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Abstract
We study a range of neural dynamics under variations in biophysical parameters underlying
extended Morris–Lecar and Hodgkin–Huxley models in three gating variables. The extended
models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog
VLSI programmable neural emulation platform with generalized channel kinetics and biophysical
membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms
neglected in typical silicon models of tonic spiking neurons. Circuit simulations and
measurements show transition from tonic spiking to tonic bursting dynamics through variation of a
single conductance parameter governing calcium recovery. We similarly demonstrate transition
from graded to all-or-none neural excitability in the onset of spiking dynamics through the
variation of channel kinetic parameters governing the speed of potassium activation. Other
combinations of variations in conductance and channel kinetic parameters give rise to phasic
spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and
occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic
silicon-neuron interfaces.

Index Terms
Analog VLSI; biophysical neural dynamics; neuromorphic engineering; programmable channel
kinetics; silicon neuron interfaces; spiking neuron models

I. Introduction
Neuromorphic engineering, as an analysis by synthesis approach to computational
neuroscience, is increasingly offering physical tools for studying the dynamics of complex
neural systems [1]–[4]. While analog neural chips inherently have limited programming
capability, recent designs have overcome this limitation by incorporating a large number of
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parameters in a reconfigurable architecture [5]–[11]. This opens up opportunities in
systematic studies of the dependence of the dynamics upon biophysical parameters. Iterative
methods, such as gradient descent learning [12] and evolutionary algorithms [13]–[15] can
then be applied to estimate the model parameters for biological inference.

Here we present such a study on a silicon biophysical neural model with wide-ranging
membrane dynamics and channel kinetics [16] that, within the same architecture as
illustrated in Fig. 1, extends the Hodgkin–Huxley (HH) and Morris-Lecar (ML) paradigms
from tonic spiking to intrinsically bursting neural dynamics [17] and a variety of other
neural dynamics. Neurons exhibit dynamics at a wide range of time scales. However, longer
time scales extending beyond 100 ms have been neglected in silicon models. We include
mechanisms at such longer time scales that provide network models with new computational
abilities, including central pattern generation [18] and memory consolidation in
thalamocortical networks [19].

One of the simplest neuron models, a leaky quadratic integrate-and-fire model by Izhikevich
[20], uses just two dynamical variables and four parameters to generate 20 distinct types of
neuronal dynamics. A further simplified model with linear membrane dynamics has been
shown by Mihalas and Niebur [21] to generate an equivalent range of neuronal dynamics.
Despite the success of these models to efficiently emulate rich dynamics in analog VLSI
[22]–[25], the very compact state representation does not offer a direct biophysical
interpretation of their parameters. Our work provides an alternative biophysically-based
approach in an extended HH-ML formalism with generalized channel kinetics. We
demonstrate a variety of neural dynamics through detailed control of the parameters
governing the voltage-dependence profile of the opening and closing channel kinetic rates.
Because each parameter is directly related to channel kinetics, the tuning of these parameters
may provide insight into neuroscientific or clinical questions related to changes in, for
instance, neuromodulators and pharmacological agents acting upon the modeled channels.

A variety of silicon neuron circuits have been proposed to implement models with varying
degree of biophysical realism [26]. A parameterized library of biophysically-based analog
operators in the HH model framework has been presented in [8]. A floating gate silicon
neuron implementation also demonstrates a variety of neural dynamics and bifurcations
[27].

Here we use NeuroDyn [28]–[31] as an experimental analog continuous-time platform to
study parameterized biophysical neural dynamics over an extended range of time scales
within a generalized HH-ML framework [32]. Fidelity between circuit simulation and
measurement data, along with a low-power and compact circuit implementation, are key
factors in utilizing a continuous-time analog VLSI emulation platform, such as NeuroDyn,
as a versatile tool in neuromorphic modeling and silicon-neuron interfaces [33]–[35].

In [28] we demonstrated that the addition of a slow inactivation term to the ML neuron
model results in bursting neural dynamics in the NeuroDyn analog VLSI implementation.
Calculation of inter-spiking interval (ISI) for both simulated and measured bursting
waveforms over the variation of a single conductance parameter gw governing calcium
recovery show agreement in behavior between simulation and circuit measurement data.

