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Abstract

Background: Rice paddies have been identified as major methane (CH4) source induced by human activities. As a major rice
production region in Northern China, the rice paddies in the Three-Rivers Plain (TRP) have experienced large changes in
spatial distribution over the recent 20 years (from 1990 to 2010). Consequently, accurate estimation and characterization of
spatiotemporal patterns of CH4 emissions from rice paddies has become an pressing issue for assessing the environmental
impacts of agroecosystems, and further making GHG mitigation strategies at regional or global levels.

Methodology/Principal Findings: Integrating remote sensing mapping with a process-based biogeochemistry model,
Denitrification and Decomposition (DNDC), was utilized to quantify the regional CH4 emissions from the entire rice paddies
in study region. Based on site validation and sensitivity tests, geographic information system (GIS) databases with the
spatially differentiated input information were constructed to drive DNDC upscaling for its regional simulations. Results
showed that (1) The large change in total methane emission that occurred in 2000 and 2010 compared to 1990 is
distributed to the explosive growth in amounts of rice planted; (2) the spatial variations in CH4 fluxes in this study are mainly
attributed to the most sensitive factor soil properties, i.e., soil clay fraction and soil organic carbon (SOC) content, and (3) the
warming climate could enhance CH4 emission in the cool paddies.

Conclusions/Significance: The study concluded that the introduction of remote sensing analysis into the DNDC upscaling
has a great capability in timely quantifying the methane emissions from cool paddies with fast land use and cover changes.
And also, it confirmed that the northern wetland agroecosystems made great contributions to global greenhouse gas
inventory.
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Introduction

Methane (CH4) is a major greenhouse gases (GHG). According to

the Intergovernmental Panel on Climate Change (IPCC) report,

atmospheric CH4 concentrations have risen to 1774 ppb in 2005 [1].

Many studies have proved that agricultural activities are responsible

for approximately 50% of global atmospheric inputs of CH4, wherein

the rice paddies have been identified as a major source [2]. Over 10%

of atmospheric CH4 was attributed to the emissions from global rice

paddies [3,4]. Thus, how to accurately estimate the CH4 emissions

from rice paddies has become an pressing issue for assessing the

environment impacts of agroecosystems, and further making GHG

mitigation strategies at regional or global levels.

As an important rice producing country, China possesses

approximately 20% of the world’s rice paddies which provides

about 30% of the world’s rice needs [5]. About 20% of all

croplands in China were cultivated for rice production [6]. Such a

huge CH4 source could make a great contribution to global CH4

inventory. To estimate the national inventory of CH4 emission, a

number of site-specific observations were conducted for measuring

CH4 flux at field sites in the major rice producing areas in

Southern and Southeast of China [7–10]. These ground-based

measurements were reliable for understanding the mechanics of

CH4 emission at local scale. Given the emergence of new

frameworks for GHGs mitigation, however, it fails to respond to

practicable requirements at national, regional, and global levels in

the long run for high variations in spatial and temporal pattern of

CH4 emission with changing environmental conditions [11–15].

Consequently, based on the extrapolation of the understandings

gained at site scale to a large spatial dimension, model simulations

were required to meet the demands for spatiotemporal analysis of

CH4 emissions from rice fields.

Model estimation of CH4 emissions from rice fields began with

empirical models based on the regression relationships between
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CH4 emission rate and rice biomass or yield [16–18]. However,

these ‘‘easy-to-use’’ approaches were unable to reasonably explain

biogeochemical processes involved in CH4 production, oxidation

and emission, and also explicitly delineate the emissions variation

at regional scale across a wide range of soil conditions and

management practices. In this case, many physical models

consequently were developed based on biogeochemical process

to quantify the comprehensive effects of ecological drivers, soil and

climate factors and management alternatives on agricultural

production and environment [19–21]. For their capability in

simulating CH4 production and oxidation process in paddies, so

were extensively utilized to regional or global CH4 estimation [22–

27].

