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 Introduction 

 Experimental and epidemiologic studies have shown 
that estrogen has neuroprotective effects and that loss of 
estrogen after menopause may contribute to the cognitive 
declines associated with Alzheimer’s disease (AD) in 
women  [1] . The neuroprotective mechanisms of estrogen 
include increases in cholinergic activity  [2–4] , antioxi-
dant activity  [5]  and protection against the neurotoxic 
effects of beta amyloid  [6] . Therefore, factors that influ-
ence estrogen activity may also influence vulnerability to 
AD, including an allelic variation in genes within the es-
trogen biosynthesis and estrogen receptor pathways. 

  Estrogen exerts many of its effects through the activa-
tion of nuclear receptors which are expressed in multiple 
tissues  [7] . In the brain, two estrogen receptors, ER- �  and 
ER- � , encoded by two different genes,  ESR1  and  ESR2 , 
have been identified and have been found in regions af-
fected by AD, including the hippocampus, basal fore-
brain and amygdala  [8, 9] . ER- �  and ER- �  differ in tissue 
distribution  [10] , with ER- �  expression being more pre-
dominant than ER- �  in the cerebral cortex, hippocam-
pus, anterior olfactory nucleus, dorsal raphe, substantia 
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 Abstract 

  Background/Aims:  Genetic variants that affect estrogen ac-

tivity may influence the risk of Alzheimer’s disease (AD). We 

examined the relation of polymorphisms in the gene for the 

estrogen receptor-beta  (ESR2)  to the risk of AD in women 

with Down syndrome.  Methods:  Two hundred and forty-

nine women with Down syndrome,  31–70 years of age and 

nondemented at baseline, were followed at 14- to 18-month 

intervals for 4 years. Women were genotyped for 13 single-

nucleotide polymorphisms (SNPs) in the  ESR2  gene, and their 

association with AD incidence was examined.  Results:  
Among postmenopausal women, we found a 2-fold increase 

in the risk of AD for women carrying 1 or 2 copies of the 

minor allele at 3 SNPs in introns seven (rs17766755) and 

six (rs4365213 and rs12435857) and 1 SNP in intron eight 

(rs4986938) of  ESR2.   Conclusion:  These findings support a 

role for estrogen and its major brain receptors in modulating 

susceptibility to AD in women. 
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nigra, midbrain ventral tegmental area and cerebellum 
 [8, 11, 12] , suggesting that ER- �  may play a role in mem-
ory and the risk for AD  [13] . Both ER- �  and ER- �  appear 
to have a role in the preservation of cholinergic activity 
 [14, 15] , and ER- �  may mediate the effects of estrogen on 
hippocampal synaptic plasticity  [13] . While a number of 
studies have examined the relation of AD to variants in 
 ESR1   [16–22] , or to genes in the estrogen biosynthetic 
pathway  [23–27] , fewer studies have investigated variants 
in the  ESR2  gene and the findings have been less consis-
tent  [28–33] .

   Women with Down syndrome (DS) have an early on-
set of menopause  [34]  and a high risk for AD, with onset 
of dementia 10–20 years earlier than women in the gen-
eral population  [35–37] . Brain levels of beta amyloid pep-
tides are high from an early age  [38] , likely due, at least in 
part, to the triplication and overexpression of the gene for 
amyloid precursor protein located on chromosome 21 
 [39] . Women with DS with earlier onset of menopause 
have an earlier onset of AD than women with later onset 
of menopause  [40] , and postmenopausal women with low 
levels of bioavailable estradiol have both an earlier onset 
and an increased cumulative incidence of AD than post-
menopausal women with high levels of bioavailable estra-
diol  [41] . These findings suggest that reductions in estro-
gen following menopause may contribute to the cascade 
of pathological processes leading to AD in this high-risk 
population. Women with DS carrying the P allele at  Pvu II 
in  ESR1  have a 2- to 3-fold increased risk of AD compared 
with those carrying the p allele  [22] . In this study, we ex-
amined the relationships between SNPs in  ESR2  and the 
risk for AD in a community-based cohort of women with 
DS. 

