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Abstract
Background—Recently, matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) technology has been applied to the exploration of biomarkers for
early cancer diagnosis, but more effort is required to identify a single sensitive and specific
biomarker. For early diagnosis, a proteomic profile is the gold standard, but inconvenient for
clinical use since the profile peaks are quantitative. It would therefore be helpful to find a
minimized profile, comprising fewer peaks than the original using an existing algorithm and
compare it with other traditional statistical methods.

Methods—In the present study, principal component analysis (PCA) in the ClinProt-Tools of
MALDI-TOF MS was used to establish a mini-optimized proteomic profile from gastric cancer
patients and healthy controls, and the result was compared with t-test and Flexanalysis software.

Results—Eight peaks were selected as the mini-optimized proteomic profile to help differentiate
between gastric cancer patients and healthy controls. The peaks at m/z 4212 were regarded as the
most important peak by the PCA algorithm. The peaks at m/z 1866 and 2863 were identified as
deriving from complement component C3 and apolipoprotein A1, respectively.

Conclusions—PCA enabled us to identify a mini-optimized profile consisting of significantly
differentiating peaks and offered the clue for further research.
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1. Introduction
Recently, MALDI-TOF MS technology has mostly been applied to the search for
biomarkers [1–3] for early cancer diagnosis[4,5]. The advantages of this technology include
its low-cost, accurate mass/charge measurement, larger affinity surface, and good
reproducibility[6–9]. To date, however, this technology has revealed no biomarker for
clinical use that has been validated in patients on a large scale[10,11]. More effort is
therefore needed to identify a single sensitive and specific biomarker[12–14]. For early
diagnosis[15,16], a proteomic profile consisting of many differentiated peaks remains the
gold standard, but it is inconvenient for clinical use because the profile peaks are
quantitative and too many are unidentified[17,18]. Although more and more peaks have
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been revealed, it is not clear which are the most meaningful peak according to the traditional
algorithm[19,20]. Therefore, it would be necessary to establish a minimized profile for
convenient clinical use, only comprising fewer peaks than the original, and using an existing
algorithm to compare it with other statistical methods. Meanwhile, the peak(s) most useful
as potential biomarker(s) would finally be identified.

In the past, two main methods were generally used to identify the differential peaks in a
MALDI-TOF MS spectrum. One was to analyze different groups of spectra using
Flexanalysis software, which is related to ClinProt-Tools software but independent of it.
Flexanalysis allows different groups of peaks to be compared visually, with some peaks
directly selected with it[21]. However, most other peaks which could not be selected for lack
of statistical support had key information which may have been lost from the results[22,23].
Fortunately, those peaks were to be confirmed as differential peaks using p values obtained
by t-tests/ANOVA in ClinProt-Tools which enhanced accuracy. However, too many peaks
were obtained according to the p value and, because of the limitations of the t-test algorithm
itself, some significantly differential peaks might have been overlooked [18], too. To solve
the problem, the present study describes the use of an existing statistical method, and
principle component analysis (PCA) for identifying the significantly differential peaks in the
spectral data. PCA is a widely used mathematical technique designed to extract, display and
rank the variance within a data set[24]. The overall goal of PCA is to reduce the
dimensionality of a data set, simultaneously retaining the information present in the data. In
data sets with many groups of variables, different variables often show similar behavior so
they contain redundant information. In the case of mass spectra, the variables are the
intensities at defined masses. Depending on the resolution, there can be many of them. PCA
reduces the number of dependent variables in the spectral set by replacing groups of
intercorrelated variables with a single new variable. This generates a set of new variables,
so-called principal components (PCs).

The PCA algorithm was adapted to the Clinprot-tools software in MALDI-TOF MS. This
method calculated the spectral data comprehensively, yielding many principle components
for analysis. However, PCA still gave an immense amount of information; in clinic more
typical and generalized information is required. Fortunately, the first three principle
components (PC1, PC2, PC3) differentiated the samples remarkably well from pre-
established groups and they were also convenient for representing dimensionally. The
loading values provided by PCA made it easy to select the contributing peaks for further
analysis. During the calculation of PCs, the variables (peaks) are given different loadings
depending on the amount of variance of a PC they explain. In dependence on their
contribution to the explained variance of a PC, the loadings values are between −1 and 1.