Of among, the Denitrification and Decomposition (DNDC)

model is a generic model that simulates the biogeochemical

processes leading to GHG emissions from soil [19,28,29]. It has

been adapted to simulations of GHG (e.g. CO2, N2O or CH4)

emissions from a wide range of systems such like dryland crop,

pasture, rice paddy, and forest systems [30]. For rice-cropping

system, DNDC has been substantially tested/validated against

observed CO2, N2O or CH4 fluxes during the past two decades

[25,31–33]. Satisfactory results were achieved in a number of

countries across the world like the U.S., China, Thailand, India,

Japan, etc. [32–36]. Many studies proved that DNDC is most

applicable for estimating CH4 emissions from rice paddies at

regional scale [26,27].

To implement the upscaling for multi-temporal, regional CH4

estimation, accurate acquisition of spatial distribution of rice field

was indispensable to advance the regional applications of DNDC.

Remote sensing (RS) for mapping rice could provide more

accurate spatial information of rice fields than conventional census

data. Many researchers utilized remotely sensed data (optical or

microwave) for mapping the spatial distribution of paddy rice at

regional scale [37,38]. DNDC has been discussed for upsacling by

integrating the RS technique to compile greenhouse gas

inventories, identify spatial patterns in emission, or explore

scenarios for GHG mitigation [39–41].

In this study, a representative region of paddy rice production,

the Three-Rivers Plain (TRP) in Northern China, was selected for

regional CH4 estimation. This region possesses climate, soil and

management conditions differing from that in the tropical or

subtropical rice regions. With the introduction of RS analysis into

the DNDC upscaling, this study aims at characterizing the

spatiotemporal patterns of the CH4 emissions from rice fields in

the TRP over the past two decades (from 1990 to 2010), and

further for quantifying the contribution of the rice paddies within

the TRP to global methane.

Methods

Study area
The study area, the TRP, is located in northeast China (48.5u–

43.8uN and 129.2u–135.1uE). Three major rivers, Songhua River,

Wusuli River and Heilong River, whose watersheds cover almost

the entire territory (10.93 million hectares) of the eastern part of

Heilongjiang Province (Fig. 1). This region lies at 45 to 60 m

geographic elevation above sea level with a gentle and flat

topographic relief. Croplands is cultivated in this region from early

May to early October for each cropping year with leaving fields

fallow for a long period (approximately 7 months). Annual mean

temperature is ranged from 2.6 to 5.2uC, and annual precipitation

ranged from 330 to 850 mm during the period of 1980–2010. The

soils are fertile and rich in organic matter. The flat topography,

fertile soils and abundant water resources have made the alluvial

plain favorable for crop production. In the 1950s, land

reclamation campaigns in the Northeast China converted a

majority of the natural swamplands into farmlands. Over the past

six decades, the region has experienced drastic changes in the land

use. Especially in the recent 20 year, over one million ha of lands

has been cultivated as rice paddy.

The rice fields in the TRP, with the highest latitude in not only

China but also the world, are one of the most important resources

producing high quality rice for the region even the whole county.

In this region, a small population of farmer owes a large amount of

agro-lands, and modern cultivation managements are extensively

practiced. Only single-season rice is planted in the region with

growing season from late May to late September. Continuously

deepwater flooding (with .10 cm water depth) is widely adapted

in rice fields cross the TRP. Urea and synthetic fertilizer are

predominantly applied without any organic matter amended.

About 10% of the rice straw is normally left as stubble in the fields

after harvest in October, and the stubble is incorporated into the

soils with tillage before the beginning of the next rice season.

Model Validation
To validate the applicability of DNDC model for the rice fields

in the TRP, field experiments were conducted at a paddy site in

the Honghe Farm (at 47u359N and 133u319E) in 2004 and 2006

within the plain (Fig. 1). Ecological factors to drive DNDC model

for simulating the CH4 production and oxidation in rice paddy

included three major factors, i.e. climate, soil properties and

management practices. These factors (i.e. model inputs) were used

to run DNDC for the experimental site. Daily meteorological data

(air temperature and precipitation) were acquired from the local

climate station, a part of the Ecological Experimental Station of

Mire-Wetland in the TRP run by the Chinese Academy of

Science. Soil physical and chemical properties in the field site were

obtained from the ground-based measurements. Rice cultivation

information was collected from the log documents of field

measurements. Three treatments were conducted in a same paddy

field with specific management practices (see details in [41]). Three

treatments are: 60 kg N/ha of N-fertilizer application rate in 2004

(T1); 150 kg N/ha of N-fertilizer application rate in 2004 (T2);

