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Abstract In patients with progressive podocyte disease, such
as focal segmental glomerulosclerosis (FSGS) and membra-
nous nephropathy, upregulation of transforming growth
factor-ß (TGF-ß) is observed in podocytes. Mechanical
pressure or biomechanical strain in podocytopathies may
cause overexpression of TGF-ß and angiotensin II (Ang II).
Oxidative stress induced by Ang II may activate the latent
TGF-ß, which then activates Smads and Ras/extracellular
signal-regulated kinase (ERK) signaling pathways in podo-
cytes. Enhanced TGF-ß activity in podocytes may lead to
thickening of the glomerular basement membrane (GBM) by
overproduction of GBM proteins and impaired GBM degra-
dation in podocyte disease. It may also lead to podocyte
apoptosis and detachment from the GBM, and epithelial-
mesenchymal transition (EMT) of podocytes, initiating the
development of glomerulosclerosis. Furthermore, activated
TGF-ß/Smad signaling by podocytes may induce connective
tissue growth factor and vascular endothelial growth factor
overexpression, which could act as a paracrine effector
mechanism on mesangial cells to stimulate mesangial
matrix synthesis. In proliferative podocytopathies, such
as cellular or collapsing FSGS, TGF-ß-induced ERK
activation may play a role in podocyte proliferation,
possibly via TGF-ß-induced EMT of podocytes. Collec-
tively, these data bring new mechanistic insights into our
understanding of the TGF-ß overexpression by podocytes
in progressive podocyte disease.
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Introduction

Glomerular podocytes are the target of injury in most
glomerular diseases. Glomerulosclerosis is a hallmark of
progressive glomerular damage, and is characterized by the
collapse of the glomerular tuft and mesangial matrix
accumulation. Transforming growth factor-ß (TGF-ß) is a
key regulator of extracellular matrix (ECM) protein
synthesis in renal cells. In progressive podocyte diseases,
such as focal segmental glomerulosclerosis (FSGS) (Kim et
al. 2003), membranous nephropathy (Kim et al. 1999;
Shankland et al. 1996), diabetic nephropathy (Wahab et al.
2005), Alport renal disease (Sayers et al. 1999), and Denys-
Drash syndrome (Patek et al. 2003), expression of TGF-ß
mRNA and/or protein is increased in podocytes. In
addition, mesangial matrix expansion occurs frequently in
these diseases associated with glomerulosclerosis (Lee and
Koh 1993; Lee and Lim 1995; Patek et al. 2003). TGF-ß,
which is overexpressed by podocytes, may contribute to the
glomerular basement membrane (GBM) thickening and
mesangial matrix expansion in progressive podocyte disease
(Lee 2011).

Besides ECM protein synthesis, TGF-ß has effects on
proliferation, hypertrophy, and apoptosis in renal cells.
Podocytes are growth-arrested terminally differentiated
cells, and their loss following glomerular injury may
contribute to the development of FSGS (Appel et al.
2009; Kriz and Le Hir 2005; Mundel and Shankland
2002). Yet damaged podocytes can proliferate leading to
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the development of cellular FSGS and even crescents
(Bariety et al. 1998, 2005; Barisoni et al. 1999; Ding et
al. 2006; Griffin et al. 2005; Moeller et al. 2004; Thorner et
al. 2008), although Smeets et al. (2009) argued that
proliferating cells in these lesions mainly originate from
parietal epithelial cells. In this regard, TGF-ß, which is
overexpressed by hyperplastic podocytes, may be involved
in podocyte proliferation (Lee and Song 2010).

This review will discuss the recent findings on the
mechanisms and consequences of TGF-ß overexpression by
podocytes in chronic progressive podocyte disease.

Structure of podocytes

Podocytes are highly differentiated polarized epithelial
cells. They have a main cell body which bulges into the
urinary space. The long primary (cytoplasmic) processes
extend from the cell body and divide into individual foot
processes, which adhere to the outer surface of the GBM.
Podocytes sustain the structural integrity of the GBM and
synthesize most components of the GBM. The foot
processes of neighboring podocytes regularly interdigitate,
leaving between them filtration slits that are bridged by the
slit diaphragm (Pavenstädt et al. 2003). There is a recent
report documenting that the filtration slit is a heteroporous
structure instead of the previously suggested zipper-like
structure (Gagliardini et al. 2010).

