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Atomic-accuracy structure prediction of macromolecules should
be achievable by optimizing a physically realistic energy function
but is presently precluded by incomplete sampling of a biopoly-
mer’s many degrees of freedom. We present herein a working
hypothesis, called the “stepwise ansatz,” for recursively construct-
ing well-packed atomic-detail models in small steps, enumerating
several million conformations for each monomer, and covering all
build-up paths. By making use of high-performance computing and
the Rosetta framework, we provide first tests of this hypothesis on
a benchmark of 15 RNA loop-modeling problems drawn from ribos-
witches, ribozymes, and the ribosome, including 10 cases that are
not solvable by current knowledge-based modeling approaches.
For each loop problem, this deterministic stepwise assembly meth-
od either reaches atomic accuracy or exposes flaws in Rosetta’s
all-atom energy function, indicating the resolution of the confor-
mational sampling bottleneck. As a further rigorous test, we have
carried out a blind all-atom prediction for a noncanonical RNA mo-
tif, the C7.2 tetraloop/receptor, and validated this model through
nucleotide-resolution chemical mapping experiments. Stepwise as-
sembly is an enumerative, ab initio build-up method that system-
atically outperforms existing Monte Carlo and knowledge-based
methods for 3D structure prediction.

de novo modeling ∣ tertiary structure ∣ dynamic programming ∣
structure mapping ∣ nucleic acid

Predicting the 3D structures attained by functional macromo-
lecules is a fundamental challenge in computational biophy-

sics and, more generally, in understanding and engineering living
systems. There have been numerous recent successes in the high-
resolution modeling of small proteins (1–3), protein/RNA com-
plexes (4), and protein/DNA interfaces (5) by optimizing physi-
cally realistic energy functions. Nevertheless, rigorous blind trials
demonstrate that the predictive power of computational algo-
rithms remains limited, especially if atomic resolution is sought.
For essentially all high-resolution modeling problems tackled to
date, the shared critical bottleneck of these methods is inefficient
sampling of a biopolymer’s vast conformational space (1–7). In ad-
dition to hindering accurate modeling, poor sampling precludes
rigorous tests of the assumed high-resolution energy functions.

To gain insight into the conformational sampling bottleneck,
we have been focusing on some of the smallest well-defined bio-
molecular folding problems: RNAmotifs, as short as four nucleo-
tides (nts) in length (8). In addition to offering “toy puzzles” for
computational methods (9), these modular loops, junctions, and
tertiary interactions are fundamental building blocks of struc-
tured noncoding RNAs; they attain well-defined noncanonical
conformations that in turn define the positions of the canonical
double helices in three dimensions. A previous study presented a
fragment assembly of RNAwith full-atom refinement (FARFAR)
method (10), tested on a benchmark of 32 RNAmotifs. Although
FARFAR recovered near-atomic-accuracy models in half the
cases, the method was unable to consistently sample models with-
in 1.5 Å rmsd of the crystallographic conformation.

Herein we seek to dissect and resolve this conformational sam-
pling bottleneck by focusing on an apparently simpler problem:

the structure prediction of single-stranded irregular RNA loops
excised from crystallographic models. Modeling these loops is a
lock-and-key problem, where the native loop (the key) is the con-
formation that best fits the surrounding structure (the lock). As
with the analogous protein cases, the RNA loop-modeling pro-
blem has important practical significance as a critical component
of homology-based structure prediction (11, 12) and in the refine-
ment of models generated by coarse-grained algorithms (13–16).
As is illustrated below, even the smallest RNA loops are challen-
ging for computational methods, because they are rich in nonca-
nonical interactions, extrahelical bulges, and unusual torsion
combinations.

