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Peifer7, Frank Leithäuser8, Wolfgang Deppert3, Uwe Knippschild1*

1 Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany, 2 Institute of Molecular Medicine and Max-Planck-Research Group on

Stem Cell Aging, University of Ulm, Ulm, Germany, 3 Department of Tumor Virology, Heinrich-Pette-Institute, Leibniz-Center for Experimental Virology, Hamburg,

Germany, 4 Department of Internal Medicine I, University of Ulm, Ulm, Germany, 5 Max Planck Institute of Neurobiology Transgenic Mouse Models, Max Planck Institute,

Martinsried, Germany, 6 Division of Molecular Oncology, Institute for Experimental Cancer Research, CCCNorth, UK S-H, Kiel, Germany, 7 Institute for Pharmacy, University

of Kiel, Kiel, Germany, 8 Department of Pathology, University of Ulm, Ulm, Germany

Abstract

Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and
progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating
the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself.
Here we characterized the effects of mutant CK1d variants with impaired kinase activity on SV40-induced cell transformation
in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1d mutants
exhibited a reduced kinase activity compared to wtCK1d in in vitro kinase assays. Molecular modeling studies suggested that
mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1d activity. When
stably over-expressed in maximal transformed SV-52 cells, CK1d mutants induced reversion to a minimal transformed
phenotype by dominant-negative interference with endogenous wtCK1d. To characterize the effects of CK1d on SV40-
induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1d under the control of the whey
acidic protein (WAP) gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T) mice. Both WAP-T mice
as well as WAP-mutCK1d/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life
span was significantly longer in WAP-mutCK1d/WAP-T bi-transgenic animals. The reduced CK1d activity did not affect early
lesion formation during tumorigenesis, suggesting that impaired CK1d activity reduces the probability for outgrowth of in
situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1d/WAP-T
tumors was also reflected by a significantly different expression of various genes known to be involved in tumor
progression, specifically of those involved in wnt-signaling and DNA repair. Our data show that inactivating mutations in
CK1d impair SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.
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Introduction

Viral and cellular oncogenes both induce a stepwise deregula-

tion of the cellular gene expression program, leading to

perturbation of the cell cycle and of normal cell growth and, in

the end, to cellular transformation and tumor development.

However, it is becoming increasingly clear that, in addition,

cellular co-factors play an important role in this process, among

them protein kinases, as they can modulate the oncogenic activity

of proteins involved in tumorigenesis [1,2]. As an example,

members of the casein kinase 1 (CK1) family have been shown to

modulate the activity of various tumor suppressors and oncopro-

teins [3–10]. In this regard, transformation-relevant phosphoryla-

tion sites of simian virus 40 (SV40) large tumor antigen (T-Ag)

have been identified which are targeted by CK1 isoforms in vitro

[11–14].

CK1d, a member of the CK1 kinase family and the mammalian

counterpart of yeast Hrr25, is involved in the regulation of many

different cellular processes, including cell proliferation and cell

death [8,15]. Mutations and alterations in the expression and/or

activity of CK1d have been detected in various tumor entities, e.g.

in adenocarcinomas of the pancreas [16], in mammary tumors
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[15] and in adenoid cystic carcinomas [17], suggesting that

changes in CK1d activity can contribute to carcinogenesis. As

SV40 mediated transformation is a well established model to study

cellular factors associated with the transformation process, we

characterized the role of CK1d in SV40 mediated transformation

in a cell culture system and in the WAP-T transgenic mouse model

[18–21].

SV40 wild-type transformed cells (SV-52) and cellular revertants

(Rev2) derived from them are well characterized in regard to T-Ag

and p53 expression and functions [11,22]. Therefore, this matched

pair of cells is a valuable tool to analyze cellular factors that

influence the transforming activity of T-Ag in vitro. SV-52 cells

display a so called maximal transformed phenotype and were

established after microinjection of SV40 DNA into rat REF52 cells;

Rev2 cells are T-Ag positive flat revertants of SV-52 cells expressing

wild-type T-Ag with regard to its sequence [23]. However, T-Ag

expressed in Rev2 cells shows an impaired transforming activity that

correlates with a reduced ability to bind to SV40 ori-DNA in vitro and

to associate with the cellular chromatin in vivo. Furthermore, Rev2

T-Ag revealed a reduced phosphorylation at specific transforma-

tion-relevant serine and threonine residues [11,24]. Also phosphor-

ylation of the p53 protein associated with Rev2 T-Ag is altered [25],

suggesting that the altered phosphorylation state of the T-Ag/p53

complex is causally involved in causing the revertant phenotype of

Rev2 cells [11].

WAP-T mice, a model for oncogene induced mammary

carcinogenesis [18–21], allow to investigate the role of cellular

factors influencing the activity of T-Ag in SV40-induced

tumorigenesis in vivo. In adult female WAP-T mice activation of

the transgene, the SV40 early gene region flanked by a ,1.4 kb

upstream region of the gene coding for the mouse whey acidic protein

(WAP) [18,21], is initiated during late pregnancy in mammary

epithelial cells concomitantly with the endogenous WAP gene

[26,27]. Expression of alternatively spliced SV40 early mRNAs

coding for T-Ag, small t-antigen (st), and the 17 kT protein [28]

drives mammary carcinogenesis by mimicking a variety of genetic

alterations commonly seen in human breast carcinomas, like

abrogation of the pRb-controlled G1-checkpoint, and inactivation

of the tumor suppressor p53 [29]. As a consequence of SV40 early

gene expression, WAP-T mice develop multiple alveolar lesions -

multifocal intraepithelial neoplasia (MIN) - after mammary gland

involution. Some of these focal lesions further progress to invasive,

but rarely metastatic mammary adenocarcinomas [20], ranging

from a well to a poorly differentiated phenotype [19]. The

relevance of this model is emphasized by the close similarity in

histology of the mouse tumors with corresponding human tumors

[30] and by cross-species match of WAP-T tumors with human

basal-like breast tumors (manuscript submitted).

We here demonstrate that a reduced CK1d activity impairs

SV40-induced cell transformation in vitro and mammary tumor-

igenesis in vivo. Introduction of CK1d mutants with a reduced

kinase activity into SV40 maximal transformed cells (SV-52 cells)

reversed their phenotype to minimal transformants. Although

invasive tumor formation was observed upon transgene induction

in both, WAP-T and WAP-mutCK1d/WAP-T mice, WAP-

mutCK1d/WAP-T bi-transgenic mice showed a prolonged

survival compared to WAP-T mice. Furthermore, we found that

the expression of genes coding for proteins involved in wnt-

signaling and DNA repair was significantly different between

tumors of WAP-T and WAP-mutCK1d/WAP-T mice. These

genes are known to be involved in tumor progression and their

expression is influenced by products of the SV40 early region and

by CK1d, respectively [31–38]. We conclude that the reduced

activity of mutant CK1d variants attenuates SV40 mediated

cellular transformation in vitro and SV40-induced mouse mam-

mary carcinogenesis in vivo.

Materials and Methods

Cell culture
REF52 fibroblasts [23], SV-52 cells (a SV40 transformed cell

line established after microinjection of SV40 DNA into REF52

cells; [23]), Rev2 cells (a T-Ag positive, flat revertant of SV-52

cells; [22]), SV-CK1d(rev) and SV-mutCK1d cells were main-

tained in Dulbecco’s modified Eagle’s medium (DMEM) contain-

ing 10% heat-inactivated fetal calf serum (FCS) (Gibco BRL,

Karlsruhe, Germany) in a humidified 5% CO2 atmosphere.

Cloning in soft agar
16103, 56103 and 16104 cells per 35 mm-diameter dish were

plated in duplicates in DMEM containing 10% FCS and 0.3%

agar (Bacto Agar; Difco Laboratories, Heidelberg, Germany) onto

a bottom layer of 0.5% agar in DMEM. Colonies were scored and

photographed 20 days after plating.

Fluorescence microscopy
Cells were grown on coverslips for 2 days at 37uC, fixed in 3%

formaldehyde in PBS, containing 1 mM CaCl2 and 0.05 mM

MgCl2 for 10 min at 37uC, permeabilized in PBS containing 0.3%

Triton X-100 at 37uC for 3 min and treated with PBS containing

0.2% gelatine for 45 min. Staining was done according to Wulf et

al. [39] with TRITC-phalloidin (0.05 mg/ml; Sigma-Aldrich,

Munich, Germany) and afterwards, cells were mounted on slides.