  Materials and Methods 

 Subjects 
 The initial cohort included a community-based sample of 279 

women with DS. Of these 279 women, 252 (90.3%) agreed to pro-
vide a blood sample and were genotyped for  ESR2 . All individuals 
were 30 years of age or older at study onset and resided in New 
York, New Jersey, Pennsylvania or Connecticut. In all cases a fam-
ily member or correspondent provided informed consent (for 
blood sampling and genotyping included) with participants pro-
viding assent. The participation rate was 74.6%. The distribution 
of the level of intellectual disability and residential placement did 
not differ between participants and those who did not participate. 
Recruitment, informed consent and study procedures were ap-
proved by the Institutional Review Boards of Columbia Univer-
sity Medical Center and the New York State Institute for Basic 
Research in Developmental Disabilities. 

  Clinical Assessment 
 Assessments were repeated at 14- to 18-month intervals over 

five cycles of data collection and included evaluations of cognition 
and functional abilities, behavioral/psychiatric conditions and 
health status. Cognitive function was evaluated with a test battery 
designed for use with individuals with DS varying widely in their 
levels of intellectual functioning, as described previously  [42] . 
Structured interviews were conducted with caregivers to collect 
information on changes in cognition, function, adaptive behavior 
and medical status. The past and current medical records of all 
participants were reviewed. 

  Menopausal Status 
 Menopausal status was ascertained through menstrual charts 

in medical records, by medical record review, interviews with 
caregivers and family members and a survey of primary care phy-
sicians and gynecologists. The medical records included men-
strual charts documenting the date and duration of menses. The 
correlations between age at menopause ascertained from the dif-
ferent sources were substantial, suggesting that ascertainment of 
age at menopause was reliable. The correlation between age at 
menopause ascertained from medical records (including men-
strual charts) and from the physician survey was 0.99, the correla-
tion ascertained from medical records and from informant inter-
views was 0.77 and the correlation ascertained from the physician 
survey and from informant interviews was 0.80. The mean differ-
ence in age at menopause from the different sources ranged from 
0.21 years for the difference ascertained from medical charts and 
the physician survey to 0.38 years for the difference ascertained 
from medical charts and informant interviews. We used a con-
sensus age at menopause, with greater weight given to that ascer-
tained from medical records, followed by that from the physician 
survey, then that from informant interviews. In keeping with con-
vention, we classified age at natural menopause as the age at the 
last menstrual period preceding cessation of menses for 12 
months, in the absence of known causes of amenorrhea (e.g. sur-
gery). The median age at menopause was 46.0 years (range 35–52). 
We were able to ascertain menopausal status for 248 of the 252 
participants with  ESR2  genotypes (99%). The 4 women with un-
known menopausal status were excluded from all analyses. 
Among the 248 participants with known menopausal status, 146 
were postmenopausal, 78 were premenopausal and 21 were peri-
menopausal. Three women had never menstruated and were ex-
cluded, leaving 245 women for analysis. 

  Classification of Dementia 
 The classification of dementia status, dementia subtype and 

age at onset was determined during clinical consensus confer-
ences where information from all available sources was reviewed. 
Classifications were made blind to  ESR2  genotype or information 
on menopausal status or hormone levels. We classified partici-
pants into 2 groups, following the recommendations of the 
AAMR-IASSID Working Group for the Establishment of Criteria 
for the Diagnosis of Dementia in Individuals with Developmental 
Disability  [43] . Participants were classified as nondemented if 
they were without cognitive or functional decline, or if they 
showed some cognitive and/or functional decline that was not of 
significant magnitude to meet dementia criteria (n = 173). Par-
ticipants were classified as demented if they showed a substantial 
and consistent decline over the course of follow-up (of a duration 
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of at least one year) and if they had no other medical or psychiat-
ric conditions that might mimic dementia (n = 72). The age at 
meeting the criteria for dementia was used to estimate the age at 
the onset of dementia. Only participants with probable or possible 
AD were included in the analysis. Of the 146 postmenopausal 
women, 79 were nondemented and 67 had possible or probable 
AD. 

  DNA Isolation and Genotyping 
 Women who provided a blood sample were karyotyped. We 

