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Abstract

AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in
vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme’s function. Expression of
untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme.
Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor
and corrected kcat values as high as 7 s21. Substrate kinetic profiling shows that the enzyme accepts a variety of primary
amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured
kcat/Km values between 102 and 104 M21 s21. Km(O2) approximates the partial pressure of oxygen found in the interstitial
space. Comparison of the properties of purified murine to human enzyme indicates kcat/Km values that are within 3 to 4-
fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug
development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for
when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated
murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell Km values that are
reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic
parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates
with relatively high kcat/Km have been discovered, including dopamine and cysteamine, which may implicate a role for
adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of
primary amines that are non-native to human tissue suggests possible roles for the adipocyte enzyme in subcutaneous
bacterial infiltration and obesity.
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Introduction

Copper amine oxidases (CAOs) catalyze the oxidative deami-

nation of primary amines to form hydrogen peroxide, ammonia,

and the corresponding aldehyde, eq 1:

RCH2NH3
zzO2 �?

H2O
RCHOzNH4

zzH2O2 ð1Þ

These enzymes were first found to contain a novel redox cofactor,

the tyrosyl-derived topaquinone (TPQ) in the bovine serum amine

oxidase [1], with the distribution of TPQ now assigned to all living

aerobic organisms including bacteria, yeast, plants, and animals

with few exceptions such as the laboratory strain of Saccharomyces

cerevisiae. The susceptibility of TPQ to carbonyl reagents, such as

semicarbazide, has given rise to an alternate designation of

membrane-associated CAOs as a semicarbazide-sensitive amine

oxidase (SSAO) [2]. Efforts to elucidate the reaction mechanism of

CAOs have resulted in a consensus ping-pong mechanism during

which reducing equivalents from the amine substrate are stored in

an aminoquinol form of cofactor, which undergoes recycling to

TPQ concomitant with the conversion of O2 to H2O2 [3].

Though much is known about the enzymatic mechanism of

CAOs, the physiological role of mammalian enzymes is not well

understood, though it has been associated with several diseases.

Among the three TPQ-containing CAOs annotated in the human

genome (AOC1, 2 and 3), AOC3 has been implicated in

congestive heart failure [4], diabetes [5], Alzheimer’s [6], liver

disorders [7], and cancer [8]. An understanding of the

physiological role of AOC3, alternatively referred to as vascular

adhesion protein-1 (VAP-1), may provide a basis for treatment of

these diseases.

In bacteria and yeast, the CAOs are generally assumed to

catalyze the release of nitrogen and carbon from primary amines

for the support of microbial growth. Interestingly, CAOs are

among the most abundant soluble proteins found in the

extracellular fluids of pea, lentil, and chickpea seedlings and are

implicated in wound repair [9]. In mammals, the physiological
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role of CAOs was initially thought to involve the metabolism of

xenobiotic and endogenously produced amines. However, the

natural substrate(s) of AOC3 in vivo is/are currently unknown and

kinetic data with purified enzyme have been sparse.

The distribution of AOC3 in mammalian tissues is wide-ranging

with relatively high expression shown in smooth muscle cells and

adipocytes [10]. In fact, it was found to contribute up to 2.3% of

total plasma membrane proteins in rat adipocytes [11]. To

complicate matters further, AOC3 is not only localized to the

extracellular surface of cells, known as membrane-bound AOC3,

but also exists as a soluble enzyme in plasma [12] and it is

unknown whether membrane-bound and plasma AOC3 have

similar physiological roles. Notably, endothelial AOC3 has been

implicated in the extravasation of leukocytes into inflamed tissue,

acting as an adhesion protein [13]. The process of extravasation

requires chemokines, cytokines, and an array of adhesion

molecules [14]. It has been shown that the enzymatic activity of

AOC3 is functionally important, impairing leukocyte recruitment

if activity is abolished either by inhibition or site-directed

mutagenesis [15]. Interestingly, a lectin, Siglec-10, expressed by

leukocytes was found to be a possible substrate of AOC3 and may

be involved in mediating adhesion [16], though the proposed

oxidation of an arginine side chain seems highly unlikely.

Currently, the precise mechanism of how AOC3 acts as a vascular

adhesion protein is unknown.

With the rise in worldwide rates of obesity, type-2 diabetes, and

metabolic syndrome X, interest in the biology of adipocytes has

increased, especially after the discovery of a class of more than fifty

adipose-derived cytokines, or adipokines [17]. Rather than

functioning as a passive organ primarily involved in fat storage,

insulation, and protection, adipose tissue is now thought to be

involved in a complex network of endocrine, paracrine, and

autocrine signals that influences the functions of many tissues [18].

AOC3 is not thought to function as an adhesion protein in

adipocytes and the function of this highly expressed, extracellular

enzyme is currently unknown.

Since adipose tissue plays an integral role in energy balance, a

possible role of adipocyte AOC3 could be an involvement in

insulin signaling. When rodents were administered AOC3

substrates such as methylamine, through dietary supplementation,

they showed improvement in glucose tolerance [19]. However, co-

administration of the non-physiological vanadate was required to

observe a pronounced effect, which can be rationalized by a

vanadate-dependent inhibition of tyrosine phosphatase or stimu-

lation of tyrosine protein kinases [20]. Interestingly, administration

of AOC3 substrate in the presence of catalase effectively abolished

the insulin-sensitizing effects, implicating an important role for

H2O2 [21]. Hydrogen peroxide has increasingly gained recogni-

tion as a possible cellular signaling molecule and is thought to play

a role in cell proliferation, differentiation, migration, and apoptosis

[22,23]. Specifically in adipocytes, H2O2 has been shown to be

involved in the activation of the insulin-signaling cascade [24]. It

has also been found that long-term exposure of obese rats to the

AOC3 inhibitor, semicarbazide, decreased fat deposition due most

likely to enhanced lipolysis, though decreased food intake was also

observed [25]. Though there may be a link between AOC3 and

insulin-signaling, there have been no other reports with regards to

how AOC3 may be involved in the insulin-signaling cascade and

the need for vanadate to produce a pronounced effect makes this

link somewhat tenuous.