Fluorescence microscopy was performed using an Olympus IX81

microscope in combination with the CellR Imaging Software

(Olympus, Hamburg, Germany).

Cell lysis
Cells were washed in ice-cold PBS and lysed either in sucrose

lysis buffer (20 mM Tris-HCl [pH 7.0], 0.27 M sucrose, 1 mM

EDTA, 1 mM EGTA, 1% Triton X-100, 1 mM benzamidine,

4 mg/ml leupeptin, 30 mg/ml aprotinin, 0.1% b-mercaptoethanol)

or in NP40 lysis buffer (1% NP-40, 50 mM Tris-HCl [pH 8.0],

150 mM NaCl, 10% glycerol, 5 mM DTT, 1 mM EDTA, 1 mM

EGTA, 50 mM leupeptin and 30 mg/ml aprotinin).

Fractionation of cellular extracts
SV-52, Rev2, SV-CK1d(rev), SV-mutCKd cells, as well as

mammary tumor tissue of WAP-T and WAP-mutCK1d/WAP-T

mice were lysed in sucrose lysis buffer and fractionation was

carried out as described elsewhere [40]. Briefly, cleared cell lysates

were passed through 0.40 mm pore-size filters and 3 mg of total

protein was applied to an anion exchange column (Resoure Q)

attached to an Ettan LC purifier (GE Healthcare, Munich,

Germany). The proteins were eluted with a linear ascending NaCl

gradient.

Overproduction and purification of recombinant proteins
The production and purification of the glutathione-S-transfer-

ase (GST) fusion proteins GST-p531–64 (FP267), GST-wtCK1d
(FP449), GST-CK1d(rev) (FP708), GST-mutCK1d (FP1124) and

baculovirus expressed T-Ag were carried out as described

elsewhere [41,42].

In vitro kinase assays
In vitro kinase assays were carried out as described previously

[40] using the GST-p531–64 fusion protein FP267 or baculovirus
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expressed T-Ag as substrates, and a C-terminally truncated CK1d
(CK1dKD; NEB, Frankfurt a. M., Germany), or single fractions of

fractionated cell or mammary tumor tissue extracts as sources of

enzyme. The kinase activity in kinase peak fractions was also

analyzed in the presence of CK1 specific inhibitors IC261 [43] or

compound 17, which inhibits specifically CK1d in the lower

nanomolar range [44]. Phosphorylated proteins were separated by

SDS-PAGE and the protein bands were visualized on dried

Coomassie stained gels by autoradiography. Where indicated, the

phosphorylated protein bands were excised and quantified by

Cherenkov counting.

Western blot analysis
To detect CK1d in FPLC fractions, proteins were separated on

SDS gels, transferred to Hybond-XL membranes (GE Healthcare,

Munich, Germany) and probed with the CK1d specific monoclo-

nal antibody 128A (kindly provided by ICOS Corporation,

Washington, USA). Detection was carried out using horseradish

peroxidase-conjugated anti-mouse IgG as a secondary antibody,

followed by chemiluminescence detection (ECL; GE Healthcare,

Munich, Germany).

Animals
All mice were housed and handled in accordance to official

regulations for care and use of laboratory animals (UKCCCR

Guidelines for the Welfare of Animals in Experimental Neoplasia).

Ethical approval of all mouse experiments was granted by the

Regierungspräsidium Tübingen (permission numbers 752, 904

and 1036). Transgenic mice were kept under barrier conditions

with a 12 h light/dark cycle and access to food and water ad

libitum. Male BALB/c WAP-mutCK1d, mono-transgenic strain

(mutCK1d transgenic; backcross generation 11) and female

BALB/c WAP-T mono-transgenic strain (T-Ag transgenic, line

NP8, [20]) were interbred to obtain WAP-mutCK1d/WAP-T bi-

transgenic mice. In order to induce mutCK1d expression in

mammary glands, transgenic females were mated. The transgene

expression was analyzed at different days of lactation (the date of

birth was counted as day 1 of lactation). Age-matched non

transgenic littermates served as controls. Mice were euthanized by

CO2 and mammary glands, liver and spleen were eviscerated.

Tissues were either snap-frozen and stored at 280uC or fixed in

4% formaldehyde containing 1% acetic acid. WAP-T transgenic

and WAP-mutCK1d/WAP-T bi-transgenic mice were sacrificed

when they exhibited signs of morbidity, or when the tumor size

exceeded 1.5 cm.

RNA extraction and analysis
Total RNA was isolated by homogenization of frozen tissue with

a homogenizer using the RNeasy Lipid Tissue Kit (Qiagen,

Hilden, Germany). 1 mg of total RNA was used for reverse

transcription using the RT2 First Strand Kit (SuperArray

SABioscience, Karlsruhe, Germany) as described by the manu-

facturer. To check the quality of the cDNA a PCR was performed

using the following primers to amplify the b-actin gene: 59actin-R

primer 59-GTCAGGCAGCTCGTAGCTCT-39 and 39actin-L

primer 59-GGCATCCTCACCCTGAAGTA-39. To exclude a

possible genomic DNA contamination control PCRs were

performed using the same cDNA used for screening the mice

and the following primers: 59actin-N primer 59-CGAGCAGGA-

GATGGCCACTGC-39 and 39actin-H primer 59-GTGAG-

CTCTCTGGGTGCTGGG-39. The actin-H primer binds in

the intron of the b-actin gene, whereas the actin-N primer binds in

the exon of the gene.

Gene expression analysis
Total RNA was isolated from frozen tissue using the peqGOLD

RNAPureTM (Peqlab, Erlangen, Germany) protocol as described by

the manufacturer. 1 mg isolated RNA was transcribed into cDNA

using the RT2 First Strand Kit (SuperArray SABiosience,

Karlsruhe, Germany). Gene profiling was done as described by

the manufacturer using the RT2 profiler PCR arrays ‘‘mouse wnt-

signaling pathway’’ and ‘‘mouse DNA repair’’ (each 84 genes). The

reactions were performed on the Applied Biosystems 7500 Fast-

Real Time PCR System (Applied Biosystems, Carlsbad USA). The

results were read out with the 7500 Fast System SDS Software.

Evaluation of the epithelial area fraction in mammary
gland of WAP-T and WAP-mutCK1d/WAP-T mice

Paraffin sections of WAP-T and WAP-mutCK1d/WAP-T

mammary glands obtained at day 60 post partum were stained

with H&E and photographed with a 106magnification. Pictures

were then analyzed with the ImageJ software (v.1.43u; NIH,

Bethesda, USA). Epithelial areas were selected using the ‘‘Polygon

selection’’ tool and the respective surface measured by the function

‘‘Measure’’. Using the same procedure, total mammary gland

surface was measured for each picture. Finally, epithelial area

fractions were estimated over the total mammary gland surface in

Excel (ExcelH 2007; Microsoft, Redmond, USA) and summarized

in a graph with GraphPad Prism 5 (v5.03; GraphPad Software, La

Jolla, USA). The histogram shows the mean of epithelial area

fraction with standard error of the mean.

Immunohistochemistry
Formalin fixed tissues were then dehydrated in a graded ethanol

series, cleared in methyl benzoate, and embedded in paraffin.

Sections were cut at 1 mm and mounted on glass slides. Staining

procedures included deparaffinization in xylene, rehydration via

transfer through graded alcohols and inhibition of endogenous

peroxidase activity (Peroxidase Blocking Reagent; DAKO,

Glostrup, Denmark). The sections were treated with the antigen

retrieval solution Citra Plus, pH 6.03 (BioGenex, San Ramon,

CA, USA) in a microwave oven, according to the manufacturer’s

instructions. For immunohistochemical detection of T-Ag or myc-

mutCK1d sections were incubated overnight at 4uC with the

rabbit polyclonal T-Ag specific antiserum R15 (1:5000; [20]) or

with a c-myc specific antibody (A-14, 1:600; Santa Cruz, Santa

Cruz, USA), respectively. After washing in Tris-HCl buffer

appropriate peroxidase conjugated secondary antibodies (N-

HistofineH; Nichirei Corporation, Tokio, Japan) were applied at

room temperature for 30 minutes. The enzymatic reaction was

developed in a freshly prepared solution of 3,39-diaminobenzidine

using DAKO Liquid DAB Substrate-Chromogen solution. Finally,

the sections were counterstained with hematoxylin and perma-

nently mounted in Entellan (Merck, Darmstadt, Germany).