Our major finding is that a recursive stepwise ansatz enables
the systematic sampling of RNA loop conformations at atomic
resolution and in polynomial computational time. The ansatz is
similar in spirit to ab initio “build-up” strategies previously ex-
plored in protein modeling (6, 17, 18, 19) but not yet shown to
outcompete Monte Carlo or knowledge-based methods (20). Our
focus on small RNA loops allows us to revisit and rigorously test
these enumerative strategies. After illustrating the limitations of
knowledge-based approaches in loop modeling, we describe the
motivations for the stepwise ansatz, its potential advantages and
disadvantages, and its implementation as the stepwise assembly
(SWA) method in the Rosetta framework. We then demonstrate
substantial improvements in sampling power and modeling accu-
racy of the SWA method over prior approaches. As a further rig-
orous and practical test, we present a blind prediction of an RNA
motif of previously unknown structure, the in vitro evolved C7.2
tetraloop/receptor (21, 22), and its experimental validation by
subsequent chemical accessibility measurements. We end the pa-
per with discussions of historical precedents for this ansatz as well
as extensions of this strategy to multistranded RNA motifs and
protein problems.

Results
A Benchmark for the High-Resolution RNA Loop-Modeling Problem.
The RNA loop-modeling problem offers small but highly chal-
lenging cases for atomic-resolution structure prediction. We
compiled a benchmark of 15 single-stranded loops that begin
and end at different Watson–Crick double helices, drawn from
riboswitches, ribozymes, and other structured noncoding RNAs
with crystallographic data (resolution better than 2.85 Å; SI
Appendix, Table S1). Loop lengths ranged from 4 to 10 nucleo-
tides (longer loops are rare; see SI Appendix, Fig. S1). “Hairpin”
loops beginning and ending at the same helix as well as multiple-
stranded loops can also be treated but are considered separately
(see below).
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On one hand, these loops assemble into well-defined confor-
mations, forming a significant number of hydrogen bonds—2.6
per nucleotide on average, in the same range as values for an
A-form RNA helix (2 to 3). For several cases, independent crys-
tallographic models of the same loop are available and give in-
distinguishable conformations (SI Appendix, Table S2). On the
other hand, the loops are highly noncanonical. More than half
of the hydrogen bonds are in base-phosphate or base-sugar inter-
actions rather than in base pairs (23). Further, the loop torsions
are irregular. Twenty-seven percent of the nucleotide suites are
not part of the 46 most commonly observed RNA rotamers
(24); and 8 of the 15 loops contain extrahelical bulges. Several
loops display sharp turns, exemplified by the J2/4 loop motif that
forms a 140° bend in the three-way junction of a thiamine pyro-
phosphate (TPP) sensing riboswitch (Figs. 1 A and B). Modeling

these intricate loop structures de novo is therefore a well-posed
but challenging problem.

Limitations of Knowledge-Based Methods. The difficulty of RNA
loop modeling is underscored by the poor accuracy of previous
methods for RNA structure prediction. For example, a recently
developed homology modeling method, RLooM (11), failed to
recover near-native models (under 1.5 Å all-heavy-atom rmsd
to the crystallographic loop) in 13 of the 15 benchmark cases, un-
less directly related loop structures from the same species were
permitted (SI Appendix, Supporting Results, and Table S2). As a
further test, we updated the high-resolution FARFAR method
to carry out loop modeling with chain closure and sampling
of extrahelical bulges. FARFAR failed to recover near-native
models as one of the five lowest energy cluster centers in more
than half of the benchmark cases (11 of 15; ref. 25, Table 1, and
SI Appendix, Table S3). Some of the problem cases are quite
small; for example, the J2/4 loop of the TPP riboswitch was
not solvable by FARFAR but is only five nucleotides in length
(Figs. 1 A and B). As in prior work, conformational sampling
was the dominant bottleneck. First, for 6 of 11 problem cases,
none of the 250,000 models generated gave rmsd accuracy better
than 1.5 Å (Table 1). Second, in all cases, this inability to generate
near-native structures was traced to the absence of native torsions
in the fragment library; the sampling could be rescued by doping
native torsions into the fragment library as a “cheat” to aid con-
formational search (see SI Appendix, Table S4). Third, in 10 of 11
cases, the generated models did not achieve near-native energies;
the lowest energy of 250,000 models remained higher than the
energy of the optimized experimental loops (Table 1). The inabil-
ity of FARFAR to solve these small loop-modeling problems
suggests that one or more basic assumptions of the fragment as-
sembly approach limit its conformational sampling power.