Cell-cycle regulation in podocytes

Mature podocytes are terminally differentiated cells and are
unable to proliferate in a wide variety of normal or disease
conditions. Cell proliferation is controlled at the cell-cycle
level by cell-cycle regulatory proteins. Activation of specific
cyclin-dependent kinases (CDKs) by a partner cyclin in each
phase of the cell cycle leads to cell proliferation. Cyclin–CDK
complexes are negatively regulated by the CDK inhibitors
p21, p27, and p57. The inability of podocytes to undergo
proiferation in most adult diseases is most likely the
consequences of a robust expression or even upregulation of
the CDK inhibitors with disease progression.

Podocyte injury, however, may induce a loss of the strict
cell-cycle control leading to podocyte proliferation. In the
cellular lesion of FSGS, damaged podocytes seem to inhibit
p27 and p57 protein expression but activate mitotic cell
cyclins to promote podocyte proliferation (Wang et al. 2004).
Despite prevailing thoughts that podocytes proliferate in
human cellular FSGS (Bariety et al. 1998; Barisoni et al.
1999; Chun et al. 2004; Schwartz et al. 1999), Smeets et al.
(2009) suggested that the lesion mainly originates from
parietal epithelial cells in a murine model of cellular FSGS.

In any case, podocyte proliferation is not regeneration but
rather represents an ominous sign of the disease progression.

Components of the GBM

In the adult glomerulus, the podocyte continues to add and
assemble matrix molecule to the GBM, maintaining a gel-like
hydrated meshwork consisting of collagen IV, laminin,
fibronectin and proteoglycan. Collagen type IV is the main
component of the GBM, which includes six genetically distinct
isoforms namedα1(IV) toα6(IV).α3–α5(IV) chains originate
solely from podocytes in both the developing and mature
glomerulus (Abrahamson et al. 2009). In contrast, the α1/α2
(IV) collagen network seems to originate mainly from
glomerular endothelial cells (Lee et al. 1993) and is localized
predominantly at the endothelial aspect of human GBM
(Zhang and Lee 1997). Laminin is the most ample glycopro-
tein in the GBM. Laminin-11 (α5ß2γ1) continues to be
deposited in the GBM whereas the fetal laminin chains (α1,
α2 and ß1) gradually disappear from the GBM (Miner 2005).

The flexibility and dynamic of mature GBM require a
constant turnover. Thus, podocytes not only produce GBM
components but also secrete matrix-modifying enzymes,
such as matrix metalloproteinase (MMP)-9 (Kang et al.
2010; Ma et al. 2010; McMillan et al. 1996) and MMP-2
(Hayashi et al. 2010; Ma et al. 2010).

Activation of latent TGF-ß

TGF-ß is secreted as latent complexes associated with a
latency-associated peptide (LAP). TGF-ß/LAP complex is
referred to as the small latent complex. Most cells secrete
TGF-ß as part of a large latent complex, in which latent
TGF-ß binding protein (LTBP) is linked to the small latent
complex. The large latent complex is susceptible to
proteolysis, within which LTBP is first cleaved, and then
TGF-ß is released from LAP (Koli et al. 2001, 2008).

Under in vitro conditions, latent TGF-ß is activated by
heating, acid or alkaline treatment, irradiation, reactive
oxygen species (ROS), proteases including plasmin, cathep-
sin, calpain, MMP-2 and MMP-9, some integrins, or
thrombospondin-1 (TSP-1) (for review, see Koli et al. 2001).
Several activation mechanisms, such as proteolysis, TSP-1,
ROS and some integrins, may exist in vivo (for review, see
Lee and Song 2009).

Fibrogenic TGF-ß signaling cascade in podocytes

TGF-ß is known to stimulate the production of type IV
collagen, fibronectin and laminin in podocytes (Nakamura
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et al. 1992), particularly α3(IV) collagen (Iglesias-de la
Cruz et al. 2002). TGF-ß signals through sequential
activation of two cell surface receptor serine-threonine
kinases. Smad2 and Smad3 proteins are activated by TGF-ß
receptor kinases. The phosphorylated Smads form com-
plexes with Smad4, and then translocate to the nucleus,
transducing signals to the target genes (Miyazono et al.
2000). In podocytes, TGF-ß1 phosphorylates Smad2 (Liu et
al. 2005; Schiffer et al. 2004). Expression levels of TGF-
ß1, TGF-ß type II receptor and phosphorylated Smad2/
Smad3 are increased in the podocytes covering the lesions
of FSGS (Kim et al. 2003).