were able to karyotype all but 12 of the 245 participants in this 
study (95.1%). We found low-level mosaicism (3–15%) in 6 women 
(2.6%). Their ages were 51, 51, 56, 58, 61 and 68 years. One 43-year-
old woman had a high level of mosaicism and mosaic DS was 
noted in her medical chart. Genomic DNA was extracted from 
peripheral blood leukocytes, using the FlexiGene DNA kit (Qia-
gen). Isolation of DNA and genotyping were performed blind to 
the dementia status of the participant. SNPs reported to be associ-
ated with estrogen-related disorders (breast cancer, osteoporosis) 
and prior studies of AD were selected. Additional SNPs were se-
lected to provide coverage of the gene. We analyzed 13 SNPs in 
 ESR2 , 12 of which are within introns of the gene, and the remain-
ing 1 in exon nine (see table 2). SNPs were genotyped using Taq-
Man �  PCR assays (Applied Biosystems) with PCR cycling condi-
tions recommended by the manufacturer, and by PreventionGe-
netics using proprietary array tape technology. Accuracy of the 
genotyping (  1  97%) was verified by including duplicate DNA sam-
ples, by comparing the TaqMan and array tape data with the re-
sults of restriction digestion polymorphisms/restriction fragment 
length polymorphisms (RFLPs) for several of the SNPs, and by 
testing for the Hardy-Weinberg equilibrium.

  Apolipoprotein E Genotypes 
 Apolipoprotein E  (APOE)  genotyping was carried out by PCR/

RFLP analysis using  Hha I ( Cfo I) digestion of an  APOE  genomic 
PCR product spanning the polymorphic (cys/arg) sites at codons 
112 and 158, followed by acrylamide gel electrophoresis to docu-
ment the restriction fragment sizes  [44] . Participants were classi-
fied according to the presence or absence of at least one  APOE   � 4 
allele. 

  Potential Confounders 
 Potential confounders included the presence of an  APOE   � 4 

allele, level of intellectual disability, body mass index (BMI) and 
ethnicity. Level of intellectual disability was classified as mild-to-
moderate (IQ 35–70) or severe-to-profound (IQ  ! 34), based on IQ 
scores obtained before the onset of AD. BMI was measured at each 
evaluation; its baseline measure was used in the analysis and was 
included as a continuous variable. Ethnicity was categorized as 
white or nonwhite. 

  Statistical Analyses 
 Prior to association analysis, we tested all SNPs for the Hardy-

Weinberg equilibrium using the Haploview program  [45]  and all 
were found to be in Hardy-Weinberg equilibrium. SNPs were an-
alyzed using a dominant model, in which participants homozy-
gous for the common allele were used as the reference group. In 
preliminary analyses, the  �  2  test (or the Fisher exact test when 
any cell had  ! 5 subjects) was employed to assess the association 
between AD and SNP genotypes as well as other possible risk fac-

tors for AD including ethnicity, level of intellectual disability and 
the presence of an  APOE   � 4 allele. Analysis of variance was used 
to examine BMI, age and AD status. We used a Cox proportion-
al hazards model to assess the relationship between  ESR2  geno-
types and age at the onset of AD, adjusting for ethnicity, BMI, 
level of intellectual disability and the presence of an  APOE   � 4 al-
lele. The time to event variable was the age at onset for partici-
pants who developed AD and the age at the last assessment for 
participants who remained nondemented throughout the follow-
up period. Because a set of 3 contiguous SNPs that span 7.8 kb – 
rs17766755, rs4365213 and rs12435857 – were significantly asso-
ciated with AD in postmenopausal women, we performed a hap-
lotype anal ysis to identify haplotype(s) that may harbor a 
susceptibility variant(s) as implemented in the PLINK program 
 [46] . For nearly all individuals, we were able to identify the most 
likely haplotypes from the genotype data with a high degree of 
certainty (i.e. the posterior probability approaching 1.0 for most 
cases with the rest exceeding probability  1 0.7). Subsequently, we 
used the estimated haplotypes as a ‘super-locus’ (analogous to a 
microsatellite marker) to perform a Cox proportional hazards 
model. 

  Results 

 Demographic Characteristics 
 The mean age of participants at baseline was 48.9 years 

(range 31.4–70.1 years) and 88% of the cohort was white. 
The mean length of follow-up was 4.2 years.  Table 1  pre-
sents the demographic characteristics of the participants 
according to AD status. For the total group at baseline, 
participants with AD were significantly older than non-
demented participants (53.9 vs. 46.8 years) and were more 
likely to have a severe or profound level of intellectual dis-
ability (52.8 vs. 35.3%), but did not differ in the distribu-
tion of ethnicity, the frequency of the  APOE     � 4 allele or 
mean level of BMI. The mean age at onset of AD was 54.7 
 8  5.1 years. Among postmenopausal women, partici-
pants with AD were significantly older than women who 
remained nondemented throughout the follow-up period 
(54.3 vs. 51.7 years), but did not differ from nondemented 
women in the distribution of level of intellectual disabil-
ity, ethnicity, the frequency of the  APOE     � 4 allele or mean 
BMI.