In the present study, for the training group, 34 gastric cancer patients and 18 healthy
volunteers with no evidence of disease were selected to use for the original profile and peaks
were collected in the MS range m/z 1–13,000 by MALDI-TOF MS. PCA integrated in
ClinProTools software was used to generate a mini-optimized profile consisting of peaks
that appeared to be specifically differentiating on the basis of the loading values. The p
values of those peaks were determined by t-tests in ClinProTools software. Flexanalysis
software, independent of ClinProTools, was used to compare the different spectra
macroscopically in a stack view. Those peaks derived from PCA could also be compared
with the result of Flexanalysis and t-tests/ANOVA.
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2. Materials and Methods
2.1 Patients and samples

The serum samples were collected from all gastric cancer in-patients in the general hospital
of PLA between January and November 2009. All samples were obtained with patient
consent and institutional review board approval. Whole blood was collected and centrifuged
at 3500 rpm at room temperature for 7 min. The serum samples were immediately stored as
aliquots at −80°C until use. A total of 72 serum specimens were collected. The control
specimens (n = 18) were from 18 volunteers with no evidence of disease. The cancer
specimens from 54 patients with gastric cancer were divided into two groups; training group
(n =34) for the original profile, testing group (n =20) for the validation. These cancers had
been confirmed pathologically before treatment was initiated or serum collected. Tumor
Node Metastasis (TNM) staging information was available on 54 gastric cancer samples.
The distribution was T3N1Mx n=6, T3N0Mx n=5, T2N1Mx n= 8, T2N0Mx n= 10,
T1N1Mx n= 11, and T1N0Mx n=14. The mean ages (±SD) of the groups were healthy
controls 48.5±11.5 and gastric cancer patients’ 58±8.6 years.

MALDI-TOF MS Serum samples (5 μL) were processed using a magnetic bead-based weak
cation exchanger (WCX, Bruker Daltonics, Germany) according to the manufacturer’s
protocols. The WCX was supplied as part of a kit, with standard protocol and binding and
washing buffer provided. In brief, a 5 μL serum sample was mixed with 10 μL binding
solution in a standard thin-wall PCR tube, then 10 μL WCX was added and the solution was
mixed carefully by pipetting up and down several times. To separate the unbound solution,
the tube was placed in a magnetic bead separator and the supernatant was removed carefully
using a pipette. The magnetic beads were then washed three times with 100 μL washing
buffer. After binding and washing, the bound proteins/peptides were eluted from the
magnetic beads using 5 μL 50% acetonitrile. A portion of the eluted sample was diluted 1:10
in matrix solution comprising of α-cyano-4-hydroxycinnamic acid (0.3 g/L in 2:1 ethanol:
acetone). Then 0.5 μL of the resulting mixture was spotted on to a sample support
(AnchorChip target, Bruker Daltonics) and allowed to air-dry for approximately 5 min at
room temperature. The samples were analyzed on a MALDI-TOF mass spectrometer
(MicroFlex, Bruker Daltonics). Ionization was achieved by irradiation with a nitrogen laser
(λ = 337 nm) operating at 20 Hz. An average of 50 shots at each of 10 positions was
collected for a total of 500 shots/spot; Anchorchip plate locations were calibrated prior to
each run. Positive ions were accelerated at 19 kV with 80 ns pulsed ion extraction delay.
Each spectrum was recorded in linear positive mode and was externally calibrated using a
standard mixture of peptides. In order to increase detection sensitivity, excess matrix was
removed with 10 shots at a laser power of 80% prior to acquisition of spectra with 100 shots
at a fixed laser power of 20%. One hundred and forty mass spectra were acquired using
FlexControl software (Bruker Daltonics, Germany) and each spectrum consisted of about m/
z 10,000 values with the corresponding intensities in the mass range of 1–13,000.

2.2 Peak detection in MALDI spectra
All the spectra were compiled and normalized to the total ion current of an m/z value
ranging from 1–13,000 and the baselines were subtracted. The part of the spectrum with m/z
values less than 1,000 was not used for analysis because signals generally interfered with
peak detection in this area. Peaks with m/z values between 1,000 and 13,000 were auto-
detected with a signal-to-noise ratio of 5. We first split the data into a training set (including
34 pre-operative samples) and testing set (including 20 pre-operative samples). Each sample
spectrum was introduced to Flexcontrol software, and the classification algorithm (reference
to p value of t-tests/ANOVA, etc.) was automatically performed to yield the set difference.
Flexanalysis Software was used for macroscopic comparisons of different spectra in the
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stack view. Principle component analysis (PCA, ClinprotTool 2.0; Bruker Daltonics) was
used to analyze the proteomic features of the data (MALDI spectra). For simplified analysis,
peaks with the higher single contribution (SC) derived from loading value were selected for
further determination of the mini-optimized profile.