Here we present, in addition to tonic spiking and intrinsically bursting dynamics, a wider
range of neural dynamics including phasic spiking and spike-frequency adaptation within
the same NeuroDyn analog VLSI implementation platform by systematic variation of
parameters governing Na+ and K+ channel kinetics. We also present class 1 and class 2
neural excitability dynamics and show that variation of the dynamical voltage-dependent
profile of τn governing K+ inactivation results in an exchange between the two behaviors.
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Calculation of ISI for both simulated and measured class 1 and class 2 neural excitability
ramp responses show agreement in behavior between simulation and circuit measurement
data.

II. NeuroDyn Overview
The NeuroDyn system [28]–[31], illustrated in Fig. 1, consists of 4 neurons with Hodgkin–
Huxley type membrane dynamics fully connected through 12 conductance-based synapses.
All parameters are individually addressable and individually programmable and are
biophysically-based governing the conductances, reversal potentials, and voltage-
dependence of the channel kinetics. Each opening and closing channel kinetic rate is
approximated with a 7-point spline regression function allowing for detailed control of the
channel kinetics. These 14 parameters with two additional terms governing reversal
potential and conductance per channel result in a total of 384 parameters each stored on-chip
in a 10-bit DAC. Parameter fitting is achieved through rectified linear regression and
iterative least squares residue correction. Scalable neural and synaptic arrays can be
implemented by abstracting the desired dynamics of the neurons and synapses models and
pooling together parameter control from individual to populations of neurons.

The analog VLSI design of the NeuroDyn system, and preliminary experimental results were
presented in [29]. First results on coupled neural dynamics with inhibitory synapses were
reported in [30]. Details on the circuit implementation and complete experimental
characterization of the neural and synaptic circuits, as well as presentation of calibration and
parameter fitting procedures to align neural and synaptic characteristics from models or
recorded data onto the digitally programmable analog hardware are presented in [31]. In the
following sections we focus on the extension of the HH model implemented in NeuroDyn to
accommodate generalized dynamics over extended time scales.

III. Methodology
A. Membrane Dynamics

The Hodgkin–Huxley membrane dynamics [36] describe neural dynamics as a sum of
conductance-based channel currents. Gating variables m, h, and n describe the voltage-
dependent dynamical profiles of each channel and are described by

(1)

where i, j = 0 … 3, and

In order to emulate bursting neural dynamics, the Hodgkin–Huxley model requires the
addition of a slow-modulation due to Ca inactivation dynamics. We accommodate this extra
inactivation channel by first considering the two-dimensional “reduced” excitation model as
described by Morris-Lecar [37]
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(2)

where i, j = 0 … 3, and

(3)

We then reintroduce the variable hi as a multiplicative term in the calcium conductance in
(3), modeling the calcium recovery rather than calcium inactivation, on a slower timescale
spanning several action potentials. We also revert to the cubic form of fast Ca (Na)
activation in the Hodgkin–Huxley model, of the form (1). We show that we can adapt this
model (1) to reproduce rich spiking and bursting dynamics, with only changes in the
conductance and channel kinetics, illustrated in Fig. 1 and described below.

B. Channel Kinetics
The neuron channel gating variables are modeled by a rate-based first-order approximation
to the kinetics governing the random opening and closing of membrane channels for any of
the gating variables x (e.g., m, h, n, w)

(4)

where each channel variable denotes the fractions of corresponding channel gates in the
open state, and where the α and β parameters are the corresponding voltage-dependent
opening and closing rates. The channel variables can be equivalently expressed as

(5)

with asymptotes x∞i = αxi/(αxi + βxi) and time constants τxi = 1/(αxi + βxi).

We model each of the opening and closing channel kinetics in the NeuroDyn system using
the seven-point sigmoidal regression functions implemented as cascaded differential pairs.
As described in [31], we use a least squares fit regression technique to determine the
appropriate current biases to fit the generalized channel kinetic functions.