With an interest in understanding the physiological function of

AOC3 in adipocytes, we have focused on characterizing the

suitability of various amine substrates, including primary amines

annotated in the Human Metabolome database [26], for turnover

by measuring kinetic parameters using the cloned human AOC3

expressed and purified from insect cells. Since animal studies most

often use mouse models, a comparison of human to mouse enzyme

is also reported. Finally, differentiation of murine-derived

fibroblasts to adipocytes permits a comparison of purified enzyme

to cell-associated AOC3. Based on the resulting profile of substrate

specificity, a number of formerly unrecognized substrates and

possible biological functions emerge.

Materials and Methods

All chemicals, reagents, and column chromatographic resins,

including AOC3 substrates, were purchased from Sigma Aldrich

(St. Louis, MO) unless otherwise stated. Aminoacetone was

purchased from Tyger Scientific, Inc. (Ewing, NJ). [1,1-2H2]Ben-

zylamine hydrochloride was prepared as previously described [27].

The purity of synthesized [1,1-2H2]benzylamine hydrochloride

was verified by NMR with no evidence of contamination by the

protium substrate or other chemical contaminants. Peptide-bound

lysine (GGGGKGGGG) was synthesized by the Stanford

University Protein and Nucleic Acid Facility (PAN). Calcium

phosphate transfection kit was purchased from Invitrogen

(Carlsbad, CA). DMEM High Glucose, purchased from GIBCO

(Carlsbad, CA) was used in the course of culturing adipocytes. Gel

filtration column chromatographic resin, Sephacryl S-200 HR,

was purchased from Amersham Biosciences (Piscataway, NJ).

Cell Culture
s2 Drosophila cells were purchased from Invitrogen (Carlsbad,

CA) and grown in BioWhittaker Insect-XPRESS insect cell media

from Lonza (Walkersville, MD) at 27uC. For antibiotic selection,

s2 media was supplemented with 600 ug/mL hygromycin

purchased from Invitrogen (Carlsbad, CA). Murine 3T3-L1

preadipocytes were obtained from the American Type Cell

Culture (Bethesda, MD). The adipocyte differentiation protocol

starts with a 100 mm tissue culture dish of 3T3-L1 preadipocytes

grown to confluence. Once confluent, cellular differentiation was

induced using insulin, dexamethasone, and methylisobutyl-

xanthine as previously described [28]. Cells were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% fetal bovine serum (FBS) purchased from Hyclone (Waltham,

MA). Only passage 1 or 2 adipocytes were used at Days 8 to 10

post-differentiation. Adipocytes were maintained at 37uC and 5%

CO2.

Construction of Expression Vector for Producing Soluble
Human and Murine AOC3

The soluble portion of human AOC3 (GenBank Accession

No. NM_003734) from residues 28 to 763 was cloned by PCR

from a VAP-1 (vascular adhesion protein-1, AOC3) cDNA-clone

plasmid (generously provided by Prof. Sirpa Jalkanen) containing

the complete coding sequence of human AOC3. Amplification

was performed using the 59 primer 59-TATCAGGAATTC
ATGCAGGGGTGGAGATGGGGGTGA-39 with EcoRI re-

striction site introduced upstream of the N-terminus. The 39

primer was 59-TATCAG CTCGAGTTACTAGTTGTGAGA-

GAAGCCCCCGTG-39 with XhoI restriction site introduced

after two stop codons. PCR was carried out for 30 cycles with

1 min denaturing at 95uC, 1 min annealing at 60uC, and 2 min

15 sec elongation at 72uC. The PCR product was ligated into the

s2 expression vector pMT/BiP/V5-His B from Invitrogen

(Carlsbad, CA). The extra 17 amino acids at the N-terminus of

recombinant human AOC3 was due to the restriction enzymes

used. Upstream restriction enzymes were not used due to the
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presence of cut sites within AOC3. For murine AOC3 (clone also

generously provided by Prof. Sirpa Jalkanen), a construct was

created in a manner similar to the human AOC3 in which the first

27 amino acids corresponding to the membrane anchor were

removed. PCR was carried out on the full-length AOC3 sequence

with the following primers: 59 primer 59-GTGGAATTCATGGG-

CAGGAGCGGAGATG-39 and 39 primer, 59-ATATCTAGA-
TACAGTT CAATTGTCTCTGTAAGCAAAG-39. The trun-

cated sequence was inserted into the pMT/BIP/V5-His B vector

using the EcoRI and XbaI restriction sites.

Transfection of Schneider 2 (s2) Drosophila Cells and
Selection of Stable Cell Line

s2 cells were grown to 2 to 46106 cells/mL in serum-free insect

cell media and co-transfected with pMT/BiP/V5-His B-human

AOC3 plasmid and pCoHygro selection vector using calcium

phosphate. The suggested transfection procedure provided by the

manufacturer was followed except calcium chloride and phosphate

solutions were added 10 uL at a time with ample mixing. Two

days post-transfection, s2 cells were washed twice and resuspended

in cell media supplemented with 10% FBS and 300 ug/mL

hygromycin. The s2/hygromycin kill curve was determined

indicating that a minimum dose of 600 ug/mL hygromycin was

required to kill all untransfected cells. After one week, antibiotic

dose was increased to 600 ug/mL hygromycin and selection

continued for two more weeks. Amine oxidase activity was not

detectable in small-scale test expressions of 50 to 100 mL. Samples

showing a band around 90 kDa on SDS-PAGE gel were scaled up

to 500 mL total volume and eluted from an ion exchange column

prior to assaying for activity (see below). Transfection with the

murine AOC3 plasmid used protocols similar to those for human

AOC3.