A Stepwise Ansatz. We reasoned that the conformations of RNA
loops might be effectively sampled through direct enumeration
at high resolution, rather than by restricting the search space
to previously known fragments. We discovered that a recursive
step-by-step enumeration (Figs. 1 C–F) permits efficient de novo
sampling of these loops, which we illustrate on one of the FAR-
FAR failures above, the J2/4 loop of the TPP riboswitch.

First, we note that exhaustive enumeration of this 5-nt loop
at atomic resolution is not feasible with current computational
power. Even building one nucleotide of a loop involves sampling
several degrees of freedom, including six backbone torsions, four
(coupled) sugar-pucker torsions, the glycosidic torsion, and the
2′-OH torsion. While low-resolution (>3 Å) clustering of exhaus-
tively sampled single-nucleotide conformations results in under
100 “rotamers” (24), clustering with a subangstrom threshold—
as is necessary for high-resolution modeling—leads to millions of
unique conformations of the nucleotide (SI Appendix, Fig. S2).
While computing the Rosetta energy for this number of confor-
mations is achievable in less than 1 hour on a single modern central
processing unit (CPU), the available conformations multiply expo-
nentially with the RNA length. Thus, combinatorial enumeration
of all available conformations of a 5-nt loop would require approxi-
mately 1023 CPU years, well beyond the computational power
achievable in the foreseeable future.

Nevertheless, the feasibility of enumerating the conformations
of just one nucleotide suggests an alternative approach to realistic
RNA modeling. Enumerative single-nucleotide building permits
fine-grained exploration of torsional conformations that form
well-packed structures with multiple hydrogen bonds, as is ob-
served in native loops, including rare torsional combinations
not covered in the list of consensus rotamers (24). As an illustra-
tion, Fig. 1C shows the lowest energy conformation for the first
3′ nucleotide of the J2/4 loop, built by exhaustive sampling fol-
lowed by local energy minimization. The resulting nucleotide

Fig. 1. The stepwise assembly (SWA) structure modeling method. Illustra-
tion on the J2/4 loop from the three-way junction of a TPP sensing riboswitch
(PDB: 3DV2). (A) Crystallographic conformation of the 5-nt loop (shown in
color) with surrounding nucleotides from the crystallographic model shown
in white. (B) Schematic of the three-way junction in the annotation of Leontis
and Westhof (23); only nucleotides shown in the 3D structure are numbered.
(C–F) A build-up path that leads to the experimental conformation; the five
nucleotides in the loop are built in a stepwise manner, one at time, starting
from the 3′ end. (G) A directed acyclic graph delineates the building steps in
the SWA method, recursively covering all possible build-up paths. The build-
ing steps taken in C–F are colored in magenta; other building steps are co-
lored according to type. Gray vertices correspond to the starting point with
none of the loop nucleotides built. Black vertices correspond to the partially
built subregions; models in each subregion were clustered with the 1,000
lowest energy cluster centers carried forward. Red vertices corresponding
the ending points with the loop completely built; all models of the full-length
loop were clustered together in a final clustering step. (H) Rosetta all-atom
energy vs. all-heavy-atom rmsd to the crystallographic conformation for de
novo models generated by SWA (blue points) and by the prior method (FAR-
FAR, red points). SWA fourth lowest energy cluster center (purple circle) is
within atomic accuracy of the crystallographic model (0.85 Å rmsd).
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is positioned with atomic accuracy, giving an rmsd of 0.69 Å from
the experimental conformation. We discovered that the entire
loop could then be recovered through stepwise enumerative
building of each additional nucleotide (Figs. 1 C–F), carrying
forward an ensemble of the lowest energy well-packed, well-
hydrogen-bonded conformations from each previous subregion.
In addition to standard single-nucleotide building steps, recover-
ing this loop also required a “bulge-skip” building step (to permit
the modeling of extrahelical unpaired/unstacked nucleotides) and
a chain-closure building step to complete the RNA loop (e.g.,
Figs. 1 E–F; see SI Appendix, Supporting Methods for complete
descriptions of the three types of building steps).

