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Abstract

The prevailing hypothesis of HIV budding posits that the viral Gag protein drives budding, and that the Gag p6 peptide
plays an essential role by recruiting host-cell budding factors to sites of HIV assembly. HIV also expresses a second Gag
protein, p160 Gag-Pol, which lacks p6 and fails to bud from cells, consistent with the prevailing hypothesis of HIV budding.
However, we show here that the severe budding defect of Gag-Pol is not caused by the absence of p6, but rather, by the
presence of Pol. Specifically, we show that (i) the budding defect of Gag-Pol is unaffected by loss of HIV protease activity
and is therefore an intrinsic property of the Gag-Pol polyprotein, (ii) the N-terminal 433 amino acids of Gag and Gag-Pol are
sufficient to drive virus budding even though they lack p6, (iii) the severe budding defect of Gag-Pol is caused by a
dominant, cis-acting inhibitor of budding in the HIV Pol domain, and (iv) Gag-Pol inhibits Gag and virus budding in trans,
even at normal levels of Gag and Gag-Pol expression. These and other data support an alternative hypothesis of HIV
budding as a process that is mediated by the normal, non-viral pathway of exosome/microvesicle biogenesis.
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Introduction

Retrovirus budding is an important but incompletely under-

stood process, with relevance to both the viral lifecycle [1,2,3] and

the biogenesis of secreted vesicles (e.g. exosomes and microvesicles

(EMVs) [4,5]). Early studies on HIV budding demonstrated that

loss of the Gag p6 domain caused a severe defect in virus budding

[6], and that mutation of short peptide motifs within p6 could also

cause a similar phenotype [7]. These motifs (PTAP, YPxL) bind

directly to components of the endosomal sorting complexes required for

transport (ESCRT) machinery, which is required for cytokinesis,

biogenesis of multivesicular bodies, autophagy, and also for HIV

budding [8,9,10]. Based on these results, it has been proposed that

the p6 domain represents the primary budding information in

HIV [1,2]. This hypothesis is also consistent with the current

model of outward vesicle budding (outward = away from the

cytoplasm), which posits a central role for the ESCRT machinery

in cargo selection and vesicle budding [5,11,12].

This hypothesis of HIV budding is consistent with some lines of

evidence but difficult to reconcile with others. In particular, Freed

and others observed that p6-deficient HIV shows ‘no defect in particle

release’ from human T-cells [13,14], undermining the idea that p6

plays a critical role in budding. More recently, we established that

plasma membrane (PM)-binding and higher-order oligomerization

are the primary budding signals in HIV Gag, and are located in its

matrix (MA), capsid (CA), and nucleocapsid (NC) domains

[14,15]. As for the severe budding defect seen for p6-deficient

and PTAP-deficient forms of HIV in 293T and certain other cell

types [6,13], this appears to be caused by the activation of an

inhibitory budding signal (IBS) in the SP2 domain of Gag [15],

rather than the loss of positive budding information. Taken

together, these observations support an alternative hypothesis in

which retroviruses bud by the normal, non-viral pathway of EMV

biogenesis [4].

EMVs are small, membrane-bound vesicles secreted by a wide

array of animal cells and mediate the release of specific subsets of

proteins, lipids, carbohydrates, and nucleic acids [16,17]. The

EMV-based hypothesis of HIV budding is also supported by (i)

similarities between the host-cell proteins, lipids, and carbohy-

drates that are present on HIV particles and on EMVs [4,18,19],

(ii) the fact that EMVs and HIV particles bud from the same

locations of human T-cells, macrophages, and polarized leukocytes

[14,19,20,21,22,23,24], and (iii) the observation that PM-binding

and higher-order oligomerization target diverse proteins to both

HIV particles and EMVs [14,15,22].