TGF-ß signaling intermediates controlling cell growth

Smad pathway

TGF-ß causes growth arrest in late G1 of the cell cycle
through Smad2 and Smad3. In the nucleus, the Smad3–
Smad4 complex can activate transcription of specific genes,
such as p15 and p21 (Massague et al. 2000). In injured
podocytes, TGF-ß/Smad signaling is activated, which may
increase p15 and p21 expression (Lee and Song 2010).

TGF-ß can also induce its downstream inhibitory
Smad7, which in turn inhibits Smad2/3 phosphorylation
via the negative feedback mechanisms (Massague and
Wotton 2000). TGF-ß1 induces Smad7 synthesis in
cultured podocytes (Schiffer et al. 2002), in which TGF-
ß1 and Smad7 each induce apoptosis (Schiffer et al. 2001).

Ras/mitogen-activated protein kinase (MAPK) pathway

TGF-ß is able to signal via Ras protein, which plays an
essential role in eukaryotic cell growth. Ras is required for
TGF-ß-mediated activation of extracellular signal-regulated
kinase (ERK) (Hartsough et al. 1996). ERK activation
mediates primarily mitogenic and/or anti-apoptotic signal-
ing (Johnson and Lapadat 2002) and attenuates the nuclear
accumulation of the Smads (Massague and Chen 2000).

In podocytes, TGF-ß activates ERK (Liu et al. 2005;
Schiffer et al. 2004) and p38 MAPK (Schiffer et al. 2001,
2004). Activation of p38 MAPK is required for induction
of apoptosis by TGF-ß in podocytes (Schiffer et al. 2001).

Phosphatidyl inositol-3-kinase (PI3K) pathway

TGF-ß also rapidly activates anti-apoptotic mediator PI3K/
AKT in podocytes, the kinetic profiles of which are similar
to ERK (Schiffer et al. 2004). Indeed, PI3K and ERK
signals appear to be synergistically activated to mediate
anti-apoptotic machinery (Davies et al. 2004). In addition,
TGF-ß signaling through PI3K induces the expression of

monocyte chemoattractant protein-1 (MCP-1) in podocytes
(Lee et al. 2009), and MCP-1 is involved in podocyte
proliferation (Burt et al. 2007).

Chronic progressive podocyte diseases with TGF-ß
overexpression

Primary FSGS

FSGS is a clinicopathologic entity characterized by nephrotic
syndrome and progression to end-stage renal disease. Intra-
renal transcription of TGF-ß1 is increased in children with
FSGS compared to those with minimal lesion, suggesting that
TGF-ß1 gene transcription is indicative of progressive renal
damage typical of FSGS (Strehlau et al. 2002). Expression of
TGF-ß1 is increased in patients with primary FSGS,
particularly in podocytes of sclerotic segments (Kim et al.
2003). Volume density of mesangial matrix is significantly
greater in the FSGS patients than in minimal lesion cases. In
patients with FSGS, the percent glomerulosclerosis correlates
directly with mesangial volume per glomerulus (Lee and
Lim 1995).

In rats with subtotal renal ablation, TGF-ß1 is upregu-
lated by podocytes in response to enhanced transcapillary
passage of plasma proteins, which precedes the develop-
ment of glomerulosclerosis (Abbate et al. 2002).

Cellular lesion of FSGS

Up to 46% of patients with primary FSGS show cellular or
collapsing lesion (Chun et al. 2004). The cellular lesion of
FSGS comprises podocyte proliferation overlying the
segmental scar. Collapsing glomerulopathy is characterized
by segmental or global wrinkling of the GBM with
podocyte proliferation, and may be distinguished from
cellular FSGS in view of the different morphologic,
etiologic and prognostic implications (Barisoni et al.
2009). Yet the two terms, cellular and collapsing FSGS,
had often been used interchangeably or synonymously,
because the glomerular pathology of both lesions is
basically identical (Bariety et al. 2005; Chun et al. 2004;
Schwartz et al. 1999). Evidence from renal allograft or
repeat biopsies suggests that cellular or collapsing FSGS
may be the early features of FSGS, which may evolve into
the classic FSGS pattern in the course of disease progres-
sion (Bariety et al. 2001; Chun et al. 2004; Schwartz et al.
1999).

The lesions of FSGS following primary glomerular
diseases may represent the nonspecific chronic scarred
phase of the disease. Indeed, cellular FSGS is present in
IgA nephropathy with TGF-ß overexpression by hyperplas-
tic podocytes (Kim et al. 2002b). In this regard, damaged
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podocytes in various glomerular diseases can proliferate
with expression of TGF-ß in the course of disease
progression and exacerbation, leading to the development
of cellular FSGS and even crescents (Lee and Song 2010).