In a de novo structure prediction scenario, we do not know
a priori the appropriate order of building steps that will achieve
the experimental conformation, and we cannot guarantee that the
lowest energy model for a subregion will carry forward into the
lowest energy model for the entire loop. Further, the number of
such build-up paths grows exponentially with the number of
nucleotides. We solved these path-enumeration issues using a re-
cursive strategy, familiar from dynamic programming approaches
utilized in sequence alignment (26) and RNA secondary structure
prediction (27). We determined a low-energy ensemble of models
for each subregion of the loop as modeled from the 5′ end or from
the 3′ end and then joined all combinations of these subregions
by chain closure. In particular, we modeled each subregion in
one of two ways—either by a standard single-nucleotide building
step from a subregion one nucleotide shorter, or by a bulge-skip
building step from a subregion two nucleotides shorter. We clus-
tered all models for a subregion and carried forward the 1,000
lowest energy cluster centers (which typically included all models
within 6 kBT of the lowest energy state, mimicking conformations
accessed by thermal fluctuations). A directed acyclic graph (28)
delineates this deterministic, recursive calculation, as shown in
Fig. 1G. In the case of the J2/4 loop example, searching through
all possible paths led to a diverse set of well-packed conforma-
tions, including low-energy near-native and nonnative models
that were missed by FARFAR (Fig. 1H).

This method deterministically enumerates a low-energy sub-
space of the RNA loop’s available conformations through the
stepwise, locally optimal building of individual nucleotides, with
the hypothesis that the experimentally observed conformation re-
sides within this subspace. We call this method stepwise assembly
(SWA) and its underlying working hypothesis, the stepwise an-
satz. This ansatz can only be confirmed through empirical tests
on naturally occurring biomolecular structures. We have there-
fore carried out extensive trials of the stepwise ansatz using RNA
loop modeling as a biophysically important but unsolved test pro-
blem, described next.

Comprehensive Test of the Stepwise Ansatz. To evaluate the validity
of the stepwise ansatz, we applied the SWA method on the entire
15-loop benchmark (SI Appendix, Table S1). In terms of modeling
accuracy, SWA substantially outperformed FARFAR, recovering
near-native models (<1.5 Å rmsd) for 10 of 15 test cases, com-
pared to four cases recovered by FARFAR (see Table 1). These
included atomic-accuracy models from diverse sources, including
a 5-nt loop from the J5/5a hinge in the P4–P6 domain of the
group I Tetrahymena ribozyme (rmsd of 1.04 Å; Fig. 2A); a 7-nt
loop connecting helices P2 and P3 of the group II intron (rmsd of
0.82 Å; Fig. 2B); and one of the two 10-nt loops in the benchmark,
nucleotides 2003–2012 of the large ribosomal subunit from
Haloarcula marismortui (rmsd of 0.74 Å; Fig. 2C). In each of these
three cases, the high accuracy of the SWA model is reflected not
only in low rmsd to the experimental loops but also complete re-
covery of the base pair and base stack geometries as classified in
the Leontis–Westhof scheme (23) (see SI Appendix, Table S5).

For the remaining five “problem cases,” conformational sam-
pling was no longer the major bottleneck. In all five cases, SWA
models achieved lower energies than the optimized experimental
models (see Table 1 and SI Appendix, Fig. S3). Further, in four
of the five cases, SWA sampled de novo models within 1.5 Å
of the experimental conformation, although these models were
not selected as one of the five lowest energy cluster centers. In
the last case (a second 10-nt ribosomal loop), the optimized ex-
perimental model gave significantly worse energy (by 10.8 kBT)

Table 1. Accuracy and conformational sampling efficiency of de novo RNA loop modeling

