can stimulate cell
proliferation. RMRP has varied cellular functions, including
processing RNAs required to generate primers for mitochondrial
DNA replication, pre-rRNA processing during rRNA matura-
tion, mRNA cleavage of cell cycle genes, and potential regula-
tion of gene expression via complexing with hTERT to generate
siRNAs (24, 52). The pathway(s) through which RMRP might
impact the proproliferative effect of hTERT remains to be elu-
cidated. Further investigation of these pathways, as well as of
alternative hTERT activities and its other binding partners,
would not only improve our understanding of how hTERT
mediates its diverse roles but could also uncover new targets for
the development of anti-telomerase cancer therapeutic agents.

Materials and Methods
Cells and Cell Culture. HMECs were obtained and cultured as described pre-
viously (13). Retroviral vectors (SI Appendix, SI Materials and Methods and
Table S1) used for expressing WT/mutant hTERT [gift from C. M. Counter
(Duke University Medical Center, Durham, NC) (32, 33) and R. A. Weinberg
(Whitehead Institute for Biomedical Research, Cambridge, MA) (23, 34)],
hPOT1 shRNAs [gift from C. M. Counter (45)], or RMRP shRNAs were trans-
duced into HMECs, followed by drug selection to obtain stably transduced
cells. Long-term passaging was carried out for 5 mo and the live cell counts
determined at each passage. VA13 cells (CCL-75.1; American Type Culture

Collection) were cultured in DMEM with 10% bovine growth serum and
thereafter in complete primary fibroblast medium with all supplements (SI
Appendix, SI Materials and Methods). When studying effects of hTERT in
mitogen-limiting conditions (i.e., minimal medium), human EGF, and FGF
were omitted from the medium.

Proliferation and Cell Death Assays. For the cell growth assay (SI Appendix, SI
Materials and Methods), HMECs or VA13 cells were cultured in minimal/
complete medium, fixed at indicated time points, and stained with crystal
violet, which was eluted with acetic acid and absorbance measured at 595
nm. BrdU incorporation was assayed as described previously (53). Annexin V
staining and analysis was carried out per manufacturer instructions by using
the APOAF annexin V FITC apoptosis detection kit (Sigma).

Western Blotting. Cells were lysed in 1%Nonidet P-40 lysis buffer, and 20 to 40
μg protein resolved by SDS-PAGE, transferred to PVDF membranes, and
probed with primary antibodies (SI Appendix, SI Materials and Methods) for
cyclin D1, cyclin A2, pRB, E2F1, Brg1, Actin, or Grb2. After incubation with
horseradish peroxidase-conjugated secondary antibodies, bands were visu-
alized by using the ECLPlus Western blotting detection system.

Quantitative Real-Time RT-PCR. Cells were harvested using Qiazol lysis re-
agent, total RNA isolated, and cDNA synthesized by using Taqman reverse
transcription reagents. Real-time PCR was carried out by using Taqman
Universal PCR Master Mix and primer probe sets (SI Appendix, SI Materials
and Methods) for LEF1, Axin2, WNT4, SMAD7, WNT11, and POT1 (Applied
Biosystems) or SYBR Green qPCR SuperMix (Invitrogen) and RMRP primers as
described previously (24). mRNA levels of each sample were normalized to
expression of HPRT1 or β-actin controls in that sample.

Telomerase Repeat Amplification Protocol Assay (TRAP) and Telomere Length
Determination by Terminal Restriction Fragment Analysis. Telomerase activity
and telomere length were measured per instructions in the Telomerase
TeloTAGGG PCR ELISA and Telomere Length Assay Kits, respectively (no.
11854666910 and 12209136001; Roche; SI Appendix, SI Materials and
Methods). TRAP PCRs were each done in duplicate.

DNA Damage Analysis. Untreated or irradiated (10 Gy) cells were stained with
an anti–phospho-histone H2AX serine 139 antibody (no. 05–636; Upstate
Biotechnology; SI Appendix, SI Materials and Methods), followed by Alexa
Fluor 488-conjugated goat anti-mouse antibody and TO-PRO 3 (A11029 and
T-3605; Invitrogen/Molecular Probes) to visualize DNA damage foci.

Karyotyping. Metaphase spreads were prepared from HMECs treated with
colcemid (0.2 μg/mL) followed by 0.075 M KCl hypotonic treatment. Standard
G-banding karyotypic analysis was performed on 20 metaphase spreads for
each cell type.

Senescence-Associated β-Gal Staining. HMECs were stained with SA-β-gal as
described previously (54). Cells were imaged by using a Nikon SMZ1500
microscope.

Experimental procedures are described in further detail in SI Appendix, SI
Materials and Methods.
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