  Analysis of SNPS in ESR2 
  Table 2  shows the locations and minor allele frequen-

cies of  ESR2  SNPs for Hapmap whites at the NCBI SNP 
website (http://www.ncbi.nlm.nih.gov/projects/SNP) 
and for our cohort of women with DS. Allele frequencies 
were similar in women with DS to those observed in 
women without DS in the general population.  Table  3  
presents the distributions of  ESR2  genotypes and the as-
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sociation between  ESR2  SNPs and the hazard ratio (HR) 
for AD among the total group and among postmeno-
pausal women only. In the total group, women who car-
ried 1 or 2 copies of the A allele at rs17766755 were sig-
nificantly more likely to develop AD, after adjusting for 
age, ethnicity, level of intellectual disability, BMI and the 
presence of an  APOE   � 4 allele (HR = 1.8, 95% CI 1.0–3.2) 
( table 3 ). 

  Because there were only 5 cases of AD among pre-
menopausal or perimenopausal women, we repeated the 

analyses, restricting the sample to postmenopausal wom-
en. Among postmenopausal women, those who carried 
at least 1 copy of the T allele at rs4986938 were twice as 
likely to develop AD as those with the CC genotype. 
Three contiguous SNPs located approximately 16kb away 
from rs4986938 were significantly associated with AD. 
Specifically, carriers of the A allele at rs17766755, the G 
allele at rs4365213 and the A allele at rs12435857 had a 
2.0-fold increase in the hazard rate compared with wom-
en carrying no copies of these alleles (HR for rs4986938 

Table 1.  Demographic characteristics

Characteristic All women P ostmenopausal women

nondemented AD nondemented AD

Number 173 72 79 67
Age at baseline (mean 8 SD)** 46.886.7 53.987.0 51.786.0 54.387.1
Level of intellectual disability, n (%)**

mild/moderate
severe/profound 

112 (63.6)
61 (35.3)

34 (46.6)
38 (52.8)

37 (46.8)
42 (53.2)

32 (47.8)
35 (52.2)

Ethnicity, n (%)
Nonhispanic white
Nonwhite

149 (86.1)
24 (13.9)

66 (91.7)
6 (8.3)

68 (86.1)
11 (13.9)

62 (91.5)
5 (7.5)

BMI (mean 8 SD) 29.887.0 28.286.1 28.286.0 27.986.3
APOE �4 allele, n (%) 38 (22.5) 19 (26.4) 16 (20.3) 17 (25.4)

**  p < 0.05. 

Table 2. ESR2 SNP chromosome locationa

SNPs Chromosome
position 

Distance from
previous SNP

MA MAF
(NCBI)

MAF 
(DS)

SNP location relative to ESR2 
(isoform 2 transcript)

rs1255998 63763624 C 0.086 0.113 exon 9
rs1256065 63768685 5,061 C 0.429 0.394 intron 8
rs4986938 63769569 884 T 0.381 0.442 intron 8
rs867443 63770795 1,226 A 0.308 0.305 intron 8
rs1256061 63773346 2,551 T 0.475 0.493 intron 7

rs1256059 63780170 6,824 A 0.416 0.382 intron 7
rs17766755 63785526 5,356 A 0.332 0.426 intron 7
rs4365213 63790017 4,491 G 0.428 0.496 intron 6
rs12435857 63793278 3,261 A 0.438 0.496 intron 6

rs1256043 63804035 10,757 A 0.321 0.380 intron 4
rs7154455 63806413 2,378 C 0.314 0.37 intron 3
rs1256039 63808732 2,319 G 0.400 0.388 intron 3
rs1256030 63816923 8,191 A 0.417 0.412 intron 2

MA = Minor allele; MAF = minor allele frequency. 
a Physical position on chromosome: Hg18, March 2006 assembly, dbSNP build 130.
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(CT or TT) = 1.9, 95% CI 1.01–3.4; HR for rs17766755 (AG 
or AA) = 2.3, 95% CI 1.2–4.3; HR for rs4365213 (AG or 
GG) = 1.9, 95% CI 1.03–3.8; HR for rs12435857 (AG or 
AA) = 2.1, 95% CI 1.1–4.2) ( table 3 ). These results were 
unchanged when the analysis was repeated among those 
without an  APOE   � 4 allele (data not shown). 