Motif name

Motif properties
Best rmsd* (Å) of five
lowest energy clusters†

Lowest rmsd* (Å)
achieved

Energy gap to optimized
exp. model‡ (RU)

Length PDB FARFAR SWA FARFAR SWA FARFAR SWA

5′ J1/2, leadzyme 4 1NUJ 1.96 0.83 1.66 0.51 2.7 −0.8
5′ P1, M-box riboswitch 4 2QBZ 0.72 0.96 0.53 0.61 2.3 −0.5
3′ J5/5a, group I intron 4 2R8S 0.40 0.47 0.30 0.40 0.0 0.0
5′ J5/5a, group I intron 5 2R8S 4.08 1.04 1.05 0.66 0.3 −0.9
Hepatitis C virus IRES IIa 5 2PN4 2.11 5.31 1.04 0.71 −2.6 −5.9
J2/4, TPP riboswitch 5 3D2V 6.66 0.85 1.74 0.73 10.8 −1.0
23S rRNA (44–49) 6 1S72 0.69 0.73 0.47 0.71 2.6 0.0
23S rRNA (531–536) 6 1S72 3.18 2.45 2.44 0.76 6.9 −0.6
J3/1, glycine riboswitch 7 3OWI 1.13 1.35 0.71 0.64 2.5 1.3
J2/3, group II intron 7 3G78 1.59 0.82 1.34 0.77 8.5 −0.2
L1, SAM-II riboswitch 7 2QWY 2.43 1.26 1.43 0.86 3.8 −1.3
L2, viral RNA pseudoknot 7 1L2X 5.44 3.36 1.35 0.91 3.7 −4.1
23S rRNA (2534–2540) 7 1S72 6.39 5.71 3.24 1.39 7.3 −7.3
23S rRNA (1976–1985) 10 1S72 11.19 7.75 5.06 4.58 9.6 −10.8
23S rRNA (2003–2012) 10 1S72 11.36 0.74 5.43 0.64 41.2 3.2
RMSD < 1.50 Å — — 4∕15 10∕15 9∕15 14∕15 — —
Energy Gap < 0.0 — — — — — — 2∕15 13∕15

IRES, internal ribosome entry site; SAM, S-adenosylmethionine.
*All-heavy-atom rmsd to the crystallographic loop. Nucleotides found to be extrahelical bulges (both unpaired and unstacked) in the crystallographic model
were excluded from the rmsd calculation. Bold text indicates rmsd within 1.5 Å of the crystallographic model.

†Generated models were clustered, such that models with pairwise all-heavy-atom rmsd less than 1.5 Å over the entire loop and less than 2.5 Å over each
individual loop nucleotide are grouped (see SI Appendix, SupportingMethods). The lowest energymember of each cluster was designated as the cluster center
and the five lowest energy cluster centers were considered as the predicted models.

‡Definition of the optimized experimental model is provided in SI Appendix, SupportingMethods. Bold text indicates that the lowest energy sampled by the de
novo run is lower than the energy of the optimized experimental model (i.e., the energy gap is negative). One Rosetta unit (RU) is approximately equal to
1 kBT (10, 25).
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than the SWA models, explaining the absence of near-native
models in the low-energy SWA ensemble. These results demon-
strated that the stepwise ansatz is valid in all tested cases, and the
absence of atomic-accuracy models among the five lowest energy
cluster centers for the five problem cases was due to inaccuracies
in the Rosetta all-atom energy function. The results were in
strong contrast to the FARFAR results above.

Blind Prediction and Experimental Validation. The most stringent
tests for structure prediction algorithms are blind trials. The
few prior attempts at blind high-resolution RNA structure mod-
eling have not achieved atomic accuracy [see, e.g., refs. (29–31)].
Encouraged by the strong performance of SWA on the bench-
mark, we predicted the structure of a tetraloop/receptor motif
(the C7.2 mutant; Fig. 3A) with no known experimental structure,
previously isolated by in vitro selection (21, 22).