Membranous nephropathy

In membranous nephropathy, the GBM is thickened due to
the accumulation of GBM material between and around the
subepithelial deposits, forming subepithelial projections or
spikes. Subepithelial immune deposition, particularly com-
plement membrane attack complex (C5b-9), promotes
injury to the glomerular filtration barrier and proteinuria
in passive Heymann nephritis (PHN), an experimental
model of human membranous nephropathy (Couser and
Nangaku 2006). Upregulation of TGF-ß1, α4(IV) and α1
(IV) collagens, and laminin ß2 mRNAs by podocytes is
shown in patients with membranous nephropathy (Kim et
al. 1999). In addition, immunogold densities for polyclonal
type IV collagen, α4(IV) collagen, laminin, and fibronectin
are increased in the spikes (Zhang and Lee 1997).
Expression of TGF-ß2 is also markedly increased in
podocytes in experimental membranous nephropathy
(Shankland et al. 1996).

Lesions of FSGS are observed in 43% of the membra-
nous nephropathty patients, in whom the degree of
mesangial expansion and GBM thickening is significantly
greater than the remaining cases without FSGS (Lee and
Koh 1993). In PHN, mesangial volume is significantly
increased together with GBM thickening (Remuzzi et al.
1999).

Diabetic nephropathy

Thickening of the GBM and expansion of the mesangial
matrix are hallmarks of diabetic nephropathy, which occur
even within a few years after the onset of type 1 diabetes
(Drummond and Mauer 2002). In insulin-dependent diabe-
tes, the collagen α3(IV) through α5(IV) chains, collagen V,
laminin, fibronectin, and serum proteins contribute to the
thickened GBM (Miner 1999).

In human diabetic nodular glomerulosclerosis, podocytes
covering the sclerotic segments show increased expression
of TGF-ß1 mRNA and protein (Wahab et al. 2005).
Increased expression of glomerular TGF-ß1 is observed
mainly in podocytes of diabetic animals (Baba et al. 2005;
Okada et al. 2006).

Alport renal disease

Alport syndrome is primary genetic disease of the basement
membrane. In the kidney, this disorder is characterized by an
absence of collagen α3α4α5(IV) in the GBM, progressive

thickening and multilamination of the GBM, proteinuria, and
renal failure. Collagen α1/α2(IV), however, is retained
throughout the GBM, together with the deposition of the fetal
laminin chains α1, α2 and ß1 (Abrahamson et al. 2003;
Kashtan et al. 2001). In podocytes of α3(IV) collagen-
knockout mice with Alport renal disease, mRNA expression
of TGF-ß1, α1(IV) and α2(IV) collagen, fibronectin, and
laminin ß1 chain is increased (Sayers et al. 1999). With
disease progression, mesangial matrix and cells are
increased, followed by the development of glomeruloscle-
rosis (Gregory et al. 1996; Kim et al. 1995).

Denys-Drash syndrome

Wilms’ tumor suppressor gene, WT1, is essential for normal
podocyte function. Mutations of the WT1 induce Denys-
Drash syndrome (DDS) characterized by early onset nephrotic
syndrome and diffuse mesangial matrix expansion. In DDS
mice, the development of glomerulosclerosis is preceded by
de novo TGF-ß1 expression in podocytes, while TGF-ß1
expression is absent in the mesangium (Patek et al. 2003). A
gene mutation in DDS podocytes may not be sufficient to
cause TGF-ß overexpression (Jin et al. 1999), but in the
presence of a second injury, such as intraglomerular
hypertension, TGF-ß seems to be overexpressed by podo-
cytes (Patek et al. 2003). Recently, Sakairi et al. (2011)
reported that TGF-ß1 downregulates WT1 expression in
podocytes.

Altogether, TGF-ß is overexpressed by podocytes in
progressive podocyte diseases, in which thickening of the
GBM and expansion of the mesangial matrix are frequently
present with the eventual development of glomerulosclerosis
(Table 1).