Western Blot Analysis
Samples were run on 10% acrylamide, denaturing SDS-PAGE

gel using a Laemmli buffering system and transferred to

nitrocellulose membrane. Blocking was performed for 1 h at

room temperature. After washing three times, membrane was

incubated with a 1:2400 dilution of primary anti-human or murine

AOC3 antibody (generously provided by Prof. Sirpa Jalkanen) in

blocking buffer with gentle agitation for approximately 14 to 16 h

at 4uC. Membrane was then washed three times and incubated in

1:1000 dilution of secondary antibody, horseradish peroxidase

conjugated anti-mouse Ig from Cell Signaling Technology

(Danvers, MA) with gentle agitation for 1 h at room temperature.

The membrane was immediately developed using ECL Plus

Western Blotting Detection System from GE Healthcare, (Buck-

inghamshire, UK).

Purification of Human AOC3
All steps of purification were performed at 4uC and were

initiated immediately post-expression. Starting with 1.5 L raw

expression media, the s2 cells were spun down at 4000 rpm for

15 min. The supernatant was isolated and concentrated to

approximately 750 mL. The concentrated media was then

dialyzed in 12 L of 10 mM potassium phosphate (KPi) buffer,

pH 6.5 for at least 4 h, after which buffer was replaced and dialysis

allowed to continue for approximately 15 h more. The first

purification step involved cation exchange chromatography using

75 mL of SP Sepharose Fast Flow equilibrated with 10 mM KPi,

pH 6.5. The dialyzed media was filtered (0.22 um) and loaded

onto the cation exchange column and eluted off the column with

1 L buffer step gradient (500 mL 10 mM KPi pH 6.5 and 500 mL

10 mM KPi pH 6.5/250 mM NaCl) into fractions by gravity. The

fractions were analyzed on a SDS-PAGE gel and those containing

AOC3 were collected and pooled. The pooled fractions were

concentrated to approximately 10 mL and diluted with 10 mL

10 mM KPi buffer, pH 6.5, 20% glycerol to make a final 20 mL

10% glycerol solution to help stabilize the protein and minimize

precipitation. The glycerol did not affect enzyme activity when

compared to activity of enzyme purified without addition of

glycerol. The 20 mL partially purified protein was further

concentrated down to 1 to 2 mL. The concentrate was centrifuged

and the soluble portion loaded onto a gel filtration column,

charged with 290 mL Sephacryl S-200 HR equilibrated with

50 mM KPi, pH 6.5. A pump was connected to the gel filtration

column with flow regulator, collecting 1 mL fractions over 16 to

20 min. Fractions were run on a SDS-PAGE gel and those

indicating purified AOC3 were collected and concentrated to

approximately 50 to 200 uL. Benzylamine oxidase activity was

measured. The benzylamine substrate was dissolved in 50 mM

KPi, pH 6.5 at a concentration of 2 mM. Buffer with benzylamine

was blanked in a Cary 50 Bio UV-Vis spectrophotometer from

Varian (Palo Alto, CA) before addition of either 3 uL or 6 uL

purified AOC3 to initiate reaction at room temperature and total

volume of 110 uL. Benzaldehyde product formation was moni-

tored at absorbance l= 250 nm (e= 13800 M21 cm21 [29]) for

1 min. Purified protein was immediately snap-frozen in 50 mM

KPi, pH 6.5 buffer with liquid nitrogen and stored at 220uC. The

purification of murine AOC3 was performed in a similar manner

to human AOC3, with minor modifications. Murine AOC3 was

purified using anion exchange resin, DEAE Sepharose Fast Flow

from Amersham Biosciences (Piscataway, NJ), equilibrated with

5 mM KPi, pH 7.2, eluting with two 1 L buffer gradients

composed of either equal volumes of 5 mM KPi, pH 7.2 and

100 mM KPi, pH 7.2 or 100 mM KPi, pH 7.2 and 300 mM KPi,

pH 7.2. Enzyme mostly eluted off the anion exchange column

after the 5 mM/100 mM gradient. Gel filtration conditions were

similar, though collected protein was loaded onto the same column

2 to 3 times.

Determination of TPQ Content
The TPQ content of AOC3 was determined using phenylhy-

drazine in 50 mM KPi, pH 6.5 [30], at room temperature by

measurement of the change in absorbance at l= 448 nm with and

without phenylhydrazine using e= 40500 M21 cm21. This ex-

tinction coefficient was determined for copper amine oxidase

expressed by the yeast, Hansenula polymorpha (cf. [3]). The

concentration of enzyme monomer was determined by Bradford

assay using reagents from Biorad (Hercules, CA) using bovine

albumin, fraction V from Pierce (Rockford, IL) standard and MW

per monomer of 84622.

ICP
Copper and zinc standards were made through serial dilutions

from reference solutions from Fisher Scientific (Pittsburgh, PA).

ICP was performed on a Perkin Elmer Optima 7000 (Waltham,

MA).

Kinetic Characterization of AOC3
Steady-state kinetic measurements were carried out by moni-

toring oxygen consumption using a Clark electrode and YSI

Model 5300 Biological Oxygen Monitor. In the case of human

AOC3, a final volume of 1 ml contained 500 mM KPi, pH 7.4 at

37uC, to which variable amounts of substrate were added; reaction

was initiated by addition of AOC3. For the screening of murine

AOC3, the conditions were similar to human AOC3, although the

Function of AOC3 in Adipocytes
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concentration of buffer was only 50 mM. Unless otherwise noted,

the oxygen concentration was kept constant at 211 mM. Data were

fitted to the Michaelis-Menten equation, and kcat was calculated

using the active protein concentration as determined by

phenylhydrazine assay described above.