Simulation data was obtained by implementing the models described using MATLAB. The
simulation and circuit measurement data illustrating the neural spiking behavior before and
after the inclusion of the slow inactivation channel are shown in Fig. 2 and Fig. 3,
respectively. Neural spiking behavior before the inclusion of the slow inactivation channel is
realized by setting the h gating variable channel kinetics with voltage-independent opening
and closing rates. The slow inactivation channel is realized by implementing the the h gating
variable channel kinetics as a slow inactivation channel.
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IV. Spiking to Bursting Behaviors
We calculate the ISI histogram for each burst of spikes over the variation of a single
parameter gw governing calcium recovery [17] for both simulation and circuit measurement
data as displayed in Fig. 4 and Fig. 5. We observe consistent spiking behavior over a wide
regime of neural dynamics. For gw low conductance values, the neuron spikes and is
followed by subthreshold oscillations. As the gw conductance value is increased, the neuron
spikes and the following subthreshold oscillations are more pronounced. And when the gw
conductance value is further increased, the neuron spikes in a bursting manner. When the gw
conductance value is further increased, the number of subsequent bursting spikes is reduced
as we observed quadruplets then triplets then doublets and finally single neuron spikes.
Mismatch between simulation and measurement results can be attributed to circuit noise
which manifests as fluctuations in spike and burst rates as well as the number of spikes per
burst.

V. Additional Spiking Behaviors
A. Phasic Spiking

Phasic spiking dynamics refers to the property of certain neurons to respond with a single
action potential corresponding to the onset of an applied excitatory current input pulse. We
present simulation and circuit measurement results in Fig. 6. We demonstrate phasic spiking
dynamics by increasing values of τn with respect to τh from the tonic spiking model channel
kinetic rate parameters.

B. Spike Frequency Adaptation
Spike frequency adaptation refers to the property of certain neurons to spike with greater
frequency at the onset of an applied pulse of current and decrease in spike frequency through
the duration of the pulse. We present simulation and circuit measurement results for spike
frequency adaptation dynamics in Fig. 7. We decrease values of τh with respect to τn in order
to more readily observe spike frequency adaptation dynamics.

C. Neural Excitability
1) Class 1 Neural Excitability—Class 1 neural excitability refers to the property of
certain neurons to respond to an applied excitatory current ramp with a train of action
potentials. The frequency of the action potentials starts from an arbitrarily low frequency
and increases in frequency through the duration of the applied ramp input resulting a large
band of frequency response. We present simulation and circuit measurement data for class 1
neural excitability in Fig. 8.

2) Class 2 Neural Excitability—In contrast, neurons that exhibit class 2 neural
excitability display a narrow band of frequencies in response to an applied excitatory current
ramp. Class 2 excitability is further distinguished from class 1 excitability by the high
frequency of its initial response to the applied current ramp. We present simulation and
circuit measurement data for class 2 neural excitability in Fig. 9. We vary the dynamical
profile of gating variable n to decrease the values of τn governing K+ channel dynamics in
order to achieve class 2 neural excitability dynamics. The decrease in τn results in a
corresponding decrease in refractory period between action potentials.

3) Transition from Class 1 to Class 2 Neural Excitability Dynamics—We
calculate the ISI histogram for each ramp response over the variation of a set of parameters
governing τn and corresponding to K+ channel dynamics for both simulation and circuit
measurement data as displayed in Fig. 10 and Fig. 11. For low values of τn, the neuron
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responds with a narrow band of frequencies at relatively low ISI characteristic of class 2
excitable neural dynamics. As the value for τn is increased, the refractory period between
action potentials increases and becomes more pronounced at the onset of the current ramp
input. This results in a broader band of frequency response over the course of the applied
current ramp input. As the value for τn is further increased, the band of frequency responses
continues to increase as is characteristic of class 1 excitable neural dynamics.

When current is injected into the HH model, there is a threshold where the firing rate jumps
from zero to some finite value. The addition of an “A-current” K+ conductance to the model
makes the input-output curve contiguous as first shown by Connor and Stevens [38]. In the
augmented model, the deinactivation rate of the “A-current” limits the rise time of the
membrane potential between action potentials.