This sequence served as an appropriate first blind test because
it effectively reduces to a small but challenging loop-modeling
problem. Much of the sequence aligns with a widely studied
tetraloop/receptor motif whose structure has been determined by
crystallography in several different RNAs, including the P4–P6
domain of the Tetrahymena ribozyme (32, 33). The main differ-
ence is a 3-nt loop (G4-U5-A6) replacing a 2-nt A4-A5 “plat-
form” (SI Appendix, Fig. S4). We modeled this loop by SWA,
FARFAR, RLooM, and ModeRNA (12). SWA gave the well-
packed C7.2 tetraloop-docked receptor model shown in Fig. 3B
as the lowest energy structure. More extensive SWA calculations
modeling eight nucleotides (nucleotides 3–7 and 10–12 in Fig. 3A)
gave similar structures. In contrast, FARFAR gave models with
significantly worse energy (by >3 kBT) whereas RLooM and
ModeRNA gave models with numerous steric clashes (see SI
Appendix, Supporting Results, and Fig. S5).

The SWA model for the C7.2 tetraloop-docked receptor dis-
played noncanonical features absent in the classic 11-nt receptor
(32, 33). The central U5 nucleotide bulged out of the structure.

Furthermore, the first and third nucleotides of the loop formed a
same-stranded trans Sugar-edge/Watson–Crick G4-A6 base pair
(Fig. 3B) that is not isosteric to the cis Sugar-edge/Hoogsteen
base pair presented in the A-A platform (34). The Find RNA
3D (FR3D) motif search software (35) found only two other in-
stances of this conformation in the entire database of RNA struc-
tures, within a malachite green aptamer and in a UUGUAURNA
sequence bound to the human cleavage factor protein Im (see
SI Appendix, Supporting Results). Nevertheless, the neighboring
5′ and 3′ nucleotides in these two precedent structures are posi-
tioned differently than in the C7.2 receptor (FR3D geometric dis-
crepancies of 0.72 and 0.89 Å; both higher than the 0.50 Å default
cutoff value), explaining the inability of RLooM and ModeRNA
to discover these solutions.

The SWA model for the C7.2 tetraloop-docked receptor
(Fig. 3B) made predictions that were testable by single-nucleo-
tide-resolution chemical modification experiments. We therefore
grafted the C7.2 receptor into the J6a/6b and J6b/6a segments
of the P4–P6 RNA (Fig. 3C) and carried out quantitative che-
mical mappings with dimethyl sulfate (DMS) and 1-cyclohexyl-
3-(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate
(CMCT) (36,37). As with the wild-type P4–P6 RNA, the

Fig. 3. Blind prediction of the C7.2 tetraloop-docked receptor and valida-
tion through single-nucleotide-resolution chemical mapping. (A) Two-dimen-
sional schematic of the C7.2 tetraloop/receptor motif; the 3-nt G4-U5-A6 loop
at the core of the receptor (shown in color) is different from receptors with
previously solved structures. Tertiary interactions between the GAAA tetra-
loop and the receptor are colored green. (B) Three-dimensional model of the
C7.2 receptor by SWA. Models from other methods are given in SI Appendix,
Fig. S5. (C) Chemical reactivities of A and C (based on dimethyl sulfate alkyla-
tion) and G and U (based on CMCT carbodiimide modification) shown as
white-to-red coloring on a mutant of the P4–P6 domain of the Tetrahymena
ribozyme containing the C7.2 receptor; measurements were acquired in
10 mM MgCl2, 50 mM Hepes, pH 8.0, at 24 °C. (D) Bar graph of reactivities
for nucleotides near the C7.2 receptor. Sequence positions are given in con-
ventional P4–P6 numbering with one additional nucleotide inserted between
positions 225 and 227 to account for the longer length of C7.2 compared to
wild type. See SI Appendix, Figs. S6 and S7 for full datasets, including both
wild type and C7.2 mutant data and error analysis.