Microscopic Examination of the Subcellular Localization
of Murine AOC3

3T3-L1 preadipocytes were grown and differentiated on glass

coverslips coated with poly-L-lysine (MW = 100K–150K). On day

5 post-differentiation, cell media was replaced with fresh DMEM

containing 10% FBS. Cells were refrigerated prior to use. Mature

adipocytes on coverslips were prepared for immunofluorescence

by washing twice with PBS. Cells were fixed by incubating with

4% paraformaldehyde for 10 min [31]. After blocking, cells were

incubated with a monoclonal primary anti-mouse AOC3 antibody

followed by the secondary anti-rat Ig antibody [32]. After washing

with phosphate-buffered saline (PBS), cells were mounted using

Prolong Kit from Molecular Probes (Carlsbad, CA). Cells were

allowed to sit overnight before evaluation by confocal microscopy.

Whole Cell Assay of Murine AOC3 Activities
Murine 3T3-L1 adipocytes were cultured in 24-well plates.

Prior to the experiment, cells were washed twice with warmed PBS

and once with warmed DMEM+10% FBS. Only wells fully

populated by differentiated adipocytes (at least 90% of cell

population) were used. For measurements involving isoamylamine

substrate, adipocytes were incubated in 500 uL DMEM+10% FBS

and all cells treated with 0.33 mM clorgyline and 3.33 mM L-

deprenyl to eliminate activity of monoamine oxidase from

measurements [33]. In the set of control experiments, adipocytes

were also treated with 1 mM AOC3 inhibitor, semicarbazide.

Cells were incubated with inhibitors for 30 min at 37uC and 5%

CO2. After incubation, cells were washed twice with warmed

Krebs Ringer Phosphate (KRP) (145 mM NaCl, 5.7 mM sodium

phosphate, 4.86 mM KCl, 0.54 mM CaCl2, 1.22 mM MgSO4,

5.5 mM glucose, pH 7.35) buffer. A coupled enzymatic reaction

involving horseradish peroxidase (HRP) and Amplex Red

purchased from Molecular Probes (Carlsbad, CA) was used to

detect H2O2 production resulting from substrate turnover. Upon

final addition of 500 uL KRP buffer containing 50 uM Amplex

Red reagent and 0.1 U/mL HRP, isoamylamine (from 125 uM to

8 mM) was added to wells pre-incubated either with or without

inhibitor. All procedures involving Amplex Red were performed in

the dark. Envision Multilabel Reader with a 570 nm optical filter

from Perkin Elmer (Waltham, MA) was used to determine the

absorbance of oxidized Amplex Red. Measurements were taken

every 3 min for 30 min at 37uC. Endpoint absorbance changes

were used to determine kinetic rate and to calculate the whole cell

Km of isoamylamine.

For measurements involving aminoacetone and methylamine,

mature adipocytes were washed twice with room temperature

phosphate buffered saline followed by incubation in 1 ml Krebs

Ringer phosphate glucose solution for 30 min. One unit (1 U) of

horseradish peroxidase and 50 ng of Amplex Red dye were added

to each well. After mixing, the plate was incubated at 37uC in a

fluorescence plate reader (Gemini System using the Softmax

software package) and a background rate for Amplex Red

oxidation was measured (lEx = 560 nm and lEm = 590 nm).

Aminoacetone or methylamine was then added and the rate of

Amplex Red oxidation was determined by subtracting the

background from the rate obtained after substrate addition. Both

direct (slope) and endpoint fluorescence changes were measured

and the determined rates were used to calculate an averaged Km

value.

Results

Untagged, Recombinant Human AOC3
Previous recombinant forms of human AOC3 have been

purified via conjugation of a modified GST tag to the N-terminus

of the soluble enzyme and the concomitant use of glutathione-

affinity chromatography [34], immunoaffinity chromatography

using a N-terminal FLAG epitope [35], or a one-step purification

using commercially unavailable anti-AOC3 monoclonal antibody

[36]. Herein, a purification procedure of the untagged soluble

human AOC3 enzyme was developed. Attempts to express

recombinant AOC3 in E. coli and S. cerevisiae were unsuccessful.

Expression proved viable in s2 Drosophila cells, consistent with the

earlier report by Dooley and co-workers of the overexpression of

human kidney diamine oxidase (AOC1) in the s2 insect cell line

[37].

In this study, the soluble portion of human AOC3 was cloned

into an expression plasmid containing an upstream-inducible

metallothionine promoter and BiP secretion signal and stably

transfected into s2 Drosophila cells, resulting in secretion of the

enzyme into cell media upon induction. An immunoblot of

fractions from the ion exchange chromatograph resulted in a

significant band at approximately 90 to 100 kDa, the expected size

of the monomer of soluble AOC3 calculated as 84 kDa in the

absence of posttranslational modification, Fig. 1A. Subsequent

purification of the eluant from cation exchange by gel filtration

chromatography resulted in pure enzyme, as shown in Fig. 1B.

The yield of enzyme varied from 160 to 480 ug/L of purified

enzyme. The transfection of s2 cell lines using calcium phosphate

after selection has been reported to result in up to 500 copies of

inserted genes with expression of up to 50 mg/L of recombinant

human enzymes reported [38,39]. The relatively low yield of

AOC3 is attributed to poor transfection efficiency. Nonetheless,

the yield of AOC3 obtained in this manner is comparable to that

from other expression procedures, with the advantages of

untagged protein and easily accessible purification steps. The

uncorrected specific activity (see below) was approximately

46 nmol/min/mg of monomer.

Characterization of Purified Human AOC3
Observed rates were linear in enzyme concentration and

eliminated by prior incubation of purified enzyme with 100 uM

semicarbazide inhibitor for 5 min. The quinone moiety of the

AOC3 active site cofactor, TPQ, can be derivatized using the

carbonyl reagent phenylhydrazine to yield the resulting hydrazone

product, which can be monitored at 448 nm. The percent of

active protein determined in this manner was approximately 6.1%,

Table 1, leading to a corrected specific activity of ca. 0.76 mmol/

min/mg of monomer under the conditions of the standard assay.

Since the biogenesis of TPQ requires copper [40], spiking purified

enzyme with sub-stoichiometric amounts of CuCl2 could increase

the percent of active protein. However, the specific activity

actually decreased with precipitation observed (data not shown).