Although the existing data favor an EMV-based hypothesis of

HIV budding, it is unclear whether this model can explain the

severe budding defect reported for the HIV Gag-Pol protein

[25,26,27]. HIV expresses Gag and Gag-Pol from the same

mRNA. Both proteins share the identical N-terminal 433 amino

acids but differ at their C-terminus. In p55 Gag, the shared N-

terminal 433 amino acids is followed by the 16 amino acid-long

spacer peptide 2 (SP2) and the 52 amino acid-long p6 peptide. In

p160 Gag-Pol, which lacks SP2 and p6, the shared N-terminal 433

amino acids are instead followed by the 1003 amino acid-long Pol

domain (p160 Gag-Pol is generated by a 21 ribosomal frameshift

at codon 433 of the Gag ORF). Under the prevailing hypothesis of

HIV budding, Gag should bud from cells and Gag-Pol should not,

because the former protein possesses p6 and the latter does not.

However, we show here that the severe budding defect of Gag-Pol

is caused by the presence of a dominant, cis-acting inhibitor of

budding in HIV Pol, and not by the absence of p6. Furthermore,
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we show that the N-terminal 433 amino acids of HIV Gag-Pol are

sufficient to bud from cells, supporting the hypothesis that HIV

budding is mediated by the EMV biogenesis pathway.

Results

Protease does not mediate the budding defect of HIV
Gag-Pol

HIV expresses its Gag and Gag-Pol proteins from a single

mRNA, with Gag being the primary translation product and Gag-

Pol being generated by a 21 ribosomal frameshift at codon 433 of

the Gag ORF (Fig. 1A). As a result, Gag and Gag-Pol share the

same N-terminal 433 amino acids (the MA, CA, and NC domains)

but have different C-terminal domains. In Gag, this divergent

sequence consists of the SP2 and p6 peptides, while in Gag-Pol it

corresponds to the 1003 amino acids of Pol, itself comprised of

transframe (TF), protease (PR), reverse transcriptase (RT), p15,

and integrase (IN) domains [28].

It has been established that fusing the Gag and Pol reading

frames in an HIV provirus (at the site of the Gag-Pol translational

frameshift) results in much higher levels of Gag-Pol expression,

prevents the synthesis of Gag, and causes a severe defect in HIV

budding [25,26,27]. Elevated expression of HIV Gag-Pol also

leads to elevated expression of PR activity, a known inhibitor of

HIV budding, as well as to the extensive cleavage of cell-associated

Gag-Pol. This raises the possibility that the budding defect

observed for Gag-Pol virus reflects the elevated, unregulated, and/

or premature PR activity, rather than the intrinsic budding activity

of the full-length p160 Gag-Pol protein [25,26,27]. To assess the

role of PR activity in the budding defect of Gag-Pol virus we

compared the budding of control HIV (NL4-3*, our designation

[15] for NL4-3-DE-GFP, an ENV-deficient form of NL4-3 used

for quantitative assays of HIV function [29]) to that of a derivative

in which the Gag and Pol reading frames were fused (NL4-3*/

Gag-Polfuse), and also to that of a matched provirus in which PR

was mutationally inactivated (NL4-3*/Gag-Polfuse/PRD25A) [7].

Figure 1. Gag-Pol does not bud from 293T cells. (A) Line diagram of the p55 HIV Gag and p160 HIV Gag-Pol proteins, as well as the protein
product of the NL4-3*/Gag-Polfuse/PRD25A provirus. The full-length p55 Gag and p160 Gag-Pol proteins contain a shared N-terminal 433 amino acids
containing the MA, CA, and NC domains but different C-terminal extensions, SP2 and p6 in the case of Gag, and Pol in the case of Gag-Pol. (B) Anti-
Gag immunoblots of cell and virus lysates generated from 293T cells transfected with the proviruses NL4-3*, NL4-3*/Gag-Polfuse/PRD25A and NL4-3*/
Gag-Polfuse. Bar graph shows the average+/21 standard deviation from three trials. The three stars refers to a p value of less than 0.0005.
doi:10.1371/journal.pone.0029421.g001
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More specifically, 293T cells were transfected with the HIV