  Haplotype Analysis of the Three SNPs in a Cox 
Proportional Hazards Model 
 We first computed the most likely haplotypes for each 

individual, and then used the haplotypes as a ‘super-lo-
cus’ to estimate HRs, controlling for potential confound-
ers. Our haplotype analysis using rs17766755-rs4365213-

Table 3.  AD risk by ESR2 genotype in women with DS*

ESR2 Genotype A ll women Postmenopausal women

n AD,  n (%) HR* (95% CI) n AD, n (%) HR* (95% CI)

rs1255998
CG/CC
GG

38
177

13 (27.1)
55 (31.1)

1.1 (0.6–2.1)
1.0 (reference)

30
114

12 (40.0)
55 (48.2)

0.98 (0.5–1.9)
1.0 (reference)

rs1256065
AC/CC
A A

163
78

46 (28.2)
22 (28.2)

0.9 (0.5–1.5)
1.0 (reference)

91
48

41 (45.1)
21 (43.8)

0.8 (0.5–1.4)
1.0 (reference)

rs4986938*
CT/TT 
CC

160
70

50 (31.3)
18 (25.7)

1.6 (0.9–2.8)
1.0 (reference)

101
45

49 (48.5)
18 (40.0)

1.9 (1.01–3.4)
1.0 (reference)

rs867443
AG/AA
GG

115
126

35 (30.4)
37 (29.4)

1.3 (0.8–2.2)
1.0 (reference)

68
72

34 (50.0)
32 (44.4)

1.5 (0.9–2.5)
1.0 (reference)

rs1256061
GT/TT
G

172
58

55 (32.0)
13 (22.4)

1.5 (0.8–2.8)
1.0 (reference)

113
33

55 (48.7)
12 (36.4)

1.8 (0.9–3.6)
1.0 (reference)

rs1256059
AG/AA
GG

153
75

44 (28.8)
24 (32.9)

0.9 (0.5–1.5)
1.0 (reference)

94
51

44 (46.8)
23 (45.1)

0.9 (0.5–1.5)
1.0 (reference)

rs17766755*
AG/AA
GG

150
74

50 (33.3)
15 (20.3)

1.8 (1.0–3.2)
1.0 (reference)

95
44

49 (51.6)
14 (31.8)

2.3 (1.2–4.3)
1.0 (reference)

rs4365213*
AG/GG
AA

180
66

55 (30.6)
17 (25.8)

1.4 (0.8–2.6)
1.0 (reference)

107
35

53 (49.5)
13 (37.1)

1.9 (1.01–3.8)
1.0 (reference)

rs12435857*
AG/AA
GG

166
63

54 (32.5)
13 (20.6)

1.7 (0.9–3.1)
1.0 (reference)

110
36

54 (49.1)
12 (34.4)

2.1 (1.1–4.2)
1.0 (reference)

rs1256043
AG/AA
GG

152
77

43 (28.3)
25 (32.5)

0.9 (0.5–1.4)
1.0 (reference)

92
53

43 (46.7)
24 (45.3)

0.8 (0.5–1.4)
1.0 (reference)

rs7154455
GC/CC
GG

146
103

42 (28.8)
31 (30.1)

1.4 (0.9–2.3)
1.0 (reference)

82
63

39 (47.6)
28 (44.4)

1.5 (0.9–2.4)
1.0 (reference)

rs1256039
CG/GG
CC

164
81

47 (28.7)
25 (30.9)

0.8 (0.5–1.4)
1.0 (reference)

93
52

42 (45.2)
24 (46.2)

0.8 (0.5–1.3)
1.0 (reference)

rs1256030
AG/AA
GG

178
70

51 (28.7)
22 (31.4)

0.9 (0.501.5)
1.0 (reference)

98
46

46 (46.9)
21 (45.7)

0.9 (0.5–1.6)
1.0 (reference)

Not all markers were available for every participant. We used a Cox proportional hazards model, adjusted 
for age, ethnicity, the level of intellectual disability, baseline BMI and the presence of the  APOE  �4 allele.

* p < 0 .05
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rs12435857 revealed that the carriers of haplotype AGA 
had an earlier onset and were twice as likely as noncarri-
ers to develop AD after adjusting for the presence of an 
 APOE   � 4 allele level of intellectual disability, ethnicity 
and BMI (HR = 2.15, 95% CI 1.13–4.11) ( fig. 1 ).