and 150 kg N/ha of N-fertilizer application rate in 2006 (T3). The

measurements of CH4 fluxes were conducted twice per week with

static chamber method through the rice-growing period (from late

May to early October). The measured CH4 flux data were used to

compare with the modeled CH4 fluxes at daily time step. Statistical

tools such as the root mean square error (RMSE), the coefficient of

model efficiency (EF) and the coefficient of model determination

(CD) were adopted to assess the ‘‘goodness of fit’’ of model

predictions. Normally, value for EF is less than or equal to 1. A

positive value indicates that the simulated values describe the trend

in the measured data better than the mean of the observed values.

The CD value is larger than or equal to 0. When a CD value of 1

or above, it indicates that the model describes the measured data

better than the mean of the observations. Taken together, EF and

CD allow RMSE to be further interpreted where standard error

values of the measurements are unavailable. Detailed description

on the calculation of the RMSE, CD and CD were listed in [42].

Construction of database for Regional Simulation
For the purpose of characterizing the spatiotemporal patterns of

CH4 emissions, it is necessary to construct geographic information

system (GIS) database for regional simulation with DNDC

upscaling. This database included multi-temporal rice field maps,

soil properties, daily weather data, and farming management

practices cover the study region.

Characterizing CH4 Emissions in Northeast China
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To delineate the spatial distribution of rice fields in the TRP,

three rice maps were retrieved from Landsat thematic mapper

(TM) RS imagery acquired in approximately 1990, 2000 and 2010

(Table 1). Total of 30 TM images with a high spatial resolution of

30 m were selected in the tillering or near-mature stage of rice in

1990 (9 images), 2000 (9 images) and 2010 (12 images). These

Landsat TM images accessed from the EarthExplorer Interface

(http://edcsns17.cr.usgs.gov/EarthExplorer/) were digitized by

visual interpretation technology at the GIS software environment

of ArcGIS 9.2, which were used to extract the detailed spatial

distribution of paddies in the TRP. In terms of the unique

phenology features of rice, three accurate rice maps were

successfully extracted from the clear remote sensing images.

The climate dataset were composed of daily maximum and

minimum air temperature, precipitation and mean wind speed

observed in 1990, 2000 and 2010. They were acquired from 7

basic weather stations in China (China Meteorological Data

Sharing Service System at http://data.cma.gov.cn/). The entire

plain was segmented into 7 sub-regions at which one weather

station was located. We assumed the rice growth was with the

same climate condition within each sub-region.

Soil data were derived from the soil dataset developed by the

Institute of Soil Science, Chinese Academy of Sciences, which was

compiled based on the second national soil survey of China

conducted in 1980–1990s [43,44]. The soil spatial dataset was a

grid data with cell size of 10 km610 km, which contains soil

Figure 1. Location of the Three-Rivers Plain.
doi:10.1371/journal.pone.0029156.g001
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texture (sand, silt and clay percentage) and physical and chemical

properties (e.g. organic matter, pH and bulk density) at multiple-

layer profile. In the TRP, there were 605, 815 and 826 soil cells

cover the rice paddies of the TRP in 1990, 2000 and 2010,

respectively. Each cell containing soil properties in the top layer

(0–10 cm) were used to drive the DNDC simulations. And then,

spatial overlay analysis was performed to segment three rice

thematic maps with the soil data with cell size of 10 km610 km.

Generally, unlike the extensive farmland use mode in South

China, the management practices are relatively identical cross the

study region. The indistinctive differences in rice cultivation

practices make less variation in CH4 emissions from rice paddy in

this study area. Therefore for the multiple temporal simulation of

CH4 emission, we assumed the general management practices in

each simulated year was spatially identical for the entire rice

paddies in TRP. Detailed information on paddy cultivation (e.g.

planting/harvesting date, tillage/irrigation regime, fertilizer ap-

plication, residue management, etc.) in 1990, 2000 and 2010 were

investigated by communicating with a number of local agrono-

mists and farmers (Table 2).