Positive and negative controls were included for each case.

Molecular Modeling
Modeling was performed on a DELL T5500 workstation (DELL,

Round Rock, USA) using Schrödinger Suite Maestro 9.1 (Schrödin-

ger, Portland, USA). A high quality homology model of CK1d
possessing rat sequence to match biochemical data of this study was

generated based on PDB 1CSN [45] (origin from fission yeast,

sequence identity 99%), containing Mg-ATP as ligand in the active

site (model: wtCK1d). Mutations CK1d(rev): side chains of amino

acids 24 (TyrRCys), 47 (ProRSer), 172 (AsnRAsp), 202 (ValRAla);

mutCK1d: 24 (TyrRCys), 47 (ProRSer), 172 (AsnRAsp), 201

(TyrRHis), 202 (ValRAla) 224 (LysRArg), 271 (GlnRArg) were
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introduced. Subsequently the systems were minimized, respectively,

using OPLS-2005 force field by default settings implemented in

Schrödinger software package. Molecular surface of protein structures

were calculated and represented as electrostatic surface.

Statistical methods
For the analysis of the survival of WAP-T and WAP-mutCK1d/

WAP-T mice the total survival curves (Kaplan-Meier) were

compared using the log-rank test. To demonstrate differences in

the relative quantification of genes expressed in tumors of six different

WAP-T and WAP-mutCK1d/WAP-T mice the Mann-Whitney-U

test was used. All statistical calculations were performed using the

PASW Statistics 19.0 software (IBM, Ehningen, Germany).

Additional methods
Information regarding the use of retroviral vectors, infection

and transfection of cells, the cell fusion method, metabolic

labelling of cells with [35S]-methionine, isolation of genomic

DNA, Southern blot analysis, the in situ fractionation of cells, the

construction of the WAP-CK1d(rev) expression vector, the

generation and screening of WAP-CK1d(rev) transgenic mice,

reverse transcription PCR (RT-PCR), the cloning of mutCK1d,

generation of CK1dN172D and the clinical tumor staging and

histological tumor grading were provided in the supplementary

data file S1 (additional methods).

Results

CK1d phosphorylates SV40 T-Ag in vitro
The transforming activity of SV40 T-Ag is strongly influenced by

site-specific phosphorylation [46]. Thus changes in the activity of

cellular kinases targeting T-Ag could alter its transformation

competence. Members of the casein kinase 1 (CK1) family are able

to phosphorylate transformation-relevant phosphorylation sites of

T-Ag in vitro [13,14,47,48]. In minimal transformed Rev2 cells T-Ag

complexed to p53 is underphosphorylated at transformation-

relevant phosphorylation sites [11] which are targeted by CK1

isoforms in vitro [12–14,48]. Since CK1d phosphorylates p53 in vivo

and co-immunoprecipitates with T-Ag/p53 complexes, it is most

likely that CK1d also targets T-Ag within the T-Ag/p53 complex

[8,49–56]. Indeed, in vitro kinase assays revealed that CK1d is able to

phosphorylate baculovirus-expressed T-Ag (figure 1A), suggesting

that the altered phosphorylation of T-Ag and p53 [57] in Rev2 cells

might result from an altered CK1d activity. We therefore analyzed

the activity of CK1d in fractionated extracts of SV40 transformed

SV-52 (maximal transformed) and Rev2 cells (minimal trans-

formed). The kinase activity in fractionated Rev2 and SV-52 cell

extracts, eluting at 421 mM and 434 mM NaCl, respectively

(figure 1B), was reduced 2-fold in Rev2 cells compared to that in

SV-52 cells when T-Ag was used as substrate, and approximately 3-

fold when the GST-p531–64 fusion protein was used as substrate

(figure 1B). The detection of CK1d in the kinase peak fractions by

Western blot analyses (figure 1C) and inhibition of the kinase

activity present in the kinase peak fractions by the CK1 specific

small molecule inhibitor IC261 (figure 1D) confirmed that CK1d is

the main kinase present in the kinase peak fractions.

A single mutation within the kinase domain of CK1d(rev)
and mutCK1d is responsible for their reduced kinase
activity

Sequencing of CK1d cDNA isolated from Rev2 cells

(CK1d(rev)) revealed several point mutations, resulting in amino

acid exchanges of amino acids 24 (TyrRCys), 47 (ProRSer), 172

(AsnRAsp), 202 (ValRAla), 332 (GlyRSer) and 384 (SerRPro)

(table 1 and [58]). To elucidate the possible impact of these

mutations on CK1d activity, we performed molecular modeling

studies. In these analyses, we included additional mutations at base

pairs 601 (CACRTAC), 671 (AAGRAGG) and 812

(CAGRCGG), leading to amino acid mutations at positions 201

(TryRHis), 224 (LysRArg) and 271 (GlnRArg) (table 1), which

occurred in CK1d(rev) after introduction of the CK1d(rev) gene as

a transgene into mice. These mutations were identified by

sequencing of the transgene of the respective WAP-CK1d(rev)

mice (further referred to as mutCK1d and WAP-mutCK1d mice,

respectively, see below).

As the structure of the rat CK1d kinase domain (aa 1–293) has

been reported [59], we generated a homology model of mouse

CK1d containing Mg-ATP in the ATP binding pocket (wtCK1d,

figure 2A), representing an active conformation of the kinase

domain (the adequate liganded X-ray structure from CK1d of rat

origin is not available). As structural data are not available for the

C-terminal domain behind amino acid position 293, our

homology models derived from wtCK1d could only cover

mutations from the N-terminus up to amino acid position 293.

We introduced the respective mutations into this model (see

Materials and Methods) to generate homology models of

CK1d(rev), mutCK1d, and subsequently minimized the systems

using OPLS-2005 force field.

In both, the models of CK1d(rev) and of mutCK1d, all

mutations were found not to significantly influence the ATP-

binding pocket (figure 2B and 2C). Furthermore, compared to the

CK1d original structure (1CSN), the Mg-ATP binding mode was

not altered in our models, indicating that the impaired kinase

activity of the CK1d mutants analyzed in this study is not due to

impaired ATP binding. As illustrated in figure 2B, CK1d(rev)

mutations 24 (TyrRCys), 47 (ProRSer) and 202 (ValRAla) are

buried within the protein structure, thereby causing only minor

structural differences between wtCK1d and CK1d(rev). A similar

situation can be found for mutCK1d regarding mutations 24

(TyrRCys), 47 (ProRSer), 201 (TyrRHis), 202 (ValRAla), 224

(LysRArg) and 271 (GlnRArg) (see figure 2C). In contrast,

mutation 172 (AsnRAsp) is exposed at the surface of both

CK1d(rev) and mutCK1d, thereby significantly altering the

electrostatic potential of the protein surface from neutral

(asparagine/amide) to acidic (aspartic acid) in the substrate

binding area of the kinase (figure 2D). Therefore, it is likely that

the 172 (AsnRAsp) mutation is responsible for the impaired kinase

activity by affecting substrate binding. To test this hypothesis, we

exchanged Asn to Asp at position 172 of GST-wtCK1d to

generate GST-CK1dN172D. Analysis of its kinase activity revealed

a 40% reduction compared to GST-wtCK1d, whereas the activity

of GST-CK1d(rev) and GST-mutCK1d were further reduced to

20 and 10%, respectively (figure 2E).

Over-expression of CK1d(rev) and of mutCK1d in SV-52
cells reduces CK1d activity and induces reversion of the
transformed phenotype by dominant-negative
interference with wtCK1d

If the revertant phenotype in Rev2 cells would be causally

related to a reduced kinase activity, then ectopic expression of both

CK1d(rev) and mutCK1d should lead to a reversion of the

transformed phenotype in parental SV-52 cells. Indeed, over-

expression of either CK1d(rev) or mutCK1d in SV-52 cells (SV-

CK1d(rev) and SV-mutCK1d cells, respectively) resulted in a

reversion of the maximal transformed phenotype of SV-52 cells

(figure 3A, II) to a minimal transformed phenotype similar to that

Mutant CK1d Affects SV40-Induced Carcinogenesis

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e29709



of Rev2 cells (figure 3A, III), as indicated by a tight actin cable

network and a flattened cell shape (figure 3A, IV and V) nearly as

distinct as in parental REF52 cells (figure 3A, I). Furthermore, SV-

CK1d(rev) and SV-mutCK1d cells present reduced cloning

efficiency in soft agar (figure 3B, III and IV, and table 2).