  Discussion 

 Four SNPs in  ESR2  were associated with an increased 
risk of AD, independent of  APOE  genotype. Among post-
menopausal women, those who carried at least 1 copy of 
the T allele at rs4986938 were twice as likely to develop 
AD than those who carried the CC genotype. In addition, 
approximately 16kb away from rs4986938, a set of 3 con-
tiguous SNPs was significantly associated with AD; these 
3 SNPs were located within one haplotype block spanning 
approximately 7.8 kb ( fig. 2 ). Women with DS who carried 
the A allele at rs17766755, the G allele at rs4365213 or the 
A allele at rs12435857 had a 2-fold increased risk of AD, 
compared with women without these risk alleles. A hap-
lotype-based Cox proportional hazards model continued 
to support that AGA carriers had a 2-fold risk of develop-
ing AD after adjusting for covariates. 
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  The association of these SNPs with an increased risk 
of AD was seen only among postmenopausal women. 
Among premenopausal or perimenopausal women, there 
were 5 who developed AD, 4 who were perimenopausal 
at baseline and 1 who was still menstruating at baseline. 
The mean age of the women who were premenopausal or 
perimenopausal was 42.9 ( 8  4.0) years; many of these 
women carrying high-risk alleles may have been too 
young to develop AD, attenuating the estimate of risk in 
the total group. 

  Polymorphisms or haplotypes in  ESR2  have been as-
sociated with an increased risk for a number of estrogen-
related disorders, including osteoporosis  [47–51] , breast 
cancer, ovarian cancer  [52–60]  and polycystic ovarian 
disease  [61] . ER- �  is found in high concentrations in the 
hippocampus  [51] , and its activation has been linked to 
synaptic plasticity and hippocampal-dependent cogni-
tion  [13, 62] . Ovariectomized female Esr2 –/–  knockout 
mice perform worse than wild-type mice in a spatial 
learning task and fail to show improvements in learning 
and memory when treated with estradiol  [13, 62] , sug-
gesting that the effects of estrogen on hippocampal plas-
ticity and memory may be mediated through ER- �   [13] . 
ER- �  can couple to rapid signaling events and is required 
for estrogen-mediated neuroprotection  [63] . Thus, vari-
ants in  ESR2  may influence cognition via a number of 
different pathways, including modification of hormone 
levels, changes in gene activity or changes in gene expres-
sion. However, specific pathways through which SNP ac-
tivity modifies receptor function have not yet been iden-
tified.

  Previous studies of the relationships of polymor-
phisms in  ESR2  to the risk of AD have found a number of 
different SNPs to be associated with both increased and 
decreased risk. In 2 studies, SNPs in  ESR2 ( rs1256065, 
rs1271573 and rs1256043) were associated with an in-
creased risk for cognitive impairment or AD in women 
but not in men  [29, 64] , or were associated with an in-
creased risk in men but not in women (rs1255998)  [64] . 
Another study found a cystosine-adenine repeat in  ESR2  

that was more strongly protective in men than in women 
 [28] , and the Health ABC study found 1 SNP on  ESR2  
(rs1256030) that was associated with the development of 
cognitive impairment among both men and women  [64] . 
A diplotype including rs4986938 in the 3 �  UTR region of 
 ESR2  has been associated with the risk for AD in both 
men and women  [31] , and rs4986938 has been associated 
with vascular dementia  [32] . Our finding of a 2-fold in-
crease in the risk of developing AD among women carry-
ing rs4986938 is consistent with prior studies  [30, 31] , but 
we did not see strong associations with rs1256065 or 
rs1256043, as seen previously  [29, 33] . We have identified 
3 new SNPS of  ESR2 , rs17766755, rs4365213 and 
rs12435857, in introns seven (rs17766755) and six 
(rs4365213 and rs12435857). These SNPs are in high link-
age disequilibrium and are associated with a 2-fold in-
creased risk of AD. 

  Our study points to the role of genetic variants that 
influence estrogen receptor activity in modifying the risk 
for AD. Our results support and extend findings from 
prior studies suggesting that variants in  ESR2  modify the 
risk for AD, both in the general population and in this 
high-risk group of women with DS. With the exception 
of rs1255998, all SNPs examined were intronic: rs1255998 
is located in exon nine, but does not involve a coding 
change. The 12 additional SNPs were tested in noncoding 
(intron) regions and therefore they may not be the critical 
location of the pathological variants, but rather serve as 
markers for the critical region. Analysis of additional 
polymorphisms influencing estrogen biosynthetic path-
ways and estrogen receptor activity with additional and 
denser SNP coverage and correlative studies in brain cells 
will be useful to determine the contribution of estrogen 
variants to cognitive aging and a risk for AD. 
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