The spatially differentiated information above listed was

compiled in the GIS database of DNDC for the regional

simulation. DNDC was performed for characterizing the spatio-

temporal patterns of CH4 emission with three input datasets in

1990, 2000 and 2010, respectively. DNDC run twice for each grid

cell with the maximum and minimum values of the soil properties,

which formed a range of CH4 emission that was later used for

quantifying the uncertainty generated from the DNDC upscaling

[25]. Based on the modeled CH4 flux and the rice field acreage

within each cell, the total yearly CH4 emissions from the cell could

be calculated. Three cell-level spatial patterns of CH4 emissions

were mapped for the whole plain, and then the regional emissions

were accumulated for evaluating their contributions to global CH4

inventory.

Results

Validation results and sensitivity factors analysis
The measured CH4 fluxes at the three treatments mentioned

above were compared with modeled results. Figure 2 shows the

comparisons between the modeled CH4 fluxes with observations.

As a whole, the modeled results showed a fair agreement with

observations although minor discrepancies exist across the three

treatments. Results showed that the RMSE values were 0.190,

0.304 and 0.344 for treatment T1, T2 and T3, respectively. The

EF values were positive (.0.8), and the CD values were greater

than 1 for all the three treatments. Validation test has proved that

the DNDC is capable of better capturing the seasonal behaviors of

CH4 fluxes from the experimental site within the study area

[41,45].

Methane production and oxidation in rice fields are controlled

by many factors such as climate variables, soil properties, or

agricultural management practices [46]. The sensitivity test

provided crucial information for finding out the most sensitive

factors from all input parameters, which could affect the modeled

results for regional estimations. In the sensitivity test, baseline

scenario was first set based on the average climate, soil and

management conditions cover the study region. The simulated

result from baseline scenario was taken as a benchmark of CH4

emissions for accessing those of other scenarios. And then, within a

predefined range, DNDC were performed by varying single one of

all input parameters while keeping all other input parameters

constant (Table 3). The model responses to changes of these

factors on CH4 emission from rice paddies in the TRP were

presented respectively in Fig. 3.

Specifically, the response of CH4 emission to changes in climate

factors was investigated by running DNDC using alternative

climate scenarios. The modeled results indicated that precipitation

changes (620%) have no significant impacts on CH4 emissions for

the continuously flooded paddies, whereas the fluctuation of CH4

Table 1. Remotely sensed Landsat TM imagery used for
retrieving rice paddy.

Acquisition date

Path/Row No. 1990 2000 2010

113/26 - - 19/09/2010

113/27 19/10/1992 05/09/2002 19/09/2010

113/28 - - 19/09/2010

113/29 - - 19/09/2010

114/27 12/06/1989 11/08/2002 06/06/2010

114/28 16/09/1989 25/09/2001 06/06/2010

114/29 29/09/1988 25/09/2001 -

115/27 25/06/1991 12/08/2000 14/09/2009, 17/09/2010

115/28 02/09/1993 12/08/2000 14/09/2009

115/29 17/10/1992 31/08/2001 14/09/2009

116/27 04/09/1991 07/09/2001 08/09/2010

116/28 23/05/1994 07/09/2001 08/00/2010

doi:10.1371/journal.pone.0029156.t001

Table 2. Management practices on the rice paddies in the TRP.

Items 1990 2000 2010

Tillage 5/15: Plow depth of 20 cm 5/15: Plow depth of 20 cm 5/14: Plow depth of 20 cm

Rice cultivation 5/25: transplanting; 9/25: harvesting,
grain yield of 2400 kg C/ha

5/25: transplanting; 9/25: harvesting,
grain yield of 2700 kg C/ha

5/25: transplanting; 9/25: harvesting,
grain yield of 3000 kg C/ha

Flooding 5/15–8/25: Continuously flooding,
water depth of 10 cm

5/15–8/25: Continuously flooding,
water depth of 10 cm

5/14–8/25: Continuously flooding,
water depth of 10 cm

Fertilization 6/1: Urea (24 kg N/ha); 7/1: Urea
(36 kg N/ha)