2.3 MALDI-TOF MS/MS
Peptides were sequenced on a 4800 MALDI analyzer (Applied Biosystems, CA) with
positive ion mode in both reflector and MS/MS acquisitions and with a laser repetition rate
of 200 Hz. In both modes, reflector spectra were obtained for the peptide mixture in the
800–4000 Da mass range. In MS/MS mode, 2 kV collision energy (with CID gas ON) was
used to fragment the peptides. Databases were searched for peptide identification using
MASCOT Distiller 2.1 (Matrix Science, http://www.matrixscience.com). No enzyme was
used in this search and both MS and MS/MS tolerances were 0.3 Da.

2.4 Quality control of MALDI spectra
The reproducibility of the MALDI spectra was estimated by using two representative serum
samples: one from a healthy control and the other from a cancer patient. To assess intrachip
variability, each serum sample was loaded on to three spots of an Anchorchip. To assess
interchip variability, the same samples were assayed three times independently. Six peaks
were selected randomly over the course of the study and used to calculate the intra-array and
inter-array coefficients of variance (CV).

3. Results
3.1 Detection of MALDI spectra

The MALDI-TOF MS spectra (Bruker Daltonics, Germany) were imported into
ClinProTools software for post-processing and generation of proteomic profiles.
Normalizing, baseline subtracting, peak defining, recalibrating and comparison of multiple
spectra were performed automatically by the ClinProTools software. The classification
algorithm was used to determine the rate of cross-validation and recognition capability
between the gastric cancer and control groups. The cross-validation and recognition
capability were 96.97% and 97.06% in the 34 gastric cancer patients and 18 controls,
respectively. The state of classification of the two sets of samples was demonstrated in the
first three principal components model of PCA (Fig. 1A).

The contributions of PC1, PC2, and PC3 to the generation of profile in a percentage plot of
the variance explained were approximately 52%, 15%, and 12%, respectively (Fig 1B). To
validate the original profile, another 20 gastric cancer patients were selected for PCA. In the
validation process, the 20 gastric cancer patients were used to validate the model established
from the previous 34 gastric cancer patients and 18 healthy controls. The accuracy was
94.5% (Fig 2).

Using Clinprot-Tools, t-tests of the peak intensity difference enabled us to rank a series of
53 differentiated peaks (p<0.05) (data not shown). To determine the minimized differential
peaks set, PCA analysis was used to generate a dimensional view of the differential peak
dot. It revealed eight dots representing different peaks of mean masses m/z1866, m/z 2211,
m/z 2661, m/z2863, m/z 4284, m/z4212, m/z5341, and m/z5910 (Fig. 3).

In the loading model (Loading 1, Loading 2, Loading 3); the loading values of each peak
were obtained during the calculation of PCs. The peaks were given a different loadings
value, depending on the amount of variance of a PC they explained, and the value size was
in dependence on their contribution to the explained variance of a PC. The loadings values
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were between -1 and 1. According to the calculation of the PCA algorithm, each peak could
obtain loading values which originate from the calculation of PCs. In this text, a peak was
given three loading values originated from three PCs (PC1, PC2, and PC3) calculation.
Meanwhile, the contributions of PC1, PC2, and PC3 to the generation of profile in a
percentage plot of the variance explained were approximately 52%, 15%, and 12%,
respectively. Thus, the single contribution (SC) of a peak through a PC to the profile was
equal to the product of loading value and contribution of PC. The total contribution (TC) of
each peak to the profile was the sum of three SC values of each peak. The absolute value of
TC determined the significance of a peak (Table 1).

The loading values of peaks close to the axis were not apparently significant for the
minimized profile (data not shown). The p values of t-tests and the average value of the
eight peaks identified by PCA are shown in table 2.

According to the average value, seven of these peaks (m/z1866, m/z2211, m/z2661, m/z
2863, m/z4284, m/z5341, and m/z5910) were up-regulated and the other (m/z4212) was
down-regulated when the peak intensities were compared.

To compare the abilities of t-test and PCA to classify the peaks, the first two peaks (peak
No.15, m/z 2863; peak No.7, m/z 2107) in the t-test p value list and two peaks significant in
PCA (peak No.42, m/z 4212, total contribution TC=47.33; peak No.1, m/z1866, total
contribution=28.79) were selected as the peak combination to distinguish the disease from
the control group in a binary image. The combination of peaks from PCA gave the more
definite distinction (Fig 4).

Allowing for some peaks was selected directly by the Flexanalysis analysis; the same
spectra were imported into Flexanalysis and the eight significant peaks derived from PCA
were visualized in the stack view (Fig 5).

MALDI MS/MS technology was used to identify the m/z 1866 and 2863 peaks. These were
shown to derive from the complement component of C3 (SSKITHRIHWESASLL) and from
apolipoprotein A1(K.VSFLSALEEYTKKLNTQ), respectively (Fig 6).