The reversion of the transformed phenotype of SV-52 cells by

ectopic expression of CK1d(rev) and mutCK1d suggested that

these mutant proteins might act in a dominant-negative manner

over wtCK1d. To test this possibility, we first analyzed CK1d
activity in fractionated extracts of SV-CK1d(rev), SV-mutCK1d,

SV-52 and Rev2 cells. The corresponding kinase activity eluted at

421 mM NaCl (Rev2, SV-CK1d(rev), and SV-mutCK1d cells)

and 434 mM NaCl (SV-52 cells), respectively (figure 3C). CK1d
activity in SV-CK1d(rev) cells was reduced to a similar extent as in

Rev2 cells compared to SV-52 cells (figure 3C), supporting the

conclusions that (i) CK1d(rev) and mutCK1d act in a dominant-

Figure 1. Characterization of the CK1 activity present in SV-52 and Rev2 cells. (A) Phosphorylation of T-Ag by CK1dKD. In vitro kinase
assays were performed using baculovirus-expressed T-Ag as a substrate and a C-terminally truncated CK1d (CK1dKD) as enzyme. The phosphorylated
proteins were separated by SDS-PAGE (12.5%) and visualized by Coomassie staining. The degree of phosphorylation was documented by
autoradiography. Addition of C-terminally truncated CK1d is indicated by + or 2. kDa: kilo dalton. (B) Detection of CK1 activity in fractions
derived from anion exchange chromatography. Soluble extracts of SV-52 and Rev2 cells were prepared and equal amounts of protein were
loaded onto a 1 ml Resource Q column. The proteins were eluted with a linear gradient of increasing NaCl concentration. 0.25 ml fractions were
collected, and kinase activity was determined as described in Materials and Methods. The kinase activities in the peak fractions of SV-52 and Rev2 cells
were determined using either T-Ag or GST-p531–64 as a substrate. SV-52 cells: purple, closed circles; Rev2 cells: blue, closed triangles; — mM NaCl. (C)
Detection of CK1 in kinase peak fractions. Western blot analyses were performed using proteins from the peak fractions of fractionated SV-52
and Rev2 cell lysates as described in Materials and Methods. CK1d was detected using the CK1d specific mouse monoclonal antibody 128A. (D)
Inhibition of CK1 kinase activity in SV-52 and Rev2 cellular extracts using the CK1 specific inhibitor IC261. In vitro kinase assays were
performed in the presence of 1 mM, 3 mM and 10 mM of IC261 using cellular fractions from fractionated SV-52 and Rev2 protein lysates as source of
kinase. Phosphate incorporation into T-Ag and GST-p531–64, respectively, was normalized towards DMSO control reactions.
doi:10.1371/journal.pone.0029709.g001
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negative manner over wtCK1d, and that (ii) a reduced CK1d
activity is important for reversion of the cellular phenotype.

Furthermore, in vitro kinase assays revealed a reduction of the

catalytic activity of GST-mutCK1d compared to that of GST-

wtCK1d, as indicated by reduced phosphate incorporation into

both, GST-p531–64 and T-Ag (figure 4A). To verify the

dominant-negative action of CK1d(rev) and mutCK1d by their

ability to interact with wtCK1d, we performed in vitro kinase

assays using GST-wtCK1d in combination with equal amounts of

GST-CK1d(rev) or GST-mutCK1d as enzymes and GST-p531–

64 or T-Ag as substrates. As a control reaction, the same amount

of GST-wtCK1d protein (as used above in the mixed kinase

reaction) was used in combination with equal amounts of kinase

buffer. The data presented in figure 4B demonstrate that addition

of either GST-CK1d(rev) or GST-mutCK1d to GST-wtCK1d
significantly reduced its ability to phosphorylate GST-p531–64

and T-Ag.

The dominant-negative feature of the cellular alteration in Rev2

revertant cells could be further documented by cell fusion

experiments. We fused Rev2 cells firstly with SV-52 cells, and

secondly with Rdl1066 cells expressing a C-terminally truncated

T-Ag that still exhibits a high transforming activity (75%

compared to 100% of wild-type T-Ag [60]). To prove cell fusion,

the established fusion cells were characterized regarding SV40

DNA integration sites by Southern blot analyses. Both fusion cell

lines (F-SV cells and F-dl1066 cells) contain the parental genomes

as indicated by the size of genomic restriction fragments which

hybridized to a 32P-labeled T-Ag probe (supplementary figure

S1A). Furthermore, the expression of the T-Ag proteins from both

parental cell lines was confirmed by immunoprecipitation analysis

in four individual fusion cell clones (supplementary figure S1B).

F-SV cells and F-dl1066 cells had a well-developed actin cable

network similar to those of the parental Rev2H2, Rev Neo and of

immortalized REF52 cells (supplementary figure S1C). In contrast,

the actin cable networks of parental SV-52zip (supplementary

figure S1C) and SV-52 cells (figure 3A) were only weakly

developed.

Furthermore, in the fused cells the subcellular localization and

the biochemical properties of T-Ag were closely similar to those of

T-Ag in Rev2 revertant cells. T-Ag expressed in parental cells is

able to interact with the cellular chromatin, whereas this ability is

strongly reduced in fusion cells (supplementary figure S1D).

In conclusion, our analyses so far demonstrate that mutant

CK1d variants with reduced kinase activity can revert the

maximal transformed phenotype of SV-52 cells by dominant-

negative inhibition of wtCK1d.

Generation and characterization of mutant CK1d
transgenic mice

To analyze the effects of mutant CK1d on SV40-induced

mammary carcinogenesis in vivo, we generated WAP-CK1d(rev)

mice, as described in Materials and Methods, which then could be

crossed with WAP-T mice. Analysis of the offspring of WAP-

CK1d(rev) mice for genomic integration and expression of the

CK1d(rev) transgene led to the identification of one transgenic

strain (strain G), which showed the highest transgene expression

specifically in lactating mammary glands (supplementary figure

S2A and B). Sequence analyses of CK1d(rev) isolated from

CK1d(rev) transgenic animals at backcrosses 10 and 11 revealed

three additional mutations in CK1d(rev) (see second chapter of the

result part). This CK1d mutant then was named mutCK1d and

the respective transgenic animals were called WAP-mutCK1d
transgenic mice.

Generation and phenotypic characterization of WAP-
mutCK1d/WAP-T mice

To investigate the influence of mutCK1d on SV40-induced

tumorigenesis, animals from strain G (backcross 11) were mated

with WAP-T mice (line NP8), which develop mammary carcinomas

5 months after induction (61.5) with a rate of 83% [20].

Survival of mono-transgenic and bi-transgenic mice. First,

the development of mammary tumors was assessed in parity-induced

28 WAP-mutCK1d, 26 WAP-T and 31 WAP-mutCK1d/WAP-T

mice. Endpoint analyses revealed that none of the 28 WAP-mutCK1d
females in our study developed a tumor within 16 months of age. We

next asked, whether mutCK1d expression would influence SV40

mammary carcinogenesis in WAP-T mice. Figure 5A shows that bi-

transgenic mice had a significantly longer life-span compared to WAP-

T mono-transgenic mice (260 d vs. 235 d survival after lactation,

respectively; p = 0.005). In addition, 5 out of 31 WAP-mutCK1d/

WAP-T mice (16%) did not develop any tumor, whereas only one out

of 26 WAP-T mice (3.6%) remained tumor-free until the age of 16

months.

Transgene expression and CK1d activity in mammary

glands and tumors. To verify transgene expression in

mammary tumors of WAP-T and WAP-mutCK1d/WAP-T

mice, paraffin sections were immunostained either with a myc-

tag specific antibody selectively detecting mutCK1d, but not

Table 1. Point mutations and amino acid exchanges in CK1d (rev) and mutCK1d.