The copper content was determined by ICP and found to be 0.4

moles per mole of AOC3 monomer. The copper content is

surprisingly low, given that s2 cells were induced to express AOC3

with 600 uM CuSO4. Additionally, the zinc content was found to

be 0.16 moles per mole of AOC3 monomer. Zinc-substituted

bovine serum amine oxidase has been found to be catalytically

inert [41], with tighter binding of the apo-enzyme for zinc than

copper shown in the yeast H. polymorpha amine oxidase [42]. The

Function of AOC3 in Adipocytes
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inactivity of Zn2+-reconstituted enzyme is due to the requirement

for a redox active metal during TPQ biogenesis [43]. In light of

only 40% of the total protein subunits containing copper, the

efficiency of post-translational cofactor biogenesis is estimated as

15%.

Steady-State Substrate Kinetic Profiling of Human AOC3
Most kinetic measurements of AOC3 have relied on the use of

cell lysates or membranes, rather than pure enzyme, and

colorimetric reagents, such as Amplex Red, to measure hydrogen

peroxide production [44]. This approach requires the determina-

tion of any sub-cellular background reaction rate following the

introduction of an AOC3 inhibitor. In addition, interaction of

AOC3 with cellular components could affect enzyme activity.

Rather than measure hydrogen peroxide production, O2

consumption was monitored directly using a Clark oxygen

electrode. A high ionic strength (500 mM potassium phosphate

buffer) was maintained so that the assay of all substrates (including

those with elevated Km values) could be carried out at the same

final ionic strength. Comparison of steady-state kinetic rates of

benzylamine oxidation with results from kinetic assays at lower

ionic strength (50 mM potassium phosphate buffer) did not show a

significant difference, indicating little impact on rate due to the

higher ionic strength for this substrate. Addition of 10 to 150 mM

NaCl to kinetic assays of human copper amine oxidase activity has

previously been found to have little effect on the rate-determining

step [44]. Using the purified AOC3 and our O2 uptake assay, a

variety of aryl-, straight chain alkyl-, and branched chain

alkylamines, including several amines in the Human Metabolome

database [26], were examined for activity with measured values of

kcat and Km in Table 2.

Both methylamine and ethylamine are found endogenously in

mammals [45,46]. However, when comparing kcat and Km of

straight-chain alkylamines, no apparent trend in kcat and Km is

observed as the alkyl chain is lengthened (1 to 5 carbons). In an

earlier study, a decrease in Vmax and increase in Vmax/Km were

reported with an increase in chain size (up to 9 carbons) using

AOC3 derived from human-solubilized adipocyte membranes

[44]. Km values are all observed to be in the mM range with the

exception of methylamine (652 uM), that still contrasts markedly

with human plasma levels of methylamine found to be on average

31.8 ng/mL (1.03 uM) [47]. Branched chain amines are not

thought to occur endogenously, but both isobutylamine and

isoamylamine are reasonably good substrates with mM Km values.

On the other hand, isopropylamine was not found to have any

AOC3 activity. Substrates of human AOC3 also include

arylamines and catecholamines, with the non-physiologic benzy-

lamine exhibiting a low Km value (84.5 uM) and the highest kcat/

Km. Adding an extra methyl group to benzylamine results in an

Table 1. Properties of purified human AOC3.

Property Value

TPQ contenta 0.06

Copper contenta 0.4

Km (O2) 2864.6 torr 3864.2 uM

kcat(H)/kcat(D)
b 1.2360.08

[kcat/Km(S)]H/[kcat/Km(S)]D
b 8.6462.82

aPer monomer.
bAt ambient O2, pH 7.4, 37uC.
doi:10.1371/journal.pone.0029270.t001

Table 2. Human AOC3 substrate kinetic profile.

Substrate kcat(s21) Km(uM) kcat/Km(M21 s21)

Methylaminea 5.6060.20 652677 8.5860.126103

Ethylaminea 6.1260.40 1280061960 4.7860.176102

Propylamine 5.8060.23 26506260 2.1960.106103

Butylamine 6.3160.31 28306460 2.2360.176103

Amylamine 4.3360.19 57106760 7.5760.146102

Isobutylamine 7.4060.51 34206540 2.1660.176103

Isoamylamine 6.8960.83 456061160 1.5160.286103

Benzylamine 3.4260.10 84.569.8 4.0560.126104

Phenethylaminea 1.1260.08 20506620 5.4560.316102

Cyclohexanemethylamine 5.3660.77 1650065200 3.2560.356102

Dopaminea 0.5460.033 99624 5.4460.256103

Aminoacetonea 1.4660.10 66618 2.2360.286104

Cysteaminea,b 1.1160.14 31615 3.5560.506104

aSubstrates of human AOC3 with entries found in the Human Metabolome
Database version 2.5.
bSubstrate kinetics were measured at approximately 19 to 23% air (4 to 5% O2).
doi:10.1371/journal.pone.0029270.t002

Figure 1. Purification of human AOC3 expressed by s2
Drosophila cells. A. Immunoblot of fractions obtained after ion
exchange column chromatography, showing human AOC3 at the
expected mass. Protein ladder to the left of Lane 1 (top band, blue
2100 kDa; bottom band, red 275 kDa). B. 10% acrylamide, denaturing
SDS-PAGE gel electrophoresis of fractions using a Laemmli buffering
system after gel filtration column chromatography. Fractions repre-
sented in lanes 4 to 8 and 10 were isolated and concentrated for further
characterization. Protein ladder shown in Lane 9 (second band from top
2116 kDa, third band 297 kDa, fourth band 266 kDa). Approximately
0.25–2 ug of protein was loaded into each lane.
doi:10.1371/journal.pone.0029270.g001
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approximately 25-fold increase in Km and a decrease in kcat/Km of

approximately two orders of magnitude, indicating that the

endogenous phenethylamine [48] is an unlikely substrate.