proviruses NL4-3*, NL4-3*/Gag-Polfuse, and NL4-3*/Gag-Pol-
fuse/PRD25A, incubated for two days, and then cells and virus

particles were collected (viruses were purified by differential

centrifugation from the tissue culture supernantant). Cell and virus

samples were then lysed in SDS-PAGE sample buffer and the

lysates were processed for immunoblot using antibodies specific for

the CA domain of Gag-Pol (Fig. 1). These virus budding

experiments revealed that NL4-3* budded efficiently from 293T

cells, as expected. However, we detected very little budding for

either NL4-3*/Gag-Polfuse (0% of control; n = 3) or NL4-3*/Gag-

Polfuse/PRD25A (0.2+/20.3% of control; n = 3; p = 4.361026)

(Fig. 1A,B). These results confirm that the Gag-Pol protein has a

severe defect in budding, and also demonstrate that the HIV

protease, PR, does not cause the budding defect of Gag-Pol.

The budding defect of Gag-Pol is not caused by its lack
of p6 sequences

To test whether the budding defect of p160 Gag-Pol is due to

the absence of p6 sequences or whether it might be caused by

some other difference between it and p55 Gag, we followed the

budding of another HIV mutant, NL4-3*/SP2F1ter. This virus

replaces the first codon of the SP2 domain (Phe1) with a nonsense

mutation, expresses only the N-terminal 433 amino acids that are

shared by the Gag and Gag-Pol proteins, and lacks the SP2 and

p6 domains of p55 Gag and the Pol domain of p160 Gag-Pol.

Moreover, we simplified the analysis of its budding by comparing

the release of NL4-3*/SP2F1ter to that of NL4-3*/TFter, an HIV

mutant that expresses only p55 Gag (Fig. 1A; the TFter mutation

has a nonsense mutation in the Pol ORF just downstream of the

ribosomal frameshift [28]), lacks PR activity, and therefore

doesn’t cleave Gag into smaller polypeptides. 293T cells were

transfected with NL4-3*/TFter, NL4-3*/Gag-Polfuse/PRD25A,

and NL4-3*/SP2F1ter, cell and virus lysates were collected, and

these were processed for immunoblot using anti-CA antibody

(Figs. 2,3). NL4-3*/SP2F1ter budded quite well, 73+/29%

relative to NL4-3*/TFter (n = 3; p = 0.033). This was ,70-fold

more budding than seen for NL4-3*/Gag-Polfuse/PRD25A, which

budded at only 1.1+/22% of control (n = 3; p = 1.261024).

These data demonstrate that the budding defect of Gag-Pol is

caused by the presence of Pol sequences and not by the absence

of p6 sequences.

Figure 2. Relevant DNA sequences of control and mutant HIV proviruses. (A) Short segments of the NL4-3* DNA sequence and their
alteration in the proviruses NL4-3*/Gag-Polfuse, NL4-3*/Gag-Polfuse/PRD25A, NL4-3*/SP2F1ter, and NL4-3*/TFter, respectively. (B) DNA sequence
fragments of NL4-3* in the vicinity of the PRD25A and the PRP1ter mutations in NL4-3*/Gag-Polfuse/PRD25A and NL4-3*/Gag-Polfuse/PRP1ter, respectivel.
(C) DNA sequence of the PRD25A and the RTP1ter mutations in NL4-3*/Gag-Polfuse/PRD25A and NL4-3*/Gag-Polfuse/PRD25A/RTP1ter. (D) DNA sequence
alignments in the vicinity of the PRD25A and the p15Y1ter mutations in NL4-3*/Gag-Polfuse/PRD25A and NL4-3*/Gag-Polfuse/PRD25A/p15Y1ter. (E) DNA
sequences surrounding the PRD25A and the INF1ter mutations in NL4-3*/Gag-Polfuse/PRD25A and NL4-3*/Gag-Polfuse/PRD25A/INF1ter.
doi:10.1371/journal.pone.0029421.g002
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We next explored the regions of Pol that contribute to the

budding defect of p160 Gag-Pol. For this, we generated derivatives

of NL4-3*/Gag-Polfuse that contained stop codons immediately

after the TF, PR, RT, and p15 domains of the Pol ORF (Fig. 3A).