CK1d(rev) mutCK1d

position/point mutation position/amino acid exchange position/point mutation position/amino acid exchange

71 (TATRTGT) 24 (TyrRCys) 71 (TATRTGT) 24 (TyrRCys)

139 (CCTRTCT) 47 (ProRSer) 139 (CCTRTCT) 47 (ProRSer)

514 (AACRGAC) 172 (AsnRAsp) 514 (AACRGAC) 172 (AsnRAsp)

605 (GTGRGCG) 202 (ValRAla) 605 (GTGRGCG) 202 (ValRAla)

994 (GGCRAGC) 332 (GlyRSer) 994 (GGCRAGC) 332 (GlyRSer)

1150 (TCTRCCT) 384 (SerRPro) 1150 (TCTRCCT) 384 (SerRPro)

601 (CACRTAC) 201 (TyrRHis)

671 (AAGRAGG) 224 (LysRArg)

812 (CAGRCGG) 271 (GlnRArg)

doi:10.1371/journal.pone.0029709.t001
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wtCK1d, or a T-Ag specific antibody, respectively. Both, WAP-T

and WAP-mutCK1d/WAP-T mice showed nuclear T-Ag staining

in normal gland epithelium. Nuclear T-Ag expression was strong

in ductal carcinoma in situ (DCIS) and low grade invasive

carcinoma (figure 5B I, II, IV, and V), but tended to be reduced

in invasive high grade tumors (figure 5B III and VI).

Figure 2. Homology models of rat CK1d wild-type and mutants. (A) Homology model (HM) of rat CK1d containing Mg-ATP in ATP
binding pocket (CK1dHM). (B) Homology model of rat CK1d(rev) containing Mg-ATP in ATP binding pocket (CK1d(rev)). Mutations
compared to wtCK1d: 24 (TyrRCys), 47 (ProRSer), 172 (AsnRAsp), 202 (ValRAla). (C) Homology model of rat mutCK1d containing Mg-ATP in
ATP binding pocket. Mutations compared to wtCK1d: 24 (TyrRCys), 47 (ProRSer), 172 (AsnRAsp), 201 (TyrRHis), 202 (ValRAla) 224 (LysRArg),
271 (GlnRArg). (D) Representation of molecular surface as electrostatic potential for CK1d homology models. Color code: neutral (grey),
basic (blue) and acidic (red). Significant impact of acidic 172D compared to neutral amide 172N in substrate binding region is highlighted. (E)
Phosphorylation of GST-p531–64 by GST-wtCK1d, GST-CK1d(rev), GST-mutCK1d or GST-CK1dN172D. In vitro kinase assays were performed
using GST-p531–64 (FP267) as substrate and GST-wtCK1d, GST-CK1d(rev), GST-mutCK1d or GST-CK1dN172D as enzyme. The phosphorylated proteins
were separated by SDS-PAGE (12.5%) and visualized by Coomassie staining. The degree of phosphorylation was documented by autoradiography as
well as Cherenkov counting.
doi:10.1371/journal.pone.0029709.g002
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Bi-transgenic mice showed cytoplasmic and perinuclear

mutCK1d immunostaining in normal mammary glands and in

all tumors irrespective of tumor grade (figure 5B VII–IX). Co-

expression of SV40 T-Ag and mutCK1d in WAP-mutCK1d/

WAP-T mice renders it likely, that their phenotype as described

above is due to the reduced CK1d activity in these mice.

In order to compare CK1d activity in tumors of WAP-T and

WAP-mutCK1d/WAP-T mice, soluble extracts of invasive

mammary tumors of transgenic and bi-transgenic mice were

fractionated by anion exchange chromatography as described in

Materials and Methods. The kinase activity in the kinase peak

fractions of fractionated tumor extracts, eluting between 130 mM

and 210 mM NaCl, was reduced by one third in mammary tumor

tissue of WAP-mutCK1d/WAP-T mice compared to that in

tumor tissue of WAP-T transgenic mice, when the GST-p531–64

fusion protein was used as substrate (figure 6A). The inhibition of

the kinase activity present in the kinase peak fractions by the

CK1d specific small molecule compound 17 [44] (figure 6B)

confirmed that CK1d is the main kinase present in the kinase peak

fractions.

Clinical staging and histological grading. Both, the

clinical staging as well as the histological grading revealed no

significant differences between WAP-T mono-transgenic and

WAP-mutCK1d/WAP-T bi-transgenic mice (supplementary

figure S3).

Semi-quantitative evaluation of tumor initiation fre-

quency in WAP-T and WAP-mutCK1d/WAP-T mice. The

lower frequency and enhanced latency of tumor development in

WAP-mutCK1d/WAP-T mice compared to WAP-T mice could

either be due to perturbed tumor initiation, resulting in a lower

frequency of hyperplastic lesions and in situ carcinomas, or

alternatively, by a reduced ability of the tumor cells in DCIS to

cross the basal membrane and invade the surrounding tissue. To

discriminate between these alternatives, we analyzed histological

specimens from mammary glands from both transgenic mouse

lines obtained at day 60 after involution, i.e. at a time when

hyperplasia and in situ carcinoma formation could be observed, but

invasive carcinomas had not yet formed (manuscript in

preparation). As in the normal involuted mammary gland, fat

tissue is most prominent, the epithelial tissue areas in mammary

gland tissue of the respective mice is a suitable means to quantitate

the formation of such non-invasive carcinomas (see Materials and

Methods). The data presented in figure 5C demonstrate that the

fraction of epithelial areas is similar in both transgenic mouse lines,

thereby indicating similar MIN (mulitfocal interepithelial

Figure 3. Effects of ectopic expression of CK1d(rev) or mutCK1d
in SV-52 cells. (A) Actin network of REF52, SV-52, Rev2, SV-
CK1d(rev) and SV-mutCKd cells. The actin cable network of parental
REF-52 cells (I), maximal transformed SV-52 cells (II), minimal transformed
Rev2 cells (III), SV-CK1d(rev) and SV-mutCKd cells was stained with
phalloidin-TRITC. (B) Colony formation of SV-52, Rev2, SV-
CK1d(rev) and SV-CKmutCK1d cells in soft agar. Cells were plated
in duplicate in culture. Colonies were scored and photographed 20 days
after plating (see also table 2). (C) Detection of CK1 activity in
cellular protein fractions derived from anion exchange chroma-
tography. Soluble extracts of SV-52 (purple, closed circles), Rev2 (blue,
closed triangles), SV-CK1d(rev) (green, open rectangles) and SV-mutCKd
(red, open rectangles) cells were prepared and in each case equal protein
amounts were loaded onto a 1 ml Resource Q column. Then proteins
were eluted with a linear gradient of increasing NaCl concentration,
0.25 ml fractions were collected, and kinase activity was determined as
described in Materials and Methods. The kinase activities in the peak
fractions of SV-52, Rev2, SV-CK1d(rev) and SV-mutCKd cells were
compared.
doi:10.1371/journal.pone.0029709.g003
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neoplasia) development in WAP-T and WAP-mutCK1d/WAP-T

mice. Thus tumor initiation is not disturbed in WAP-mutCK1d/

WAP-T mice compared to WAP-T mice. Rather, we assume that

in WAP-mutCK1d/WAP-T mice outgrowth of invasive

carcinomas from MIN is affected.

Reduced CK1d activity in tumors of WAP-mutCK1d/WAP-
T mice compared to those of WAP-T mice results in an
altered expression of genes associated with tumor
progression

Outgrowth of invasive carcinomas from MIN in WAP-T mice is

a rare event that occurs in a stochastic manner ([61], and

manuscript in preparation), and thus is the decisive progression

step in malignant mammary carcinogenesis. Therefore, we focused

our molecular analysis of tumors from WAP-T and WAP-

mutCK1d/WAP-T mice on two gene sets contained within the

RT2 ‘‘mouse wnt-signaling pathway’’ and ‘‘mouse DNA-repair

pathways’’ profiler PCR arrays (see Materials and Methods). Both,

wnt-signaling and DNA repair are known to be involved in tumor

progression and are targets of SV40 early proteins [62] as well as

of CK1d [31–38].