Catecholamines were observed to consume oxygen under

ambient air prior to addition of enzyme. However, lower

concentrations of dopamine, epinephrine, and norepinephrine

(below 1.2 mM) allowed measurement of steady-state kinetics,

without a high background rate of oxygen consumption masking

the rate of amine oxidation by AOC3. Dopamine was found to

have a Km of approximately 99 uM, which is about 12-fold less

than the maximum substrate concentration used, allowing a

reasonable estimate of kcat. Dopamine has a demonstrated role in

adipocyte metabolism, binding to the b3-adrenoreceptor, resulting

in lower glucose uptake [49]; in this context, AOC3 oxidation of

dopamine may moderate ligand/receptor interactions. Neither

norepinephrine nor epinephrine (a secondary amine), exhibited

any reproducible AOC3 activity above background and other

endogenous amines, such as tyramine, tryptamine, histamine, and

octopamine were found to have either little or no AOC3 activity.

Aminoacetone, a threonine and glycine metabolite [50], and

cysteamine, a breakdown product of pantethine (a coenzyme A

precursor) [51], are both found in humans and were found to have

among the lowest Km values (66 uM and 31 uM, respectively), as

well as relatively high second order rate constants. Both substrates

can auto-oxidize in ambient air with cysteamine assays yielding a

high background rate of oxygen consumption at all concentrations

of amine tested. Thus, to characterize the steady-state kinetics of

cysteamine oxidation, it was necessary to reduce the oxygen

concentration to 19 to 23% air. This is around the Km(O2) of

human AOC3, which was found to be approximately 2864.6 torr

(18% air) (Table 1), close to the partial pressure of oxygen in the

interstitial space of tissue (ca. 20 to 40 torr [52]). While reduction

in the O2 concentration is expected, thus, to reduce kcat ca. 2-fold,

it will not influence the comparative kcat/Km value. The second

order rate constants, kcat/Km, were within two orders of

magnitude for all of the amines examined, 102 to 104 M21 s21.

The kinetic isotope effect (KIE) of amine oxidation was

evaluated using benzylamine with both hydrogens at the a carbon

replaced with deuterium (Table 1). The isotope effects were found

to be 1.2360.08 at substrate saturation and 8.6462.82 at low

substrate (below Km). This indicates that steps leading up to and

including the base-catalyzed proton abstraction from substrate are

not rate-limiting at substrate saturation, whereas the C–H

cleavage step becomes rate-determining at low substrate concen-

trations. This result can be of assistance in evaluating the impact of

variations in substrate structure on catalytic efficiency (see next

section below and ref [53]). After the completion of this work,

Heuts et al. published similar results for the isotope effect using

benzylamine, with additional studies using phenethylamine and its

para-substituted compounds [54]. Interestingly, they show a high

KIE on kcat for phenethylamine, indicating that for a slightly larger

substrate, proton abstraction becomes rate-limiting under condi-

tions of saturation by substrate and O2.

The mechanism of vascular adhesion by leukocytes to AOC3-

expressing endothelial cells has been hypothesized to proceed via

the interaction of a peptide-bound lysine on the extracellular

surface of leukocytes with AOC3 [55]. This could involve either

simple binding/inhibition or oxidation of the lysyl e-amino group.

In this study, neither L-lysine (minimal activity at 38 mM) nor D-

lysine was found to have appreciable AOC3 activity. Similar

results were shown by previous kinetic studies using bovine AOC3,

though L-lysine has been shown to act as an AOC3 inhibitor, but

only in the presence of benzylamine [56]. In addition, the small

lysine containing peptide, GGGGKGGGG, which has been

shown to be an AOC3 inhibitor [57], was found to be inactive

toward AOC3 as a substrate at concentrations up to 38 mM. The

ability of a protein-bound lysine to serve as the in vivo substrate for

AOC3 seems unlikely, though a sequence-dependent activity

cannot be ruled out.

Comparing previous data obtained from cell lysates containing

AOC3 to the present results, [58], the Km of methylamine was

found to be 670 uM versus our finding of 652 uM and the Km of

phenethylamine was found to be 1940 uM versus our finding of

2050 uM. The Km of benzylamine, determined with crude

membranes from human adipose tissue [59], was found to be

175 uM versus our finding of 84.5 uM. Since the earlier data did

not rely on purified enzyme, Vmax values were reported in rate per

mg of cell lysate, precluding quantification of kcat values.

Comparison of Human and Mouse AOC3 Substrate
Kinetics

The implication of AOC3 in inflammatory disorders has made

the search for small molecule inhibitors an active area of research

[60]. In order to assess drug efficacy and safety, it is expected that

initial trials will occur in mouse subjects. Though human and

mouse AOC3 are 83% identical and 91% similar (Fig. S1),

differences in the enzymatic activity may arise. To investigate

these kinetic differences, the mouse AOC3 was expressed and

purified as described for human AOC3 with modifications (see

Experimental Procedures), and steady-state kinetics performed

using a Clark O2 electrode. We chose to focus comparisons on the

parameter kcat/Km (Table 3), since the deuterium isotope effects

for the human AOC3 (Table 1) indicate that this is the parameter

that will be sensitive to substrate structure. We note that,

analogous to human AOC3, no activity was observed with either

free lysine or the lysine containing GGGGKGGGG. In the case of

the methyl ester of lysine, kcat/Km was ca. 12 M21 s21. It can be

seen that for the majority of substrates examined, kcat/Km varies

within approximately one order of magnitude and rates are within

a factor of 3 to 4 times of one another. For alkylamines, as the

chain length increased, the enzymatic efficiency of human AOC3

decreases relative to the mouse enzyme, though the human

enzyme is better at catalytic turnover until amylamine. For

branched chained amines, the mouse enzyme was found to be

more efficient; in the case of isopropylamine, neither the human

Table 3. Comparison of second order rate constants (kcat/Km)
between purified human and mouse AOC3.