6/1: Urea+Synthetic fertilizer
(36 kg N/ha); 7/1: Urea (54 kg N/ha)

1/1: Urea+Synthetic fertilizer
(48 kg N/ha); 7/1: Urea (72 kg N/ha)

Manure application No No No

Residues incorporation 10% 10% 10%

doi:10.1371/journal.pone.0029156.t002
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emissions incurred by temperature changes (62uC) was remark-

able. The higher is temperature, the more CH4 emitted from rice

paddy (Fig. 3). Temperature is therefore the most sensitive climate

factor. This could be explained that the higher temperature

accelerated the decomposition and fermentation process of soil

organic matter (SOM) [47].

The spatial heterogeneity of soil property has a great impact on

the pattern of CH4 emission. In this test, four major soil

parameters (soil organic carbon (SOC) content, clay fraction, pH

and bulk density) were tested within specific changing range

(Fig. 3). Test results indicated that soil clay content was the most

sensitive factor, followed by the SOC content. For the anaerobic

soil flooded by deepwater, the sandy loam soil was more likely to

produce more CH4 than the clay loam soil because large porosity

existed in sandy soil could promote CH4 transmission and release

from flooded fields. The soil with high SOC content could provide

more dissolved organic carbon to the methanogens, which is

favorable to CH4 production [25,48–50]. In contrast, CH4

emission was less sensitive to both soil pH and bulk density.

Various scenarios on CH4 emissions with three major

management practices (flooding regime, residue incorporation

and N-fertilizer application rate) were simulated by DNDC (Fig. 3).

There was no significant impact of the incorporation rate of rice

straw and residue on CH4 emission from the incorporated fields.

In the TRP, rice straw and residue were normally left in fields after

rice harvest, no CH4 emitted from the fields which have been

already drained over one month. The nitrogen level meeting the

need of the optimal rice-grain production is 120 kg N/ha. CH4

emission increased with increasing N-fertilizer application when

the applied amplitude was less than the optimal nitrogen demands

for physical development of rice plant. When the application rate

reached a level meeting the need for the optimal productivity,

additional fertilizer application didn’t make any more impact on

CH4 emission. Flooded rice paddy provided favorable environ-

ment for methanogenesis. Mid-season drainage changed the

anaerobic status of CH4 production, and thus reduced the CH4

emission from rice fields [51–53]. Simulated results showed that

for the rice paddy in cool climate region the CH4 emission was

reduced by 45% for 10 days draining duration in the peak tillering

and early maturity stages. In the perspective of mitigating CH4

emission from rice paddy fields, mid-season drainage would

become a potential opportunity through adjusting present

management practices.

Changes in rice paddies of the Three-Rivers Plain
Three accurate rice paddies maps cover the Three-Rivers Plain

were delineated for each decade from 1990 to 2010 from TM

images acquired in nominal 1990, 2000 and 2010 (Fig. 4). The rice

paddies were mainly distributed in the lowland areas along with

Figure 2. Simulated vs. observed CH4 fluxes in validation site.
(A) 60 kg N/ha of N-fertilizer application rate in 2004, (B) 150 kg N/ha of
N-fertilizer application rate in 2004, (C) 150 kg N/ha of N-fertilizer
application rate in 2006. (data from Zhang et al., 2011).
doi:10.1371/journal.pone.0029156.g002

Table 3. Environmental Factors for sensitivity tests.

Environmental Factors Baseline value Range tested

Climate Annual mean temperature (uC) 3.8 1.8–5.8

Total annual precipitation (mm) 550 440–660

Soil Property Clay fraction (%) 0.32 0.1–0.6

Initial soil C fraction (%) 2.78 1.0–6.0

Bulk density (g/cm3) 1.25 1.0–1.6

Soil pH 6.6 5.0–8.0

Management Practices Depth of continuous flooding water (cm) 10 Not varied

Drained days (d) 0 2–12

Residue incorporation (%) 10 0–100

N-Fertilizer application (kg N/ha) 150 60.0–180.0

doi:10.1371/journal.pone.0029156.t003
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Figure 3. Sensitivity tests of environment factors driving CH4 emissions from rice paddies.
doi:10.1371/journal.pone.0029156.g003
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the major rivers. The extracted total area of paddy fields was 0.23,

1.22 and 1.63 million ha in 1990, 2000 and 2010, respectively.