Real-Time PCR analysis revealed the up-regulation of 20 genes

within the wnt- pathway in tumors from WAP-T mice compared to

controls (non-tumor tissue), while only six genes were up-regulated

in tumors from WAP-mutCK1d/WAP-T bi-transgenic mice. Six

genes from WAP-T tumors and nine genes from WAP-mutCK1d/

WAP-T tumors, respectively, were down-regulated compared to

controls. While expression of only three genes within the wnt-

signaling pathway remained almost unchanged in tumors from

WAP-T mice, twelve genes in tumors from WAP-mutCK1d/

WAP-T bi-transgenic mice were similarly expressed compared to

controls (table 3). The difference in gsk3b expression between the

mono- and bi-transgenic tumor samples is striking: gsk3b is

strongly up-regulated in tumors of mono-transgenic WAP-T mice

(more than 30-fold) whereas in tumors of bi-transgenic mice gsk3b
levels were similar to those of non-tumor samples.

Analysis of genes of the DNA repair pathway revealed up-

regulation of 20 genes and down-regulation of three genes in

tumors of mono- and bi-transgenic mice compared to controls

(table 4). The only DNA repair gene which was up-regulated (RQ:

5.1) in tumors from WAP-T mice, but down-regulated (RQ: 0.7) in

tumors from bi-transgenic mice was dmc1 (table 4). As a rad51

related gene, dmc1 is found at the sites of double strand breaks

(DSB) in concert with rad51. Interestingly, expression of rad51 is

Table 2. Colony formation and cloning efficiency in soft agar
of SV-52, Rev2 and SV-mutCK1d cells.

cell line
cloning efficiency
in soft agar (%)

colony size
in soft agar

SV-52 100 large

Rev2 6 microcolony

SV-CK1d(rev) 9.4 microcolony

SV-mutCK1d 7 microcolony

Cells were plated in culture dishes as described in Materials and Methods.
Colonies were scored and photographed 20 days after plating. The terms
‘‘microcolony’’ and ‘‘large’’ indicate the dominating size type of all established
colonies, which only showed limited size variations.
doi:10.1371/journal.pone.0029709.t002

Figure 4. Phosphorylation of GST-p531–64 and baculovirus-expressed T-Ag by GST-CK1d(rev) and GST-mutCK1d. (A) Phosphor-
ylation of GST-p531–64 and baculovirus-expressed T-Ag by GST-wtCK1d, GST-CK1d(rev) or GST-mutCK1d. In vitro kinase assays were
performed using GST-p531–64 (FP267) or baculovirus-expressed T-Ag as substrates and GST-wtCK1d, GST-CK1d(rev) or GST-mutCK1d as enzyme. The
phosphorylated proteins were separated by SDS-PAGE (12.5%) and visualized by Coomassie staining. The degree of phosphorylation was
documented by autoradiography as well as Cherenkov counting. (B) Phosphorylation of GST-p531–64 or baculovirus-expressed T-Ag by
mixed GST-wtCK1d and GST-CK1d(rev) or GST-mutCK1d. In vitro kinases assays were performed using GST-p531–64 (FP267) or baculovirus-
expressed T-Ag as substrates and GST-wtCK1d in combination with equal amounts of either GST-CK1d(rev) or GST-mutCK1d as enzyme. In a control
reaction, same amounts of GST-wtCK1d were used diluted in kinase buffer. The phosphorylated proteins were separated by SDS-PAGE (12.5%) and
visualized by Coomassie staining. The degree of phosphorylation was documented by autoradiography and by Cherenkov counting and is presented
in % activity.
doi:10.1371/journal.pone.0029709.g004
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Figure 5. Phenotypic characterization of WAP-mutCK1d/WAP-T mice. (A) Survival of induced WAP-T and WAP-mutCK1d/WAP-T
mice. Kaplan-Meier survival curves show a significant longer life-span of WAP-mutCK1d/WAP-T mice (median: 265 days) compared to WAP-T mice

(median: 230 days). p = 0.005; (monoparous females). WAP-T mice; WAP-T mice censored, --- WAP-mutCK1d/WAP-T mice; WAP-mutCK1d/

WAP-T mice censored. (B) T-Ag and mutCK1d immunostaining of mammary carcinoma in WAP-T transgenic and WAP-mutCK1d/WAP-
T bi-transgenic mice. Cross-sections of neoplastic mammary glands were immunostained with a polyclonal rabbit antibody against T-Ag (I–VI) and
a polyclonal goat antibody against the c-myc epitope tag (VII–IX). Strong nuclear T-Ag staining was detected in DCIS and low grade tumors of WAP-T
and WAP-mutCK1d/WAP-T mice (I, II, IV and V). In high grade tumors, only weak T-Ag expression was found (III, VI). Expression of mutCK1d, detected
by c-myc immunostaining could be found in the cytoplasm and perinuclear region of DCIS (VII) and invasive carcinomas (VIII, IX) of WAP-mutCK1d/
WAP-T mice. (C) Semi-quantitative evaluation of tumor grading in WAP-mutCK1d/WAP-T mice. Epithelial tissue areas of non-invasive
carcinomas in mammary glands from day 60 after induction from both transgenic lines were counted as described in Materials and Methods. No
significant difference in the number of non-invasive carcinomas in fractions of epithelial areas could be detected.
doi:10.1371/journal.pone.0029709.g005
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induced in tumors of both, mono- and bi-transgenic mice (27- and

15-fold, respectively).

Discussion

We used the system of maximal transformed SV-52 cells and

their flat revertants (Rev2) as a tool to analyze the influence of

CK1d on the transformation competence of SV40. Rev2 cells, like

their parental SV-52 cells express a genotypically wild-type T-Ag,

which is differently phosphorylated in both cell types [11]. In line

with published data demonstrating that CK1a and CK1e, both

members of the CK1 kinase family, are able to phosphorylate

transformation-relevant sites of T-Ag, we show here that also

CK1d phosphorylates T-Ag in vitro and that the activity of CK1d
in revertant Rev2 cells is 2–3-fold decreased compared to its

activity in parental SV-52 cells. The reduced CK1d activity in

Rev2 cells is mainly due to point mutations in the coding sequence

of CK1d, as GST-CK1d(rev) compared to GST-wtCK1d has a

lower capability to phosphorylate T-Ag in vitro.

Interestingly, our cell fusion experiments indicated that the

Rev2 revertant phenotype is dominant over the SV40 transformed

phenotype, suggesting that mutant CK1d acts in a dominant-

negative manner over wtCK1d. This assumption was strongly

supported by our findings that CK1d(rev) and mutCK1d proteins,

ectopically over-expressed in SV-52 cells were able to confer a

Rev2 revertant phenotype to these cells, and that CK1d(rev) and

mutCK1d were able to reduce the kinase activity of wtCK1d in in

vitro kinase assays. The dominant-negative character of CK1d(rev)

and of mutCK1d can be explained by their ability to interact with

wtCK1d. This assumption is supported by our finding that mixing

GST-CK1d(rev) or GST-mutCK1d with GST-wtCK1d inhibited

the in vitro kinase activity of GST-wtCK1d. Further experiments

based on molecular modeling analyses revealed that a single point

mutation (N172D) affecting substrate binding is mainly responsible

for the reduced kinase activity of both mutants, CK1d(rev) and

mutCK1d in comparison to wtCK1d.

To analyze the influence of an impaired CK1d activity on

SV40-induced tumor formation in vivo we established a transgenic

mouse model. In this model, CK1d(rev) was placed under the

control of the WAP-promoter to drive transgene expression in

ductal and alveolar epithelium of the lactating mammary gland

[63–65]. The transgenic mouse line with the highest expression of

CK1d(rev) (line G) was selected and back-crossed onto a BALB/c

genotype. Sequence analysis of the CK1d(rev) transgene expressed

in transgenic mice at backcrosses 10 and 11 revealed three

additional mutations (201 (TyrRHis), 224 (LysRArg) and 271

(GlnRArg); (mutCK1d)) which, however only slightly affected the

mutant CK1d phenotype of mutCK1d.