Induction of TGF-ß by glomerular hypertension
or biomechanical strain in the diseased glomeruli

Glomerular hemodynamic adaptive changes, including hyper-
filtration and hyperperfusion, seem to promote progressive
glomerulosclerosis in patients with reduced nephron mass and
diabetes (Ziyadeh and Wolf 2008). The less cross-linked and
possibly more elastic physical properties of the GBM in some
diseased glomeruli may subject the podocytes to elevated
biomechanical strain even under normal glomerular blood
pressure. As the disease progresses and nephron mass is lost,
glomerular hypertension develops, further exacerbating the
biomechanical strain and the effector functions influenced by
it (Meehan et al. 2009). In the remnant kidney model of
glomerular capillary hypertension, TGF-ß1 (Abbate et al.
2002) and Ang II type I receptor (Durvasula et al. 2004) are
upregulated by podocytes. In cultured podocytes, albumin
load or mechanical strain increases the levels of TGF-ß1 and
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Ang II, as well as TGF-ß receptors (Abbate et al. 2002;
Dessapt et al. 2009; Durvasula et al. 2004).

Together, an increase in glomerular capillary pressure
may stimulate Ang II and TGF-ß1 expression in podocytes
through mechanical force injury in progressive podocyte
diseases (Fig. 1).

Effects of Ang II on TGF-ß signaling in podocytes

Ang II is a major active product of the renin angiotensin
system (RAS), and may enhance the generation of ROS
through the activation of NADPH oxidases in podocytes.
Unlike mesangial cells, podocytes do not overexpress TGF-
ß1 when exposed to Ang II (Chen et al. 2005). Rather, Ang
II-induced oxidative stress may activate latent TGF-ß and,
subsequently, the TGF-ß signaling system in podocytes
(Lee 2011) (Fig. 1).

Studies in animal models of chronic nephropathies have
documented that RAS inhibitors significantly blunt the

increased renal TGF-ß production. An angiotensin-
converting enzyme (ACE) inhibitor prevents TGF-ß1 over-
expression in podocytes and glomerulosclerosis in rats with
reduced renal mass (Abbate et al. 2002). It also reduces the
TGF-ß1, connective tissue growth factor (CTGF) and ECM
protein overexpression in kidneys of Alport mice (Gross et
al. 2003, 2004; Gross and Kashtan 2009), and limits
mesangial expansion in PHN (Remuzzi et al. 1999).
Combined anti-TGF-ß and ACE inhibition therapy abro-
gates the glomerulosclerosis of diabetic nephropathy in the
rat (Benigni et al. 2003). In addition, administration of Ang
II type I (AT1) receptor blocker to diabetic rats lowers
glomerular expression of TGF-ß1 and vascular endothelial
growth factor (VEGF) (Vieitez et al. 2008).

GBM thickening in relation to TGF-ß

The GBM is significantly thickened in TGF-ß1 transgenic
mice as compared with wild-type animals (Krag et al. 2007;

Table 1 Possible effects of TGF-ß on glomerular pathology in progressive podocyte diseases

Diseases Pathology References

GBM thickening Glomerulosclerosis

FSGS ND Yes Abbate et al. (2002); Kim et al. (2003)

Membranous nephropathy Yes Yes Kim et al. (1999); Shankland et al. (1996)

Diabetic nephropathy Yes Yes Chen et al. (2003); Wang et al. (2007); Wahab et al. (2005)

Alport syndrome Yes Yes Sayers et al. (1999); Cosgrove et al. (2000)

Denys-Drash syndrome ND Yes Patek et al. (2003)

FSGS Focal segmental glomerulosclerosis, ND not deterimined

Fig. 1 Effects of biomechanical
strain on the induction of trans-
forming growth factor-ß (TGF-ß)
and angiotensin II (Ang II) in
podocytes in patients with pro-
gressive podocyte disease. Ang II
does not directly stimulate TGF-
ß production in podocytes, yet
activates NADPH oxidase to
produce reactive oxygen species,
leading to the activation of
latent TGF-ß
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Wogensen et al. 1999). Aberrant deposition of fetal laminin
α1, α2 and ß1 chains and α1/α2(IV) collagen appears in
the GBM of transgenic mice (Chai et al. 2003). In cases
with membranous nephropathy and Alport syndrome, there
is aberrant expression of α1/α2(IV) collagen, and laminin
α1, α2 and ß1 in the thickened GBM (Abrahamson et al.
2003; Cosgrove et al. 2000; Fischer et al. 2000; Kashtan et
al. 2001; Zhang and Lee 1997). TGF-ß1 increased α3(IV)
collagen expression in cultured mouse podocytes, although
it decreased the levels of α1(IV) and α5(IV) mRNA and/or
protein (Iglesias-de la Cruz et al. 2002). Collectively, GBM
thickening by abnormal deposition of ECM in podocyto-
pathies could be due to the enhanced TGF-ß1 levels in
podocytes (Fig. 2).