VI. Conclusion
Previous studies [39] have shown intrinsically bursting neural dynamics implemented with
extensions to the HH model requiring more gating variables. Other models are capable of
emulating intrinsic bursting neural dynamics, such as Izhikevich’s simple model [20] which
uses just two dynamical variables and Mihalas-Niebur’s neural model [21] which uses three
dynamical variables to also govern threshold adaptation. Here we have presented red an
extended HH-ML model that reproduces a variety of neural dynamics in three dynamical
variables that directly account for the biophysics of membranes and channels over an
extended range of time scales in the NeuroDyn neural emulation platform. The neural
dynamics has been implemented with individual control over biophysical parameters
governing the dynamical profiles of the opening and closing channel rates, reversal
potential, and conductance. Intrinsic noise due to analog circuit implementation results in
quantitative and qualitative changes in the neuronal dynamics including changes in the onset
and regularity of spiking and bursting patterns, although we observed general qualitative
correspondence between simulations and circuit experiments. Similarly, noise from thermal,
stochastic, and other sources observed in in vivo recordings play an important role in the
dynamics of neuronal activity [40], [41]. Thus, the noise inherently present in the analog
circuits adds to the biological realism of the implementation avoiding quantization and
periodicity artifacts commonly encountered in noise-free digital implementations.
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Fig. 1.
The NeuroDyn analog VLSI programmable neural emulation platform [29]–[31] is used to
generate both tonic firing and intrinsic bursting dynamics using extensions on Hodgkin–
Huxley and Morris-Lecar paradigms. (a) Hodgkin–Huxley. (b) Morris-Lecar. (c) extended
Morris-Lecar and Hodgkin–Huxley.
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Fig. 2.
Tonic spiking neural dynamics in the ML model with the extension to include slow
inactivation dynamics set as a constant parameter showing simulated and measured data for
(a), (c) steady-state (in)activation dynamics, (b), (d) τ voltage-dependent dynamics, and (e),
(f) membrane voltage and gating variable waveforms.

Yu et al. Page 12

IEEE Trans Biomed Circuits Syst. Author manuscript; available in PMC 2012 January 4.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Fig. 3.
Tonic bursting neural dynamics in the ML model with an extension to include slow
inactivation dynamics showing simulated and measured data for (a), (c) steady-state
(in)activation dynamics, (b), (d) τ voltage-dependent dynamics, and (e), (f) membrane
voltage and gating variable waveforms.
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Fig. 4.
Simulated tonic bursting neuron with variation of a single conductance parameter gw
governing calcium recovery with increasing values from (a) to (c).
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Fig. 5.
Measured tonic bursting neuron with variation of a single conductance parameter gw
governing calcium recovery with increasing values from (a) to (c).
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Fig. 6.
Phasic spiking neural dynamics with simulated and measured data for (a), (c) steady-state
(in)activation dynamics, (b), (d) τ voltage-dependent dynamics, and (e), (f) membrane
voltage and gating variable waveforms.
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Fig. 7.
Spike frequency adaptation neural dynamics with simulated and measured data for (a), (c)
steady-state (in)activation dynamics, (b), (d) τ voltage-dependent dynamics, and (e), (f)
membrane voltage and gating variable waveforms.
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Fig. 8.
Class 1 excitable neural dynamics with simulated and measured data for (a), (c) steady-state
(in)activation dynamics, (b), (d) τ voltage-dependent dynamics, and (e), (f) membrane
voltage and gating variable waveforms.
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Fig. 9.
Class 2 excitable neural dynamics with simulated and measured data for (a), (c) steady-state
(in)activation dynamics, (b), (d) τ voltage-dependent dynamics, and (e), (f) membrane
voltage and gating variable waveforms.
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Fig. 10.
ISI Histogram of increasing values τn for from (a) to (c) governing K+ channel dynamics of
simulations between class 1 and class 2 excitable neural dynamics.
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Fig. 11.
ISI Histogram of increasing values for τn from (a) to (c) governing K+ channel dynamics of
measurements between class 1 and class 2 excitable neural dynamics.
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