Following the expression of these proviruses in 293T cells, cell and

EMV lysates were prepared and examined by immunoblot

(Fig. 3B). NL4-3*/Gag-Polfuse/PRP1ter, which expressed a Gag-

Pol protein containing the first 433 amino acids of Gag and the TF

domain of Pol, budded at 68+/221% the level of NL4-3*/TFter

(n = 3; p = 0.12). This is essentially the same level of budding that

we observed for NL4-3*/SP2F1ter, which expresses just the MA-

CA-SP1-NC domains of Gag. NL4-3*/Gag-Polfuse/PRD25A/

RTP1ter is designed to express a longer Gag-Pol protein consisting

of the MA, CA, NC, TF, and PR domains. It budded a bit less,

26+/26% relative to NL4-3*/TFter (n = 3; p = 2.361025).

Inclusion of the RT domain caused an even larger decrease in

HIV budding, to 4.3+/23% (n = 3; p = 3.661024) for NL4-3*/

Gag-Polfuse/PRD25A/p15Y1ter and to 3.9+/24% (n = 3;

p = 5.161024) for NL4-3*/Gag-Polfuse/PRD25A/INF1ter. These

data demonstrate that the severe budding defect of Gag-Pol is

caused primarily by sequences within the RT domain of Pol, and

perhaps also by sequences within its PR domain.

Gag-Pol inhibits HIV budding in trans
The inhibitory effect of Pol on Gag and HIV budding, coupled

with the known co-assembly of Gag and Gag-Pol polyproteins

[26], raises the possibility that Gag-Pol might also inhibit the

budding of HIV in trans. To test this hypothesis we transfected

293T cells with a mix of (i) NL4-3*/TFter, which expresses only

Gag and no Gag-Pol, and (ii) NL4-3*/Gag-Polfuse/PRD25A, which

expresses Gag-Pol but no Gag (Fig. 4A). Two days later we

collected cell and virus lysates and processed each by immunoblot

using antibodies specific for the CA domain of the Gag and Gag-

Pol proteins (Fig. 4B). These experiments revealed that expression

of PR-deficient Gag-Pol had a dominant, inhibitory effect on HIV

budding in trans. Peak inhibition, an ,20-fold decrease (5.4+/

23%; n = 3; p = 2.761024), was observed at the highest ratio of

Gag-Pol:Gag provirus, 7.5:1. Significant inhibition of HIV

budding was also observed at the lower Gag-Pol:Gag ratios of

5:1 (11+/27%; n = 3; p = 2.361023) and 3:1 (32+/27%; n = 3;

p = 3.761023). We failed to detect significant inhibition at Gag-

Pol:Gag ratios of 1:1 (92+/214%; n = 3; p = 0.42) or 1:2 (99+/

29%; n = 3; p = 0.97).

HIV Gag-Pol inhibits HIV budding
The inhibitory effect of Gag-Pol on HIV budding raised the

possibility that Gag-Pol normally inhibits budding. To test this

possibility, we compared the budding of NL4-3*, which expresses

Gag and Gag-Pol at their normal levels and ratio, to that of NL4-

3*/TFter, which expresses Gag but no Gag-Pol [15]. 293T cells

were transfected with the two proviruses, cell and virus lysates

were collected, and each was processed for immunoblot using

antibodies specific for the Gag CA domain (Fig. 4C). The

budding of NL4-3*/TFter was 182+/219% (n = 3; p = 0.018) of

that we observed for NL4-3*. These results demonstrate that

expression of Gag-Pol inhibits HIV budding even at its normal,

low level of expression [28].