A further potential mechanism for GBM destruction and
thickening involves the action of proteolytic enzymes, such as
MMPs. MMP-9 expression is increased in podocytes in
experimental membranous nephropathy (McMillan et al.
1996) and in human and experimental diabetic nephropathy
(Li et al. 2008). Levels of MMPs are increased in the
glomeruli of Alport mice and kidneys of patients with Alport
syndrome (Zeisberg et al. 2006). The aberrant collagen α1/

α2(IV) network deposited in the GBM contains fewer
interchain crosslinks than wild-type GBM, and is more
susceptible to proteolytic degradation by endogenously
expressed MMPs (Kalluri et al. 1997; Zeisberg et al. 2006).
Blocking the activity of specific MMPs has been shown to
ameliorate the progression of glomerular pathology (Zeisberg
et al. 2006). In cultured podocytes, TGF-ß1 stimulates the
production of MMP-9 (Li et al. 2008; Liu et al. 2005), and
many of the MMPs (MMP-3, -9, -10, and -14) are induced
by mechanical strain (Meehan et al. 2009). Together,
increased TGF-ß1 levels in podocytes may induce MMPs,
resulting in proteolytic damage and thickening of the GBM
in progressive podocyte disease.

Integrins are important cellular receptors for ECM. Type
IV collagen receptors, integrin α2, are able to downregulate
de novo collagen synthesis as long as the GBM is intact.
Loss of integrin α2 in the nonlethal phenotype of the α2-
deficient mice results in localized matrix overproduction in
the GBM and increased TGF-ß and CTGF expression in the
kidney (Girgert et al. 2010). Thus, altered cell-matrix
interaction via α2 integrin may contribute to GBM
thickening in association with TGF-ß.

Fig. 2 Hypothetical pathway for transforming growth factor-ß (TGF-
ß)-induced glomerular basement membrane (GBM) thickening,
mesangial matrix expansion, podocyte loss, podocyte proliferation,
and epithelial-mesenchymal transition (EMT) by podocytes in pro-

gressive podocyte disease. CTGF connective tissue growth factor,
ERK extracellular signal-regulated kinase, ILK integrin-linked kinase,
PI3K phosphatidyl inositol-3-kinase, VEGF vascular endothelial
growth factor
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Podocyte loss in relation to TGF-ß: the link
to glomerulosclerosis

In podocyte diseases, enhanced TGF-ß activity in podocytes
may lead to podocyte apoptosis and/or detachment with
podocytopenia (Dessapt et al. 2009; Lee and Song 2010;
Schiffer et al. 2001; Wolf et al. 2005) (Fig. 2). C5b-9 can
induce apoptosis of podocytes in membranous nephropathy
(Mundel and Shankland 2002), a process that may involve
TGF-ß. Apoptosis is also observed in the crescentic lesion of
DDS kidneys (Yang et al. 2004). In TGF-ß1 transgenic mice,
podocytes undergo apoptosis at an early stage of glomerulo-
sclerosis with overexpression of Smad7 (Schiffer et al.
2001). In CD2-associated protein-deficient mice, TGF-ß-
induced podocyte apoptosis is an early pathomechanism
developing FSGS (Schiffer et al. 2004).

Another mechanism of podocyte loss in podocyte
diseases may relate to the detachment of podocytes from
the GBM. α3ß1 integrin, an adhesion receptor for laminins
and type IV collagen isoforms, is expressed primarily on
podocytes (Kreidberg and Symons 2000). Downregulation
of α3ß1 integrin is observed in the podocytes of patients
with primary FSGS (Chen et al. 2006) and diabetes (Chen
et al. 2000) associated with podocytopenia. TGF-ß1
suppresses the glomerular expression of α3 integrin in
nephrotic rats (Kagami et al. 1993). In cultured podocytes,
TGF-ß1 and mechanical stretch significantly reduce the
α3ß1 integrin expression linked to decreased podocyte
adhesion and increased apoptosis (Dessapt et al. 2009).
Thus, TGF-ß1 may reduce podocyte adhesion to the GBM
via downregulation of α3ß1 integrin, resulting in podocyte
depletion in podocyte diseases (Fig. 2).