Substrate Humana Mousea Human/Mouse

Methylamine 8.58 0.730 11.8

Ethylamine 0.478 0.109 4.4

Propylamine 2.19 0.722 3.0

Butylamine 2.23 1.41 1.6

Amylamine 0.757 1.39 0.55

Isobutyamine 2.16 2.27 0.95

Isoamylamine 1.51 4.91 0.31

Benzylamine 40.5 12.9 3.2

Phenethylamine 0.545 0.955 0.57

Aminoacetone 22.3 2.94 7.6

Dopamine 5.44 18.3 0.3

akcat/Km (M21 s21)6103 for human and mouse AOC3.
doi:10.1371/journal.pone.0029270.t003
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nor mouse enzyme exhibited appreciable activity. Two notable

differences are the substrates, methylamine and aminoacetone,

that appear 10 to 12 times more active with the human AOC3.

These results suggest that caution is called for when screening the

efficacy of inhibitors designed against human enzymes in non-

transgenic mouse models during pre-clinical analysis. In addition,

the expected differences in tissue levels of AOC3 substrates in

human versus mouse (see below) could greatly impact the

experimental output. Future modeling studies will address

structural origins of kinetic parameter differences between the

murine and human enzymes, Table 3.

Murine 3T3-L1 Adipocytes Express Active Extracellular
AOC3

AOC3 expression has been shown on the extracellular surface

of adipose tissue in laboratory mice [61]. In addition, AOC3,

present in intracellular vesicles of endothelial cells under normal

conditions, is transported to the surface during inflammation, at

which point AOC3 becomes a membrane-bound ecto-enzyme

[12]. Analogous experiments are necessary in cultured 3T3-L1

adipocytes, to validate in vitro assays. AOC3 has been found to be

absent in undifferentiated Day 0 3T3-L1 pre-adipocytes and

abundant in Day 8 mature lipid-laden adipocytes [62]. In

addition, AOC3 activity is thought to ameliorate insulin resistance

and is implicated in insulin signaling [20,21]. If AOC3 plays an

important role in insulin signaling, it is possible that the enzyme

may co-localize with the insulin receptor, which is purportedly

found in lipid raft domains prevalent in adipocytes and known as

caveolae [63]. However, the localization of AOC3 expression is

found to be uniform, covering the extracellular surface of Day 9

adipocytes as shown by immunofluorescence in Fig. 2A, making

co-localization unlikely, at least under ex vivo cell culture

conditions. AOC3 expression was not prevalent until Day 5

during the differentiation process and continued to increase at Day

12 as shown by the immunoblot in Fig. 2B. Plasma membrane

AOC3 is abundant on the extracellular surface of mature 3T3-L1

adipocytes, though entirely absent in pre-adipocytes.

With experimental verification of the extracellular expression

of AOC3 by 3T3-L1 adipocytes, we moved to an examination of

the enzyme in its cellular context. Agreement between purified

enzyme and whole cells would support the utilization of data

from isolated enzyme in making conjectures regarding possible in

vivo substrates. Kinetic analyses were performed using Amplex

Red dye, since direct oxygen uptake assays were expected to be

complicated by other cellular processes. Figure 3 shows the time

concentration dependence of extracellular H2O2 production

with methylamine as substrate, demonstrating a linear increase

in peroxide production that is dependent on varying substrate

concentrations. In Table 4, Km values are summarized with no

effort in the present study to obtain the total AOC3

concentration on the surface of adipocytes as a prerequisite for

kcat. The Km values are within 1.5 to 4.2-fold of values

determined with purified murine AOC3. Further, the Km values

for methylamine and aminoacetone with human AOC3 lie

between the Km values determined with either the purified

murine enzyme or murine-derived adipocytes. The obvious

outlier in Table 4 is the 10-fold larger Km for isoamylamine

toward purified human enzyme in relation to murine adipocyte-

associated AOC3. The rate of hydrogen peroxide production by

the murine 3T3-L1 adipocytes in the presence of 750 uM

isoamylamine was quantified to be ca. 11 uM/h per million cells,

a level that has been shown to induce oxidative stress signaling in

mammalian cells [64].

Figure 2. Visualization of AOC3 during murine 3T3-L1 adipo-
cyte differentiation. A. Use of confocal fluorescence microscopy. Top,
phase contrast image of adipocytes; bottom, overlay of immunofluo-
rescence with phase contrast image (Anti-mouse AOC3 antibody
courtesy of Sirpa Jalkanen). B. Differentiation, as detected by Western
blotting using anti-mouse AOC3 antibody.
doi:10.1371/journal.pone.0029270.g002

Figure 3. Adipocyte cell culture-based determination of AOC3
turnover in the presence of varying concentrations of methyl-
amine substrate using the Amplex Red peroxide detection
assay.
doi:10.1371/journal.pone.0029270.g003
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Discussion

A very puzzling finding - that the identical CAO (designated

AOC3) appears on the outer plasma membrane of both human

endothelial tissue and the human adipocyte [65] - was one of the

initial motivations behind the present study. Whereas an elegant

series of studies by Jalkanen and co-workers has demonstrated the

role of the endothelial AOC3 in the recruitment and internaliza-

tion of leukocytes during an inflammatory response [13], a similar

primary role for the adipocyte-associated AOC3 has appeared

unlikely. In fact, prior to the present study, the most likely link of

the adipocyte AOC3 to cellular metabolism was an enhancement

of insulin-stimulated glucose uptake [19,21] via an unidentified

pathway.

The approach taken herein has involved a combination of

studies using either human or murine-derived materials. A new

expression system for human AOC3 has been developed that

involves the removal of the 27 amino acid N-terminal transmem-

brane domain and expression in s2 Drosophila cells. Pure protein is

obtained without using peptide-tagged enzyme or reliance on

proprietary monoclonal antibody (Fig. 1), with a yield that is

optimally ca. 0.5 mg/L. Better enzyme yields likely was deterred

by unmatched codon bias between a human-encoded mRNA and

insect-optimized translational machinery [66]. However, it is

possible that future optimization of expression conditions may

increase this yield significantly, given previously demonstrated

examples of quite high level expression of human gene products in

s2 cells [37]. We note that insect cell expression will likely result in

a different pattern of AOC3 post-translational surface glycosyla-

tions, which has been shown to affect catalytic activity [67] and

could impact some of our kinetic measurements of human AOC3.