The within-day reproducibility of the serum spectral profiles was evaluated with the data.
Variability was calculated to be between 6% and 12% with an average CV of 9%. The inter-
day reproducibility study, including sample processing and mass spectral analysis, was
conducted on three different days. Inter-day variability was calculated to be between 9% and
15%, with an average CV of 12%.

4. Discussion
In Clinprot-Tools software, a subset of relevant peaks was selected to establish clusters and
to build a model using the intensities of those peaks. The data were analyzed using more and
more complicated statistical algorithms; some of them explored independently of the
MALDI machine[25,26]. The improvement of algorithms brought a high recognition rate,
but ignored usefully differentiated peaks that may represent a potential biomarker[27,28].
Furthermore, the whole profile, which comprises too many subtly differentiated peaks, is
inconvenient for clinical use in that the profile peaks are quantitative. It is therefore
necessary to find a mini-optimized profile comprising fewer peaks than the original using a
simple statistical algorithm. For this purpose, principle component analysis (PCA) in
Clinprot-Tools software was used to generate a mini-profile and select the potential
biomarker peaks.

Shao et al. Page 5

Am J Biomed Sci. Author manuscript; available in PMC 2012 January 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A group of samples were selected randomly to form the training set and the result was
demonstrated on the image of PCA. From the dimensional view of the first three loading
values model from PCA (Loading1, Loading2, Loading3) (Fig 3), eight black dots standing
for the different m/z peaks were selected as the mini-profile peaks according to loading
values and SC values (Table 1), respectively. The most significant peaks were identified by
the TC values. Remarkably, in the algorithm of PCA, the most substantial peak was m/z
4212 (TC=47.33, amplified 100-fold) (Table 1). Meanwhile, its p value showed a significant
difference according to the t-test, which indicated the consistency of two sets of algorithm to
a certain extent. However, the peak at m/z 4212 was third in the list of p values in the
comparison of eight peaks and even lower in the 53 differentiated peaks. This phenomenon
indicated that m/z 4212 possesses different significance between the algorithm of t-test and
PCA. In general, a peak in the first position in the list of p value may be the most significant
difference peak. In fact, the weight of the peak was dependent on the ability of classification
of peak group itself. So, a comparative experiment of peak-weight was carried out with the
first two peaks derived from t-test and PCA, respectively. The effect on detection of peak-
weight is shown in Fig. 4. The first two substantial peaks derived from PCA gave a better
classification than those derived from the p values. This indicated that the differential peaks
obtained from PCA possessed much better classification ability than those from t-test. A
simple explanation may be that the PCA algorithm referred more factors than t-test, such as
down-regulation (AVE value, Table 2) of m/z 4212, the most differential peak in PCA,
which was given a greater weighting than the other peaks in the analysis of PCA.
Comparing with t-test and PCA, all the p values of the selected eight peaks were matched to
significant differences in the visual comparison using Flexanalysis software, except for m/z
4212, which may be discarded in the Flexanalysis because it showed less difference in
protein expression (Fig 5, m/z 4212). Hence, one cannont select the peak with Flexanalysis
only. Additionally, eight peaks derived from PCA for the mini-profile had a corresponding
visual image in the Flexanalysis, but not every peak derived from p values ( p<0.05) could
be found in the Flexanalysis.

In brief, PCA generated the substantial peaks constituting the mini-optimized profile. The
number of these peaks (n=8) was lower than from the p values (n=53) and easy to analyze in
view of the small scale of the peaks. It was a better method than that based on p values,
where too many peaks were significantly different (p<0.05). Sometimes it was difficult to
determine the most likely potential biomarker, though the peak in the first position in the p
value list may traditionally be considered the most valuable. To solve this problem, PCA
gave the optimum choice to select the most valuable peak to be the potential biomarker
according to the TC value. Therefore PCA was the first choice for the analysis of spectral
data.

On further examination of the peaks of interest, m/z 1866 and 2863 were identified as
deriving from complement component C3 and from Apolipoprotein A1, respectively. In the
human complement system (C), C3 is the core component that interacts with at least 25
different proteins to protect an individual; e.g. xenografts and microbial pathogens. To
produce the functional component, C3 is cleaved into C3a and C3b fragments which
mediate target cell lysis[29]. In fact, C3a or C3b are such substantial fragments in the serum
that they are commonly identified by SELDI. In this study, the m/z 1866 extracted by
MALDI (this was precisely the advantage of MALDI) was also determined as C3, which
was consistent with the belief that small C3 fragments are degraded into a sequence ladder
by exoproteases. In additional, the sample used for MALDI was serum, not plasma, which
excludes the possibility of heparin-induced complement activation [30]. The human
complement system is regarded as an important defense against malignant cells in early
stage cancer, but the further molecular mechanism is unknown. A previous study showed
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that the complement concentration increases in a patient with digestive tract cancer, which
indicates that C3 participates in cancer pathology.