While WAP-mutCK1d mice had no detectable phenotype,

mutCK1d expression considerably influenced the outcome of

SV40-induced mammary carcinogenesis, as WAP-mutCK1d/

WAP-T bi-transgenic mice had a significantly longer life-span

than mono-transgenic WAP-T mice. Importantly, five out of 31

induced bi-transgenic mice did not develop tumors at all, whereas

only one out of 26 induced WAP-T transgenic mice remained

tumor-free. These results are in line with our in vitro observations,

where the expression of mutCK1d reversed the phenotypic

progression that had occurred in SV-52 cells expressing wtCK1d.

Combined with the finding that both types of mice develop MIN

to a rather similar extent, we conclude that MIN/DCIS in bi-

Figure 6. Characterization of CK1 kinase activity in invasive mammary carcinomas of WAP-T and WAP-mutCK1d/WAP-T mice. (A)
Detection of CK1 activity in mammary carcinoma protein fractions derived from anion exchange chromatography. Soluble extracts of
invasive mammary carcinomas taken from WAP-T transgenic (blue, closed circles) or WAP-mutCK1d/WAP-T bi-transgenic mice (orange, closed
triangles) were prepared and in each case equal protein amounts were loaded onto a 1 ml Resource Q column. Then proteins were eluted with a
linear gradient of ascending NaCl concentration. 0.25 ml fractions were collected, and kinase activity was determined as described in Materials and
Methods. (B) Inhibition of CK1 kinase activity in extracts from WAP-T and WAP-mutCK1d/WAP-T mammary carcinoma tissue using
the CK1d specific inhibitor compound 17. In vitro kinase assays were performed in the presence of 50 nM of inhibitor compound 17 [44] using
cellular fractions from fractionated mammary carcinoma protein lysates as source of kinase. Phosphate incorporation into GST-p531–64 was
normalized towards DMSO control reactions.
doi:10.1371/journal.pone.0029709.g006
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transgenic mice have a lower probability to progress to invasive

carcinoma. Progression of MIN to invasive carcinomas in WAP-T

mice is an extremely rare event, considering that virtually all

terminal end buds of all mammary glands develop MIN, while

WAP-T mice on the average develop only 2–4 invasive mammary

carcinomas ([61], and manuscript in preparation). The even

further reduced probability for developing invasive carcinomas in

WAP-mutCK1d/WAP-T bi-transgenic mice thus indicates that

CK1d activity plays an important role in promoting transition of

MIN to an invasive carcinoma. However, our finding that

histology shows no difference between WAP-T and WAP-

mutCK1d/WAP-T mice suggests that once tumors in bi-

transgenic mice had become invasive, they are phenotypically

similar to those in WAP-T mice.

Tumor progression induced by SV40 is significantly promoted

by activation of the wnt-pathway [66,67], which is also regulated

by CK1 family members [36]. The wnt-pathway also plays an

important role in the development of breast cancer [68–71].

Therefore, we performed real-time PCR arrays for analyzing the

expression of genes involved in the wnt-pathway and observed a

strongly enhanced expression of bcl9, fzd3, gsk3b, jun and wif1 in

tumors of WAP-T compared to WAP-mutCK1d/WAP-T mice.

As these genes are involved in promoting proliferation, migration

and metastasis of tumor cells [72–76], and/or in the self-renewal

of tumor stem cells in mammary carcinoma [77], we suggest that

over-expression of these genes in tumors of WAP-T mice

compared to tumors of WAP-mutCK1d/WAP-T mice might

enhance the probability for WAP-T tumors for acquiring an

invasive phenotype.

DNA damage response is a candidate anti-cancer barrier in

carcinogenesis, as an increased genetic instability is required for

the selection of the appropriate ‘‘onco-genome’’. Within a

developing tumor, a fine balance has to be achieved between

genetic instability required for tumor progression, and sufficient

repair activity required to retain functionality of vital cellular

processes. Thus, DNA damage response is activated in many

advanced tumors. In SV40-induced in vitro transformation and in

in vivo tumorigenesis genetic instability is achieved by functional

inactivation of p53, leading to endoreplication, followed by

aneuploidy [78]. Although it is difficult to assign specific

Table 3. Analysis of changes in the expression of genes involved in wnt-signaling.

fold change in expression in tumors from

symbol description WAP-T WAP-mutCK1d/WAP-T

aes Amino-terminal enhancer of split 3.2 q60.7 1.4 q60.3

bcl9 B-cell CLL/lymphoma 9 2.1 q60.5 1.1 Q60.7

btrc Beta-transducin repeat containing protein 2.7 q60.07 2.4 Q60.04

ccnd1 Cyclin D1 5.1 Q60.01 2.9 Q60.09

ccnd2 Cyclin D2 4.0 Q60.06 6.3 Q60.03

csnk1a1 Casein Kinase 1, alpha 1 4.3 q61.2 1.5 q60.04

csnk2a1 Casein Kinase 1, alpha polypeptide 3.1 Q60.2 1.0 q60.05

ctbp1 C-terminal binding protein 1 3.0 q60.5 1.4 q60.3

ctbp2 C-terminal binding protein 2 1.6 Q60.3 2.0 q60.2

ctnnb1 Catenin, beta 1 2.7 q60.3 2.8 q60.9

dvl2 Dishevelled, dsh homologe 1 (Drosophila) 2.2 q60.4 1.4 q61.2

fbxw11 RIKEN cDNA C530030P08 gene 2.9 q60.5 1.4 q60.2

fbxw4 F-box und WD-40 domain protein 4 7.7 q61.8 1.9 Q60.2

fzd3 RIKEN cDNA D130009B15 gene 1.5 q60.2 2.6 Q60.2

gsk3b Gylkogen synthase kinase 3 beta 31.6 q611.8 1.2 Q60.2

jun Jun oncogene 3.1 q60.5 1.6 q60.3

nkd1 Naked cuticle 1 homolog (Drosophila) 49.5 Q60.02 7.7 Q60.03

nlk Nemo like kinase 1.3 q60.04 1.9 Q60.05

ppp2ca protein phosphatase 2a, catalytic subunit, alpha isoform 2.0 q60.1 2.3 q60.1

ppp2r5d protein phosphatase 2, regulatory subunit B, delta isoform 3.0 q60.6 1.4 q60.3

senp2 SUMO/sentrin specific protease 2 2.9 q60.8 1.5 q60.4

sfrp1 secreted frizzled-related sequence protein 1 2.3 q60.4 2.9 q60.5

tcf7 Transcription factor 7, T-cell specific 6.4 Q60.1 2.1 Q60.06

tle1 Transducin-like enhancer of split 2.1 q60.3 1.2 q60.4

wif1 Wnt inhibitory factor 20.7 Q60.04 3.4 Q60.1

wisp1 WNT1 inducible signaling pathway protein1 1.9 q60.8 7.5 q62

wnt7b Wingless-related MMTV integration site 7B 5.6 q61.5 7.4 q62.3

Total RNA isolated from tumors of WAP-T transgenic and WAP-mutCK1d/WAP-T bi-transgenic animals was transcribed into complementary DNA. Gene profiling was
done using RT2 profiler PCR array ‘‘mouse wnt-signaling pathway’’ (84 genes) (Superarray SABioscience, Karlsruhe, Germany). The values represent the mean of the
observed changes in gene expression in tumors of WAP-T and WAP-mutCK1d/WAP-T mice compared to the according non-tumor control tissue. Data are presented as
6 standard error of the mean (SEM). Increased expression: q; decreased expression: Q.
doi:10.1371/journal.pone.0029709.t003
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consequences to the altered expression of each individual DNA

repair gene differently regulated in WAP-T tumors compared to

WAP-mutCK1d/WAP-T tumors, it is a distinct possibility that

DNA repair in general is enhanced in WAP-mutCK1d/WAP-T

tumors compared to WAP-T tumors. As a consequence, such

enhanced DNA repair could significantly prolong the time

required for selecting an appropriate onco-genome, thereby

explaining the longer life-span of WAP-mutCK1d/WAP-T mice.

Mechanistically, the T-Ag/p53 complex plays a pivotal role in

SV40-induced tumors in supporting the development of a tumor-

associated gene expression profile by its transcriptional activity

[79], as well as by inducing genetic instability which allows for the

selection of an appropriate onco-genome [80,81].

In summary, partial inhibition of CK1d activity reduces the

probability of progression of SV40 transformed cells to a maximal

transformed phenotype in vitro, and prolonged the survival of

WAP-mutCK1d/WAP-T mice. At the molecular level, this

inhibition is accompanied by a reduced wnt-signaling and an

enhanced DNA repair activity in WAP-mutCK1d/WAP-T mice

compared to WAP-T mice.