Because of their limited proliferative capacity, podocyte
detachment from the GBM will lead to cell depletion or
drop out into urinary space. The denuded GBM may adhere
to the Bowman’s capsule with synechiae formation,
initiating the development of FSGS (Kriz and Le Hir
2005). In a rat model of progressive glomerular injury,
progressive reduction in the number of podocytes preceded
the development of glomerulosclerosis (Macconi et al.
2006).

In summary, TGF-ß may induce podocyte apoptosis and
detachment from the GBM in podocyte diseases leading to
the development of glomerulosclerosis.

Epithelial-mesenchymal transition (EMT) of podocytes
by TGF-ß

TGF-ß1 suppresses the slit-diaphragm-associated protein
P-cadherin, zonula occludens-1, and nephrin in cultured
podocytes mediated by Snail, a key transcription factor
mediating EMT, leading to podocyte dedifferentiation (Li et

al. 2008). In patients with FSGS and membranous nephrop-
athy, nephrin mRNA expression by podocytes is significantly
decreased as compared with minimal lesion cases (Kim et al.
2002a). EMT may be a potential pathway leading to
podocyte dysfunction, proteinuria and glomerulosclerosis.
TGF-ß1 induces integrin-linked kinase (ILK) in podocytes,
and inhibition of ILK activity ameliorates podocyte Snail
induction and EMT (Kang et al. 2010). Expression of ILK is
also increased in cellular crescents of experimental glomer-
ulonephritis (GN) (Shimizu et al. 2006), suggesting that
TGF-ß1-induced ILK may lead to EMT of podocytes,
contributing to the formation of cellular crescents. Together,
more severe and/or longer podocyte injury induced by TGF-
ß may lead to EMT via upregulation of ILK in progressive
podocyte disease (Kang et al. 2010; Liu 2010) (Fig. 2).

Mesangial matrix expansion in podocyte diseases via
activation of TGF-ß signaling

In patients with FSGS, membranous nephropathy and DDS,
mesangial matrix expansion is frequently present in
association with the development of glomerulosclerosis
(Lee and Koh 1993; Lee and Lim 1995; Patek et al. 2003).
Podocyte-specific injury in transgenic mice induced mesan-
gial expansion and glomerulosclerosis (Matsusaka et al.
2005).

In Smad3-knockout diabetic mice, mesangial matrix
expansion is prevented (Wang et al. 2007), as shown in
the anti-TGF-ß-treated or TGF-ß type II receptor-deficient
diabetic mice (Chen et al. 2003; Kim et al. 2004; Ziyadeh et
al. 2000). Indeed, activation of the TGF-ß/Smad signaling
in podocytes from the diseased glomeruli appears to lead to
overproduction of ECM in the mesangial areas resulting in
the formation of glomerulosclerosis (Lee and Song 2009;
Kim et al. 2003; Patek et al. 2003) (Table 1).

Paracrine effector mechanism of CTGF and VEGF
for TGF-ß to act on mesangial cells in podocytopathies

The podocyte TGF-ß, the active form of which has a very
short half-life in plasma (Coffey et al. 1987), is unlikely to
traverse the GBM to promote sclerosis in the adjacent
mesangium. In this regard, some TGF-ß-induced humoral
factors produced by podocytes seem to have fibrogenic
effects on mesangial cells (Lee and Song 2009).

CTGF is a major autocrine growth factor induced by
TGF-ß. TGF-ß1 induces CTGF mRNA and protein expres-
sion in podocytes (Ito et al. 2001). Expression of CTGF
mRNA and/or protein in the mesangium and podocytes is
upregulated in human chronic glomerular disease (Ito et al.
1998; Wahab et al. 2005). CTGF is increased particularly in
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the glomeruli of patients with mesangial matrix expansion
(Suzuki et al. 2003). Furthermore, induction of diabetes in
podocyte-specific CTGF-transgenic mice results in an
increased mesangial CTGF expression with more severe
mesangial expansion than diabetic wild-type mice (Yokoi et
al. 2008). Treatment with the CTGF antisense oligonucleo-
tides in diabetic mice significantly reduced mesangial
matrix expansion as compared with those receiving
mismatch oligonucleotides (Guha et al. 2007).

VEGF is a potent angiogenic molecule and is detected
predominantly in podocytes (Bailey et al. 1999; Wendt et al.
2003). Yet glomeruli are not sites of angiogenesis, possibly
because podocytes mainly express VEGF165b protein, which
inhibits VEGF165-mediated angiogenesis (Cui et al. 2004).
TGF-ß1 stimulates VEGF expression in podocytes (Iglesias-
de la Cruz et al. 2002). VEGF may play an important role in
TGF-ß1-induced glomerular fibrosis (Chen et al. 2004,
2005). Indeed, anti-VEGF attenuates mesangial matrix
expansion in diabetic mice (Flyvbjerg et al. 2002).