Statistical results showed that the rice area has increased

approximate one million ha for the first 10 years (from 1990 to

2000), whereas about 0.4 million ha for the last 10 years (from

2000 to 2010). Although the trend in changes of total area of rice

paddies was constant within the TRP, the increment rate was

slowing down gradually. The results indicated the change intensity

of land use/covers in the last decade was evidently smaller than

the first one, which could be attributed to the limited available

lands (reclaimed or converted) for new rice cultivation. From the

perspective of spatial distribution, a majority of rice was cultivated

in the western and southern lowlands of the plain in 1990. Some

small patches of rice fields were sparsely distributed in the eastern

of the TRP where the complexity of natural wetlands and drylands

existed (Fig. 4 (A)). In contrast, a large amount of drylands have

Figure 4. Rice paddies maps in the Three-Rivers Plain. (A) 1990, (B) 2000, (C) 2010.
doi:10.1371/journal.pone.0029156.g004
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been extensively cropped as rice paddy since 2000 (Fig. 4 (B and

C)). At present, the northeast and southeast have become the

major area of rice production for the Three-Rivers Plain. These

areas have been playing a role in providing the high quality rice

and ensuring food security for the Northern China, as well as the

country.

Estimation of CH4 emissions for the Three-Rivers Plain
Driven by the three GIS database separately constructed for

1990, 2000 and 2010, DNDC simulated the CH4 flux cell-by-cell

across the entire rice fields in the TRP. The total emissions were

then calculated by multiplying the modeled flux by rice area in

each cell to produce regional CH4 emissions for each simulated

year. The spatial and temporal patterns of CH4 emissions were

mapped cover the domain using GIS tools. Fig. 5 and Fig. 6

showed CH4 emission rates and total emissions at the cell scale,

respectively. The two maps showed clear spatial patterns in CH4

emissions across the domain. Detailed descriptions were discussed

as below.

In 1990, the simulated CH4 emission rates were 20.46–

175.92 kg C/ha, and the average of 71.05 kg CH4-C were

emitted from one hectare of rice field. Relatively higher CH4 flux

(.120 kg CH4-C/ha) was located at a few of soil grid cells sparsely

distributed in the southern tip and northern of the TRP, whereas

lower flux (,30 kg CH4-C/ha) were in the most northeastern

(Fig. 5 (A); Table 4). The western and southeastern of the plain,

the major rice production area, emitted more CH4 (.200 tons

(1 ton = 1000 kg)) than other areas. The northeastern was a lower

emission area (,50 tons per cell) where a large number of

farmlands were cropped as dryland crops at that time (Fig. 6 (A)).

Significant changes in CH4 emission pattern happened in 2000.

Higher CH4 flux (.250 kg CH4-C/ha) appeared in the central

and the northern while the northeastern remained lower flux

(,100 kg CH4-C/ha) (Fig. 5 (B)). The mean flux reach to 180 kg

CH4-C/ha with large gradient of 34–457 kg CH4-C/ha (Table 4).

Yearly total emission showed that those cells with high CH4

emission (.400 tons) accounted for over 40% of the domain (Fig. 6

(B)).

The recent CH4 emission pattern in 2010 was presented in Fig. 5

(C) and Fig. 6 (C). Those cell with higher CH4 flux (.250 kg CH4-

C/ha) sparsely distributed over the entire rice paddies, and lower

flux (,100 kg CH4-C/ha) in the northeastern kept constant.

Although the simulated emission rates of CH4 in 2010 was slightly

less than that in 2000 (Table 4), their patterns in total emission was

very comparable (Fig. 6 (C)).

In summary, statistical results indicated that the regional

average fluxes were around 71, 137 and 180 kg CH4-C/ha, in

1990, 2000 and 2010, respectively. The average of total CH4

emitted from the entire rice paddies of the TRP was 0.025, 0.211

and 0.203 Tg CH4-C (1 Tg = 109 kg) in the three years (Table 4).