An interesting phenomenon was observed in our relevant study. The peak at m/z 1866 was
more highly expressed in gastric cancer patients than in healthy controls in the original
MALDI profiles. After operation, m/z 1866 was down-regulated, indicating decreased
complement activation and metabolism. A possible explanation is that the removal of tumor
tissue leads to less inflammatory factor release and hence to decreased complement
activation (sample collection after operation 1 day). There was a contrary change in m/z
2863, which was identified as apolipoprotein A1 (apoAI). This peak was up-regulated in the
post-operative serum and Apolipoprotein AI, a 243 aa polypeptide chain, is the principal
protein constituent of high density lipoproteins and plays a key role in human cholesterol
homeostasis. Epidemiological studies have shown that high density lipoprotein (HDL) and
its major protein component, apolipoprotein AI, are protective against atherosclerosis and
coronary artery disease. It is generally accepted that HDL removes unesterified (free)
cholesterol (FC) and other lipids from peripheral cells and delivers them to the liver for
catabolism. Along this reverse cholesterol transport pathway, apolipoprotein AI can exist in
multiple conformations related to its degree of lipid association[31]. For the alteration of
apolipoprotein A1, a possible hypothesis was that the need for recovery against the trauma
of operation resulted in increased apolipoprotein A1.

In summary, the statistical method of principal component analysis (PCA) offered the
opportunity to establish a mini-optimized profile in MALDI-TOF MS. The peaks derived
from PCA comprehensively reflected the characteristics of data from MALDI. The
determination of a potential biomarker peak by PCA was an important clue for further study.
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Figure 1.
The dimensional image from PCA shows the distinction between 34 gastric cancer patients
and 18 healthy controls. A: the classification of disease and healthy controls in the first three
principal component model (PC1, PC2, PC3 ). B: the contribution of nine principal
components to the profiling classification in plot of percentage explained variance of PC.
The contributions of PC1, PC2, and PC3 were approximately 52%, 15%, and 12%,
respectively. Red dot: healthy controls; green dot, disease group.
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Figure 2.
The dimensional (A) and planar (B) images show the distribution of 20 pre-operative
samples in the original profiling. The accuracy of the distribution was 94.5%. A: the
dimensional image of PCA analysis; B: the planar image of distinction derived from two
peaks, m/z 1866 and 4212. Red: controls; green: 34 pre-operative patients; blue: another 20
pre-operative patients.
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Figure 3.
The dots show the corresponding spatial scattering state of the differential peaks in loading
mode. Each dot indicates the intensity value of a peaks; mean masses 1866m/z, 2211m/z,
2661m/z, 2863m/z, 4284m/z, 4212m/z, 5341m/z, and 5910m/z were the differential peaks
since its position was away from the center. The peaks were differential up to the loading
value corresponding to the loading (Loading1, Loading 2, Loading 3) model in three binary
images.
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Figure 4.
Comparison of effects of different peak combinations on classification. From the image, one
sample signified by a blue frame was transferred to the disease group, as the blue arrow in B
shows. A: classification effect of the first two peaks (pk15, 2863 Da; pk7, 2107 Da) from list
of p values; B: classification effect of two significant peaks (pk 42, 4212 Da, sum
contribution=47.33; pk1, 1866Da, sum contribution=28.79) according to the sum
contribution value. Crosses dot: healthy control; circles dot: disease group sample.
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Figure 5.
MALDI-TOF mass spectral stack view of selected peaks derived from the original profile
according to PCA analysis. The monoisotopic mass (m/z) is shown for each peptide ion peak
(A: m/z 2863; B: m/z 1866; C: m/z 4212; D: m/z 2211; E: m/z 2661; F: m/z 5341; G: m/z
4284; H: m/z 5910). Eight peptides were selected to illustrate group-specific differences in
normalized intensities. Seven of those were up-regulated. The exception was m/z4212,
which was down-regulated. Red: gastric cancer; blue: control.
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Figure 6.
MALDI-TOF MS/MS Identification of serum peptide 1866 and 2863 as the fragment of
complement component 3 and apolipoprotein A1, respectively. The fragments shown here
were taken from a Mascot MS/MS search of the human segment of NR database that
retrieved a sequence A:(SSKITHRIHWESASLL) and B: (K.VSFLSALEEYTKKLNTQ),
respectively.
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