Receptors for VEGF-A include VEGFR-1, VEGFR-2
and neuropilin-1. The dominant production of VEGF-A by
podocytes and the localization of VEGFR-2 on glomerular
endothelial cells suggest that VEGF-A moves across the
GBM, opposing the ultrafiltration gradient to move water
and solutes from the capillaries into the Bowman’s space
(Satchell et al. 2006). In fact, about one-third of VEGF
secreted from podocytes would reach the capillary lumen
and accumulate there, supporting the view that VEGF can
move against the flow of glomerular filtration (Katavetin
and Katavetin 2008). It is not clear whether this is also the
case for CTGF, yet the experiments performed by Yokoi et
al. (2008) support that possibility.

To sum up, TGF-ß-induced CTGF and VEGF secretion
by podocytes may act as a paracrine regulatory mechanism,
necessary for the mesangial matrix accumulation (Fig. 2).

Role of TGF-ß/Ras/ERK signaling in podocyte
proliferation in proliferative podocytopathies

In cellular crescents, TGF-ß overexpression (Shimizu et al.
2006) and ERK activation (Masaki et al. 2004) are
observed. TGF-ß signaling appears to play a central role
in the development of crescentic GN by inducing the
activation of ERK (Song et al. 2007).

ERK activation is shown in hyperplastic podocytes from
the human immunodeficiency virus (HIV)-associated ne-
phropathy and/or idiopathic collapsing FSGS patients (He et
al. 2004). Cyclin D1 is a key down-stream target of ERKs
(Ammit and Panettieri 2001). In podocytes of HIV-
transgenic mice, cyclin D1 protein is increased and the
increase coincides with entry into the cell cycle (Pettermann
et al. 2004).

Stabilization of hypoxia-inducible factor (HIF) in mice
by selective deletion of the von Hippel-Lindau gene from
podocytes leads to the development of crescentic GN
with expression of HIF target gene Cxcr4 in podocytes
(Ding et al. 2006). Cxcr4 is both required and sufficient
for proliferation of podocytes in vivo. Overexpression of
HIF-2 is also shown in hyperplastic podocytes from the
patients with HIV-associated nephropathy and HIV-1-
transgenic mice (Korgaonkar et al. 2008). Activation of
HIF-1 occurs via PI3K and MAPK signaling pathways
(Hellwig-Bürgel et al. 2005). Together, Ras/ERK and
PI3K activation in podocytes could stimulate cyclin D1
expression resulting in podocyte proliferation in prolifer-
ative podocytopathies.

In cultured podocytes, TGF-ß1 does not stimulate cell
proliferation (Xavier et al. 2009). Yet it may induce the
proliferation of injured podocytes possibly via TGF-ß-
induced EMT, since TGF-ß stimulates proliferation of
mesenchymal-type cells (Fukuda et al. 2009). In this regard,
TGF-ß1-induced Ras/ERK/PI3K activation may play a role
in podocyte proliferation in proliferative podocytopathies
(Fig. 2).

Conclusions

Biomechanical strain in progressive podocyte diseases may
upregulate Ang II and TGF-ß expression in podocytes.
Oxidative stress induced by Ang II may activate the latent
TGF-ß in podocytes. Enhanced TGF-ß activity by podo-
cytes may induce GBM thickening by overproduction of
ECM proteins and impaired GBM degradation in podocyte
diseases. It may also lead to podocyte apoptosis and
detachment from the GBM together with EMT, initiating
the development of glomerulosclerosis. Furthermore, acti-
vated TGF-ß/Smad signaling by podocytes may induce
CTGF and VEGF overexpression, which may act as a
paracrine effector mechanism on mesangial cells to stimu-
late mesangial matrix synthesis. In proliferative podocyto-
pathies, TGF-ß-induced ERK activation may play a role in
podocyte proliferation, possibly via TGF-ß-induced EMT
of podocytes. Together, this review provides new mecha-
nistic insights into the TGF-ß overexpression by podocytes
in progressive podocyte disease. Better understanding of
the activation of TGF-ß signaling by podocytes and its
downstream effectors may provide novel tools for the
prevention of glomerulosclerosis.
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