Discussion

Virus budding is a critical step in the HIV lifecycle. The

prevailing paradigm of HIV budding proposes that the p6 domain

of Gag plays a critical role, recruiting the ESCRT machinery to

sites of virus assembly where it then catalyzes virion budding [1,2].

This hypothesis is consistent with a wide array of empirical

observations, including the severe budding defect of HIV Gag-Pol,

which lacks the p6 domain. However, we show here that the

severe budding defect of HIV Gag-Pol cannot be explained by the

absence of p6. This conclusion is based primarily on the fact that

NL4-3*/SP2F1ter budded normally, even though it only expresses

the first 433 amino acids of Gag (the MA, CA, SP1, and NC

domains) and lacks the p6 domain. Although this observation is

inconsistent with the prevailing model of the p6 domain in HIV

budding, it supports the alternative hypothesis that HIV budding

follows the normal, non-viral pathway of EMV biogenesis

[4,14,15,19,20,24].

Our data also demonstrate that Pol acts in cis to block the

budding of Gag-Pol. Furthermore, the severe budding defect of

PR-deficient Gag-Pol means that the Pol polypeptide itself

functions as an inhibitory budding element. This is significant,

as it has been previously hypothesized that the budding defect of

Gag-Pol might be caused by its overexpression of PR activity

[25,26,27]. The inhibitory effect of Pol on budding is not without

precedent, as HIV has another cis-acting inhibitor of budding, the

IBS that it located in the SP2 domain of Gag [15]. The cis-acting

inhibitor in Pol mapped primarily to its RT domain, though the

PR domain might also play a role. Regardless of its precise

location, our data indicates that the inhibitory budding element in

Pol also impairs the budding of HIV in trans. This was most

obvious in our two virus expression experiments, where high levels

of Gag-Pol effectively blocked HIV budding. However, Pol also

had an inhibitory effect on HIV budding in the context of our

control HIV provirus, where Gag-Pol expression caused an ,2-

fold reduction in HIV budding. Taken together, these data

reinforce the concept that HIV budding is controlled by both

positive and inhibitory budding signals, some that are shared with

the non-viral EMV biogenesis pathway, and some that are unique

to HIV [14,15].

Our observations also raise the question of why HIV possesses

inhibitory budding signals like the one detected here in Pol, and

the IBS we identified previously in the SP2 domain of Gag [15].

Currently, we do not have a mechanistic model for why HIV

would benefit from the presence of an IBS. Given the central role

of budding in the HIV lifecycle, the existence of IBSs within the

Gag and Gag-Pol proteins seem incongruous, and there is clearly a

need for further research to identify the functional significance of

these elements in the HIV lifecycle. However, it is clear that

inhibitory budding signals do exist within HIV, that they can have

a pronounced impact on HIV budding, and that their discovery

Figure 3. Relative budding of different C-terminal truncation mutations of Gag-Pol. (A) Line diagram of proteins expressed by the
proviruses NL4-3*/TFter (Gag(p55)), NL4-3*/Gag-Polfuse/PRD25A (Gag-Pol(PR-D25A)), NL4-3*/SP2F1ter (Gag(SP2-F1ter), NL4-3*/Gag-Polfuse/PRP1ter (Gag-
Pol(PR-P1ter)), NL4-3*/Gag-Polfuse/PRD25A/RTP1ter (Gag-Pol(PR-D25A)(RT-P1ter)), NL4-3*/Gag-Polfuse/PRD25A/p15Y1ter (Gag-Pol(PR-D25A)(p15-Y1ter)),
and NL4-3*/Gag-Polfuse/PRD25A/INF1ter (Gag-Pol(PR-D25A)(IN-F1ter)), respectively. The upper line corresponds to the full-length p55 Gag protein,
which contains p6, and is the only Gag-containing protein expressed by NL4-3*/TFter. Gag* refers to the region of Gag shared by both Gag and Gag-
Pol that lacks p6. (B) Anti-Gag immunoblots of cell and virus lysates generated from 293T cells transfected with the same proviruses. Bar graph shows
the average +/21 standard deviation from three trials. A single star refers to a p value of less than 0.05; three stars refers to a p value of less than
0.0005.
doi:10.1371/journal.pone.0029421.g003
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has a significant impact on how certain empirical observations

should be interpreted. In short, the discovery of inhibitory budding

signals in HIV is altering our view of the cis-acting elements that

drive HIV budding, away from the p6-dependent model of HIV

budding, and towards the EMV-based model of HIV budding.