Fig. 2. Comparison of crystallographic and SWA de novo models for three
diverse loopmotifs. (A) Five-nucleotide loop from the J5/5a hinge in the P4–P6
domain of the group I Tetrahymena ribozyme (PDB: 2R8S). (B) Seven-nucleo-
tide loop connecting helices P2 and P3 of the group II intron (PDB: 3G78). (C)
Ten-nucleotide loop from the large ribosomal subunit from H. marismortui
(PDB: 1S72, nucleotides 2003–2012). The modeled loop is shown in color
whereas surrounding nucleotides are shown in white. Some surrounding nu-
cleotides are not shown to permit unobstructed view of the modeled loop re-
gion. The rmsds to the crystallographic conformations (energy cluster rank) of
the displayed SWA models are (A) 1.04 Å (fourth), (B) 0.82 Å (first), and (C)
0.74 Å (second). Two-dimensional schematics apply to both the crystallo-
graphic and SWA models.
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C7.2-grafted mutant showed clear protections of the L5b tetra-
loop, J6a/6b tetraloop receptor, and the P5a A-rich bulge upon
addition of Mg2þ, verifying the attainment of the RNA’s global
tertiary fold (electrophorograms shown in SI Appendix, Fig. S6).
Further, as expected, the chemical reactivities of the wild-type
RNA and the C7.2 mutant outside the tetraloop/receptor motif
were indistinguishable within experimental error (SI Appendix,
Fig. S7). Within the C7.2 receptor, nucleotides G4 and A6 were
both protected from chemical modification, as predicted in the
SWA model (nucleotides 225 and 227 in conventional P4–P6
numbering; Figs. 3 C and D). Most importantly, U5 (nucleotide
226 in conventional numbering) was highly modified by CMCT,
with a reactivity value 22� 5 times greater than the mean reac-
tivity of Watson–Crick base-paired uridines in the entire P4–P6
RNA. This result provides strong confirmation that U5 is an ex-
trahelical bulge, as predicted. The chemical accessibility data thus
validate the de novo SWA model at nucleotide resolution and
disfavor first-ranked models from knowledge-based methods
(SI Appendix, Fig. S5). Subsequent to obtaining these experimen-
tal results, we discovered further evidence in support of the SWA
model from sequence variations in the original in vitro selection
experiment that isolated the C7.2 receptor (21) (summarized in
SI Appendix, Supporting Results).

Discussion
A Stepwise Ansatz Resolves a Conformational Sampling Bottleneck in
Structure Prediction. An inability to guarantee exhaustive confor-
mational sampling has precluded the consistent prediction of
biomolecular structure at high resolution (1–6). In Rosetta as
well as other frameworks (10–16), potential issues that limit de
novo sampling efficiency include these algorithms’ dependence
on the database of existing experimental structures; the stochas-
ticity of Monte Carlo fragment assembly; and the loss of informa-
tion due to the use of coarse-grained phases to smooth and
reduce the dimensionality of the search space (7, 9, 38). To ad-
dress these issues, we developed a working hypothesis, called the
stepwise ansatz, and its implementation, the SWA method, that
enumeratively searches a physically realistic subspace of a mole-
cule’s all-atom conformations in polynomial computational time
[OðNÞ where N is the number of nucleotides; see SI Appendix,
Supporting Methods].

The concept of ab initio step-by-step build-up has been dis-
cussed previously, e.g., in enumerative coarse-grained or stochas-
tic all-atom search methods from Dill and coworkers (18, 19),
pioneering peptide-modeling work from the 1980s by the Scher-
aga lab (17), and earlier computational explorations by Levinthal
in 1968 (6). However, these prior build-up strategies have not
been adopted into the mainstream of structure modeling or
shown to outcompete Monte Carlo or knowledge-based methods
(19, 20). The prior lack of development appears to stem from the
difficulty of searching all possible build-up paths and from
the expense of deterministic, enumerative calculations relative
to stochastic, knowledge-based methods. For example, modeling
a single 5-nt RNA loop herein required 12,000 CPU hours; for-
tunately, this calculation is now feasible due to the massive par-
allelization of high-performance computer clusters.