Our data thus provide evidence that an impaired CK1d activity

influences SV40-induced tumorigenesis, including the modulation

of different signaling pathways. Furthermore, our bi-transgenic

mouse model presents a suitable tool to identify progression and

regression factors involved in carcinogenesis of the mammary

ductal carcinoma in situ.

Supporting Information

Data S1 Additional Methods.

(DOC)

Figure S1 Characterization of fusion cells. (A) Southern
blot analysis of SV40 viral DNA integrated into the
genome of SV-52zip, Rev2H2, Rdl1066zip and fusion
cells. Genomic DNA (30 mg) isolated from parental cell lines (SV-

52zip, Rev2H2 and Rdl1066zip cells) and from fusion clones (SV-

52zip/Rev2H2 (F-SV) or Rdl1066zip/Rev2H2 (F-dl1066) fusion

cells) were analyzed for integrated SV40 DNA by Southern

blotting. The positions of size markers are indicated. Lanes a and

e: Rev2H2; lanes b and d: SV-52zip, lane c: SV-52zip/Rev2H2

Table 4. Analysis of changes in the expression of genes involved in DNA repair signaling pathways.

fold change in expression in tumors from

symbol description WAP-T WAP-mutCK1d/WAP-T

base excision repair (BER)

apex1 Apurinic/apyrimidinic endonuclease 1 1.7 q60.2 3.1 q60.3

neil2 Nei like 2 (E. coli) 4.9 Q60.04 3.7 Q65.7

neil3 Nei like 3 (E. coli) 4.1 q60.6 15.9 q65.6

polb Polymerase (DNA directed), beta 2.0 q60.2 2.8 q60.9

ung Uracil DNA glycosylase 5.8 q61.2 6.0 q61.2

nucleotide excision repair (NER)

brip1 BRCA1 interacting protein C-terminal helicase 1 3.9 q60.6 9.2 q62

cdk7 Cyclin-dependent kinase 7 3.2 Q60.05 3.2 Q60.06

lig1 Ligase I, DNA, ATP dependent 4.9 q60.5 7.1 q60.7

rpa1 Replication protein A1 3.4 q61.4 3.1 q60.3

rpa3 Replication protein A3 5.2 q61.2 9.8 q61.9

mismatch repair (MMR)

exo1 Exonuclease 1 8.0 q60.9 34.7 q64.6

msh5 MutS homologue 5 (E. coli) 3.1 Q60.07 5.7 Q60.04

msh6 MutS homologue 6 (E. coli) 2.9 q60.4 2.0 q60.1

pms1 Postmeiotic segregation increased 1 (S. cerevisiae) 2.5 q60.7 4.4 q60.5

xrcc6 X-ray repair complementing defective repair in Chinese hamster cells 6 2.6 q60.3 3.5 q60.2

double-strand break (DSB) repair

brca1 Breast cancer 1 5.7 q60.7 17.4 q62.3

dmc1 DMC1 dosage suppressor of mck1 homologue 5.1 q62.5 1.4 Q60.2

fen1 Flap structure specific Endonuclease 1 4.4 q60.7 6.0 q60.7

rad21 RAD21 homologue (S. pombe) 3.5 q60.3 3.1 q60.4

rad51 RAD51 homologue (S. cerevisiae) 14.5 q61.9 26.9 q65.5

rad51c Rad51 homologue c (S. cerevisiae) 7.0 q61 9.8 q61.2

rad54l RAD54 like (S. cerevisiae) 4.1 q60.3 6.2 q61.1

other genes

rad18 RAD18 homologue (S. cerevisiae) 4.1 q60.5 5.4 q61

Gene profiling was done using RT2 profiler PCR array ‘‘mouse DNA REPAIR’’ (84 genes) (Superarray SABioscience, Karlsruhe, Germany). The values represent the mean of
the observed changes in gene expression in tumors of WAP-T and WAP-mutCK1d/WAP-T mice compared to the according non-tumor control tissue. Data are presented
as 6 standard error of the mean (SEM). Increased expression: q; decreased expression: Q.
doi:10.1371/journal.pone.0029709.t004
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fusion clone (F-SV); lane f: Rdl1066zip; lanes g, h, i, j:

Rdl1066zip/Rev2H2 fusion clones 1, 14, 9, 13 (F-dl1066 1, 14,

9, 13); m: 32P labeled DNA marker; R: T-Antigen specific DNA

sequence (B) Immunoprecipitation of [35S]-methionine-
labeled T-Ag from Rdl1066zip/Rev2H2 fusion cells (F-
dl1066). T-Ag was immunoprecipitated from cellular lysates of

four different fusion clones (lanes a, b, c and d) which had been

metabolically labeled with 50 mCi of L-[35S]-methionine and L-

[35S]-cysteine for 1 h. Immunoprecipitates were separated by

SDS-PAGE. The expression of both, full length and truncated T-

Ag was visualized by autoradiography. (C) Actin filament
staining of REF52, SV-52zip, Rev2H2, Rev Neo, F-SV and
F-dl1066 (Rdl1066zip/Rev2H2) cells. REF52, SV-52zip,

Rev2H2, Rev Neo, F-SV and F-dl1066 (Rdl1066zip/Rev2H2)

cells were grown on coverslips for two days, fixed, permeabilized

and blocked as described in Materials and Methods. The actin

network was visualized using TRITC-phalloidin. (D) Subcellu-
lar localization of T-Ag expressed in parental cell lines
and fusion clones. Cells were metabolically labeled with L-

[35S]-methionine and L-[35S]-cysteine before being subfractio-

nated as described in supplementary data file S1. T-Ag was

immunoprecipitated using protein A sepharose (Amersham

Bioscience, Freiburg, Germany) and the rabbit monoclonal T-

Ag specific antibody 108 [82] from SV-52, SV-52zip, Rev2,

Rev2H2, Rdl1066, Rdl1066zip, F-SV and F-dl1066 (Rdl1066zip/

Rev2H2) cell lysates. The immunoprecipitated proteins were

separated on SDS-PAGE, and T-Ag was visualized by fluorogra-

phy. (N) Cytoplasmic/nucleoplasmic soluble T-Ag; (C) T-Ag

extracted from the chromatin; (NM) T-Ag extracted from the

nuclear matrix.

(TIF)

Figure S2 Characterization of mutant CK1d transgenic
mice. (A) Transgene expression in lactating mammary
glands of WAP-mutCK1d transgenic mice. Reverse tran-

scriptase PCR (RT-PCR) analysis, done with RNA isolated from

lactating mammary gland tissue (day 5 of lactation) of WAP-

mutCK1d transgenic mice, revealed a transgene expression of

mutCK1d in all 5 transgenic mouse lines. (B) mutCK1d
immunostaining of lactating mammary glands in WAP-

mutCK1d transgenic mice. Cross-sections of mammary glands

on day 5 of lactation were immunostained with a polyclonal goat

antibody against the c-myc epitope tag to analyze the expression

pattern of the mutCK1d transgene. A highly positive cytoplasmic

c-myc staining was detected in mammary glands of mouse line C

(II) and G (IV), whereas only a weak expression of the transgene

was seen in mammary glands of mouse line A (I) and D (III).

Mammary glands of line H (V) do not show any c-myc staining.

The lactating mammary gland of a non-transgenic littermate

served as a control (VI).

(TIF)

Figure S3 Clinical staging and histological grading of
mammary glands and tumors. (A) Representative ex-
amples of all grades of mammary glands. Representative

examples of all grades of mammary glands of cross-sections from

WAP-T (I, III, V, VII) and WAP-mutCK1d/WAP-T mice (II, IV,

VI, VIII). I and II low grade DCIS, III and IV high grade DCIS,

V and VI low grade invasive tumor, VII and VIII high grade

invasive tumor. All evaluated mammary glands display neoplastic

alterations, comprising low and high grade DCIS as well as low

and high grade invasive cancer. (B) Percentage distribution
of staging and grading values. Local tumor stages and

histological grades of at least two mammary glands per mouse

from each cohort were determined. The largest tumor amongst

multiple tumors per mammary gland was staged and graded,

respectively.

(TIF)
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