Materials and Methods

Cell culture and DNA transfection
293T (CRL-11268) cells were obtained from The American

Type Culture Collection (Manasas, VA, USA). The growth

medium in all experiments was DMEM supplemented with 10%

fetal bovine serum, and growth conditions were 37uC, 5% CO2,

and 90–100% humidity. Prior to transfection, 293T cells were

released from the plate by incubation in a 0.05% tryspin/EDTA

solution (Gibco/BRL, Bethesda MD, USA), pelleted by centrifu-

gation at 2006 g, and resuspended in growth medium at 7.56105

cells/ml. Transfection was carried out by combining DNA (10 mg

total, unless otherwise stated) and 500 mls of the cell suspension in

a 4 mm gap electroporation cuvette, and then electroporating the

cells at 24 ohms, 300 volts, and capacitance of 800 uF, using a

BTX ECM 600 electroporator (Harvard Apparatus, Holliston,

MA). Following electroporation, the cells were resuspended in

10 mls of growth medium, plated on 10 cm tissue culture dishes,

and grown in the incubator for an additional two days.

Plasmids
The HIV proviruses pNL4-3-DE-GFP (pNL4-3*) and NL4-3*/

TFter were described previously [15,29]. To generate the mutant

proviruses pNL4-3*/Gag-Polfuse, pNL4-3*/Gag-Polfuse/PRD25A,

pNL4-3*/NCF56ter, pNL4-3*/Gag-Polfuse/PRP1ter and pNL4-3*/

Gag-Polfuse/PRD25A/RTP1ter we first amplified the internal ApaI-

SbfI fragment of pNL4-3-DE-GFP [29] using sets of nested

primers designed to introduce the desired mutations (Table 1).

Next, each amplified fragment was cleaved with ApaI and SbfI

and inserted between the Apa I and Sbf I sites of pNL4-3-DE-

GFP. The pNL4-3*/Gag-Polfuse/PRD25A/p15Y1ter and pNL4-3*/

Gag-Polfuse/PRD25A/INF1ter proviruses were created by amplify-

ing the internal AgeI-EcoRI fragment from pNL4-3-DE-GFP [29]

using nested sets of primers designed to introduce the desired

mutations, followed by cleaving the amplified products with AgeI

and EcoRI and inserting them into the AgeI and EcoRI sites of

pNL4-3*/Gag-Polfuse/PRD25A. All amplified regions of the

plasmids were sequenced, and experiments were only performed

using clones possessing the desired sequence. The relevant

mutations in these proviruses are shown in a limited sequence

alignment (Table 1).

Virus preparations, antibodies, and immunoblot
Cell and virus lysates were performed essentially as described

[15]. In brief, 293T cells were incubated for two days, followed by

collection of the tissue culture supernatant, and washing of cells

once in DMEM. Cells were then lysed by the addition of SDS-

PAGE sample buffer. To isolate HIV particles, the tissue culture

supernatant was first subjected to centrifugation at 5,0006 g for

15 minutes. The pellet was discarded and the resulting superna-

tant was passed through a sterile, 0.22 micrometer filter. The

filtered supernatant was then spun at 10,0006 g for 30 minutes,

the pellet was discarded, and the supernatant was again spun at

10,0006 g for 30 minutes. The pellet was discarded and the

resulting supernatant was spun at 70,0006 g for 60 minutes to

pellet HIV particles. The supernatant was discarded and the virus-

Table 1. Primers used.