Changes analysis for the spatiotemporal pattern in CH4

emission
From the simulated results of the TRP, the highest emission rate

was 8–16 times higher than the lowest one in each of the three

simulated years (Table 4). Such a huge difference in CH4 emission

rate was due to the variations in the soil properties. Past study has

demonstrated that those soil cell with lower CH4 flux contained

higher clay fraction, and the higher flux normally occurred in

those cells with relatively higher SOC content [41]. Consequently,

the spatial patterns in CH4 fluxes in this study are mainly

attributed to the Most Sensitive Factor (MSF) of soil properties, i.e.

soil clay fraction and SOC content (Fig. 3).

As far as the yearly emissions from paddy cells were concerned,

statistics analysis showed that the standard deviation (SD) of CH4

emission was 36.44 tons CH4-C in 1990, which was far less than

that in 2000 and 2010 (258.85 and 245.54 tons CH4-C).

Otherwise, although the minimum of yearly emission were very

similar (0.01,0.03 tons CH4-C) for all three simulated years, the

maximum in 2000 and 2010 (.1900 tons CH4-C) were much

more than that in 1990 (,680 tons CH4-C). Therefore, there was

an observable emission variation cross the entire study region in

2000 and 2010 while the character in spatial variation was not

distinct in 1990 (Fig. 4). Obviously the clear spatial variation in

yearly CH4 emissions from cell data was attributed to the spatial

distribution of rice fields.

In Table 4, average CH4 emissions (0.025 Tg) in 1990 was far

less than in 2000 and 2010 (.0.2 Tg). The huge difference could

be attributed to several reasons. First of all, total area of rice

paddies was the primary determinant of total emission. Only 0.23

million ha of rice were planted in 1990. However since 2000, the

rice paddy areas have exceeded 1.2 million ha (Fig. 4). Such rapid

increase in rice planted area would inevitably lead to the

consequential increase in total CH4 emissions. Additionally, the

CH4 emissions rate in 1990 was also smaller than in other

simulated years. This could be firstly related to the fact that more

biomass production with more N-fertilizer application. The

sensitivity tests have indicated that although the effects of N-

fertilizer application rate on CH4 emissions seems not very

evident, it did increase the crop biomass or yields that could

indirectly enhance the CH4 production. In 1990s, only 60 kg N/

ha of N-fertilizer rate were applied to the rice fields by compared

with 90 and 120 kg N/ha of N-fertilizer rate in 2000 and 2010,

separately.

Otherwise, the temperature was a positive climate factor

driving CH4 production from rice fields. The emission fluxes

increased with temperature because the higher temperature

accelerated soil organic matter (SOM) decomposition and

fermentation process, which has been proved in past research

[44], and also presented in the sensitivity test (Fig. 3). Although

the rice area in 2010 was 30% more than that in 2000, total

CH4 emissions (0.203 Tg CH4-C) in 2010 was slightly less than

that (0.211 Tg CH4-C) in 2000. The results was largely related

to this fact that higher flux (180 kg CH4-C/ha) in 2000 than

that in 2010 (137 kg CH4-C/ha). By comparing the average of

10-day temperature from rice transplanting to harvesting stage

(late May through September), the temperature during the rice-

growing season in 2000 was apparently1.13–2.65uC higher

than that in 2010 [Fig. 7]. Therefore, the temperature would be

taken as a major factor for regional estimation of total CH4

emission from rice paddies at long term and large regional

scale.

Discussion

Rice paddy mapping with multi-temporal RS data can quantify

the dynamics of cropland use. Since 1990, the agricultural lands

have been experiencing significant changes in the TRP in the very

northeastern part of China. In the major rice producing areas with

the cooler climate in China, fast rise in rice cultivation was driven

by the market demand for high yield/quality rice. More upland

crops like corn or soybeans were converted to paddy rice in

Northern China during past two decades. How to real-time

estimate the GHG emission induced by this kind of rapid land-use

transformation have been becoming an important objective for

making the scientific GHG inventory for China. Consequently,

characterizing and quantifying the spatiotemporal pattern of CH4
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emissions from rice paddies could be an interested topic for

researcher in the future.