On a challenging benchmark of irregular RNA loop motifs,
we have shown that SWA resolves the conformational sampling
bottleneck that has hindered knowledge-based methods. In all
cases, SWA sampled the experimental loop conformation de
novo and/or recovered conformations with energies that sur-
passed the energy of the optimized experimental loop conforma-
tion. Further, in the majority of the cases (10 of 15), the Rosetta
all-atom energy function was accurate enough to permit a near-
native conformation to be selected as one of the five lowest
energy cluster centers. The strongest test of the SWA method
is the blind prediction on the C7.2 tetraloop/receptor motif of
previously unknown structure. The predicted model includes

noncanonical features (including a same-stranded G-A base pair
and an extrahelical bulge) and agrees with subsequently mea-
sured chemical accessibility data. Further atomic-resolution tests
might be achieved if crystals can be obtained for the C7.2 mutant
of the P4–P6 RNA.

Stringent Tests of the Rosetta All-atom Energy Function. Prior studies
have reported anecdotal cases of failures of the Rosetta all-atom
energy function for macromolecule modeling (9, 39), but the
work herein is a unique example of a complete high-resolution
de novo modeling benchmark in which every failure case can be
traced to inaccuracies in the underlying energy function. While
prior work has shown that the Rosetta all-atom energy function
provides better energetic discrimination than traditional molecu-
lar mechanics force fields (10), this work indicates that approx-
imations in the Rosetta all-atom energy function still remain too
inaccurate to permit atomic-resolution RNA modeling on a con-
sistent basis. The energy function does not explicitly model metal
ions (e.g., see SI Appendix, Fig. S3), and water is modeled through
a crude solvation term (40). Long-range electrostatic effects,
higher-order dispersion effects (41), and hydrogen bond coopera-
tivity are presently neglected. Because of its generality and sam-
pling power, the SWA method should permit stringent tests of
more recently developed all-atom energy functions, including
those that model polarizable moieties (42). For the same reasons,
the SWA approach should be powerful for high-resolution struc-
ture determination methods that use limited experimental infor-
mation as pseudoenergy terms to break degeneracies in physics-
based energy functions [see, e.g., refs. (43–45)].

AGeneral Enumerative Strategy for Molecular Modeling. In this work,
we have focused mainly on the application of SWA toward single-
stranded RNA loop-segments, both to demonstrate the method’s
conformational sampling power and to solve a basic practical
problem that arises in RNA structure prediction. Nevertheless,
the strategy should be generally applicable to a diverse class of
molecular modeling problems. For example, noncanonical RNA
motifs often involve multiple RNA strands interacting with one
another or loops returning to the same helix. Extensions of
the SWA method to model these motifs appear accurate and
computationally tractable (see SI Appendix, Fig. S8). With further
expected improvements in computational power, de novo atomic-
accuracy modeling of RNA motifs with lengths up to 15 nucleo-
tides, a size range that includes many RNA aptamers and catalytic
sites, should be feasible. Further, the basic concepts underlying
SWA are not specific to RNA structure prediction and should be
applicable to other frontier problems in high-resolution macro-
molecular modeling, including efficient prediction of protein
loops and small proteins, rigorous tests of protein and protein/
RNA energy functions, and enumerative sequence design of func-
tional protein and RNA loops.

Methods
Both the SWA and FARFAR methods were implemented in C++ in the Rosetta
codebase. The software is being made available in the next Rosetta release
(3.4). Application of RLooM (database version 12-19-08) and ModeRNA
(version 1.6.0) follow the instructions given in the released software. DMS
and CMCT modification data of the wild-type P4–P6 RNA and the C7.2
P4–P6 mutant were acquired at single-nucleotide resolution, as described
previously (46). Complete description of the SWAmethod; details on updates
to the FARFAR method; explicit command-line examples for RNA loop mod-
eling with SWA, FARFAR, RLooM, and ModeRNA; and details of the experi-
mental method are provided in SI Appendix, Supporting Methods.
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