primer name primer sequence

FGag-Pol-ApaI 59-CAAAAATTGCAGGGCCCCTAGG-39

RGag-Pol-SbfI 59- TTTAACCCTGCAGGATGTGG-39

RpGag-Pol 59- AGATCTTCCCTTAAAAAATTAGCCTGTCTC-39

FpGag-Pol 59- GCTAATTTTTTAAGGGAAGATCTGGCC-39

RpNL-TF-F1T 59- CTTCCCTAATTAATTAGCCTGTCTCTCAGTACAATC -39

FpNL-TF-F1T 59- GAGACAGGCTAATTAATTAGGGAAGATCTGG-39

RpNL-PR-P1T 59- CACCTGCAGGTTAGAAGCTAAAGGATACAGTTCCTTG-39

RpNL-RT-P1T 59- CACCTGCAGGTTAAAAATTTAAAGTGCAGCCAATCTG-39

FGag-Pol-AgeI 59- GATTCTAAAAGAACCGGTACATG-39

RGag-Pol-EcoRI 59- CAGTTGTTGCAGAATTCTTATTATG-39

RpNL-p15-Y1T 59- CTTTTCCATGTGTTAGAAAGTTTCTGCTCCTATTATGG-39

FpNL-p15-Y1T 59- CAGAAACTTTCTAACACATGGAAAAGATTAGTAAAAC-39

RpNL-IN-F1T 59- CTTTTCCATGTGTTATAGTACTTTCCTGATTCCAGCAC-39

FpNL-IN-F1T 59- GGAAAGTACTATAACACATGGAAAAGATTAGTAAAAC -39

doi:10.1371/journal.pone.0029421.t001

Figure 4. Expression of Gag-Pol inhibits HIV budding. (A) Line diagram of the Gag and Gag-Pol proteins expressed by NL4-3*/TFter and NL4-
3*/Gag-Polfuse/PRD25A, respectively. The upper line corresponds to the full-length p55 Gag protein, which contains p6, and is the only Gag-containing
protein expressed by NL4-3*/TFter. Gag* refers to the region of Gag shared by both Gag and Gag-Pol, a region that lacks p6. (B) Anti-Gag
immunoblots of cell and virus lysates generated from 293T cells co-transfected with different amounts of the proviruses NL4-3*/TFter and NL4-3*/Gag-
Polfuse/PRD25A. The line graph shows the average +/21 standard deviation from three separate trials. (C) Anti-Gag immunoblots of cell and virus
lysates generated from 293T cells transfected with the proviruses NL4-3* and NL4-3*/TFter. Bar graph shows the average +/21 standard deviation
from three trials. A single star refers to a p value of less than 0.05.
doi:10.1371/journal.pone.0029421.g004
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containing pellet was lysed by resuspension in SDS-PAGE sample

buffer.

For immunoblot experiments, cell and virus lysates (in all cases,

a 1:20 ratio of cell and virus lysates) were separated by SDS-

PAGE, transferred to PVDF membranes, and processed for

immunoblot using specific primary antibodies to HIV Gag CA

domain (mouse anti-Gag monoclonal antibody (3537), AIDS

Research & Reference Reagent Program (NIAID, NIH) and

HRP-linked secondary antibodies (Jackson Immunoresearch, West

Grove, PA, USA)). Gag CA-containing proteins were detected by

chemiluminescent exposure of X-ray film and developed films

were digitally scanned and converted to TIFF files using Adobe

Photoshop CS2 and all images were assembled in Adobe

Illustrator CS2. Protein band intensities were determined using

ImageJ software and these data were used to determine the

budding efficiency (vesicle-associated signal/(vesicle-associated +

cell-associated signals)) of each virus. Relative budding was

determined by comparing the budding of each test virus to that

of a control, which was assigned an arbitrary value of 1. The

statistical analysis of relative budding included the calculation of

averages, standard deviations, and the calculation of p values

(Student’s t test).
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