In our precious study, DNDC upscaling has been utilized to

quantify CH4 emissions from rice fields of the study area in 2006

after the elaborate calibration and site validation [41]. This

present study extended previous study to multi-temporal CH4

estimation for characterizing spatial and temporal dynamics of

CH4 emissions over past two decades (from 1990 to 2010). The

modeled average of CH4 fluxes for the simulated year of 1990,

2000 and 2010 was 70, 180 and 137 kg CH4-C/ha, respectively.

Figure 5. Mean CH4 emission rates (kg CH4-C/ha) of paddy fields. (A) 1990, (B) 2000, (C) 2010.
doi:10.1371/journal.pone.0029156.g005
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These results are comparative with the average emission rates

observed and modeled in the Taihu Lake region of Southeast

China (15–198 kg CH4-C/ha/year) [27].

In the past studies, a baseline emission factor of 1.30 kg CH4/

ha/day in the 2006 IPCC Guidelines [54] was often recom-

mended to estimate the regional or global CH4 emissions from

rice paddies. Thus, With the prevail management practices of

100-day continuously flooded without organic amendments for

rice paddies in the TRP, the total CH4 emissions based on the

IPCC approach was 0.030, 0.159 and 0.212 Tg CH4-C in the

Figure 6. Yearly total CH4 emissions (ton CH4-C) from rice paddies. (A) 1990, (B) 2000, (C) 2010.
doi:10.1371/journal.pone.0029156.g006
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1990, 2000 and 2010, respectively. Comparative analysis

indicated that the simulated values in 1990 and 2010 (0.025

and 0.203 Tg) were slightly less than that of IPCC estimation,

whereas the simulated values (0.211 Tg) in 2000 were signifi-

cantly larger than the IPCC estimation. In this study, we took

into account the integrated influence of various ecological drivers

to CH4 emissions from rice paddy. These drivers including

climate, soil and management factor, were applied to drive

DNDC model for regional CH4 estimation. Thus this method

introduced in this study would make great improvement for the

CH4 estimation compared to the IPCC method based on baseline

emission factor.

Our modeled results further confirmed the high latitude wetland

agroecosystems like rice paddy in Northern China was an

important anthropogenic CH4 source. With the increase in the

rice-growing area, the rice paddies in the TRP could make more

contribution to global CH4 inventory. During the period of past

decades in this region, natural swamp wetlands were first

converted into dryland croplands and then, into anthropogenic

wetlands (rice paddies). This kind of unique changes in land use/

covers would consequentially resulted in huge environmental

impacts. A number of ground-based observations on CH4

emissions from natural wetlands have been substantially conduct-

ed in the high latitude plain of China [55]. These studies provided

important supports for regional estimation of CH4 emissions with

spatial modeling technology. Thus quantifying the dynamics (i.e.

the net increment) of CH4 emissions in the process of land

transformation in this region would be an interested topic for

researchers in the future.

During the recent years, China authority has paid more

attention to GHG inventory and mitigation. Developing an

effective method towards assessing the magnitude of impacts from

rice-cropping systems would be significant for meeting the social

and research needs. The results in this study demonstrated huge

potential of integrating biogeochemical models with RS mapping

technology for meeting the environmental challenges rise in

coming years in China.

Table 4. Simulated CH4 emission rates and total emissions for
three simulated year.

Items 1990 2000 2010

Emission rates (kg C/ha) Max. 175.9 457.05 447.52

Min. 20.46 33.96 28.07

Avg. 71.05 180.42 136.85

Total emissions per cell (ton C) Max. 679.2 2563.77 1976.72

Min. 0.01 0.01 0.03

Avg. 36.44 258.85 245.54

SD 73.01 348.92 329.09

Total emissions (Tg C) Max. 0.027 0.228 0.241

Min. 0.022 0.193 0.165

Avg. 0.025 0.211 0.203

doi:10.1371/journal.pone.0029156.t004

Figure 7. Average of 10-day temperature during the rice-growing season.
doi:10.1371/journal.pone.0029156.g007
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