A second goal for the future will be to enhance the fraction of

expressed AOC3 that contains its post-translationally generated

cofactor, TPQ, which is currently at only 6% of total protein.

Application of a similar expression system for the murine AOC3

has allowed a comparison of kinetic parameters at pH 7.4, 37uC
(Table 3). While the kinetic results indicate a similarity between

the murine and human AOC3 (Table 3), the use of mouse models

in clinical studies aimed at moderating AOC3 activity may be

fraught, especially given expected species differences in tissue levels

of AOC3 substrates (see below).

Currently, the endogenous substrate(s) of AOC3 is/are

unknown, including AOC3 in the endothelial context. Knowing

the endogenous substrate(s) would provide an invaluable clue to

the function of AOC3. However, this endeavor has many

difficulties ranging from the measurement of potentially localized

and low-level concentrations of primary amines in vivo to the

likelihood of different substrates for AOC3 depending on tissue

and even cell type. With this in mind, we decided to take a more

general approach by generating a substrate kinetic profile based on

the purified human enzyme that includes amine substrates found

in the Human Metabolome database, a repository of in vivo

metabolites. These studies, thus, provide the identity of possible

endogenous substrates for future investigation. In addition, almost

all previous kinetic measurements of AOC3 either utilized whole

cell or crude membrane lysates in varying contexts, making

comparison of results difficult. Finally, our approach employs an

oxygen electrode to measure enzyme rate, and is more sensitive

than the commonly used hydrogen peroxide probe, Amplex Red,

which is sensitive to both photo- and hyper-oxidation. A number

of molecular results have emerged regarding the properties of

isolated human AOC3 enzyme that include a low Km value for

O2, in the range expected for O2 levels in the interstitial space of

human tissue, as well as rate limitation by the chemical step of C–

H abstraction under conditions of steady-state turnover of amines

at concentrations below their Km values. The fact that chemistry is

rate-determining for kcat/Km of substrate is a fairly generic

property for all characterized CAOs, and may be reflective of the

relatively low turnover numbers of these enzymes and their ability

to act on a wide series of substrates [3]. The broad range of

substrate specificity is apparent for AOC3, with both aliphatic and

aromatic substrates showing turnover rates of 102 to

104 M21 sec21, following normalization of the enzyme concen-

tration to the number of moles of TPQ per subunit (Table 2). This

lack of specificity is completely consistent with the previously

published active site structure of the human AOC3 [34,35,36]

(Fig. S2) which shows a greatly expanded active site in relation to,

for example, a CAO isozyme from Hansenula polymorpha that acts

with high preference on small substrates such as methylamine

[68]. Although some kinetic differences between the human and

murine AOC3s are detected (Table 3), a pattern of activity on both

aliphatic and aromatic amines is maintained. We note the 10-fold

larger rate for the human than murine forms of enzyme is for

oxidation of methylamine and aminoacetone, two primary amines

shown to be present in human tissue [69]. While several

endogenous pathways for the production of methylamine are

known in humans [45,70], the pathway for aminoacetone

production is less clear. Aminoacetone is generally formed

predominantly via a threonine dehydrogenase (TDH)-supported

oxidation/decarboxylation of threonine [71]; however, the open

reading frame for TDH in humans has been identified as an inactive pseudo-

gene [72], in contrast to the retention of an active TDH in other

mammals [73,74], as well as bacteria [75]. In addition to

aminoacetone and methylamine, other high kcat/Km substrates

warrant further investigation, namely dopamine and cysteamine.

Neurons may be possible sources of dopamine since it is known

that adipose tissue is innervated [76]. As mentioned previously,

adipocytes are sensitive to dopamine through the b3-adrenore-

Table 4. Comparison of AOC3 Km values determined by steady state kinetic studies of purified murine enzyme and whole cell 3T3-
L1 adipocytes.

Substrate Murine3T3 cells (uM) Purified murine AOC3 (uM) Purified human AOC3 (uM)

Methylamine 513b 800 652

Aminoacetone 35b 150 66

Isoamylamine 432a 150 4560

aKm value calculated by plotting endpoint rates vs. substrate concentration, correcting for baseline Amplex Red oxidation by adipocytes pre-treated with 1 mM
semicarbazide for 30 min.
bKm values are averages derived from both endpoint fluorescence versus substrate concentration and linear rates of Amplex Red oxidation versus substrate
concentration.
doi:10.1371/journal.pone.0029270.t004
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ceptor, which can play a role in insulin signaling. In addition,

cysteamine is involved in the production of coenzyme A, an

integral component of fatty acid breakdown and synthesis. From

these kinetic studies, it is possible that AOC3 could have a novel

regulatory role in both fatty acid metabolism and insulin signaling.

The murine 3T3-L1 cell line has enabled us to compare the

properties of cell-associated AOC3 to that of purified enzyme.

Given the ectopic property of the active site of cell-associated

AOC3, the turnover of amines can be studied relatively easily via

the detection of the extracellular peroxide produced in response to

addition of primary amines. Mature adipocytes show uniform

distribution across the plasma membrane of adipocytes (Fig. 3) and

generate a linear production of hydrogen peroxide over a period of

30 min. The data in Table 4 show a reasonable agreement among

Km values determined using either whole cells or purified

enzymes.

One of the surprising findings from this work is the

demonstration that AOC3 catalyzes the oxidation of amines that

are not produced at significant levels by human tissue: these

include the branched chain aliphatic amines and aminoacetone.

With regard to the former, high levels of isoamylamine

accumulation (3.9 mM versus Km of 4.5 mM for human AOC3)

have been demonstrated in the media from overnight cultures of

Proteus morganii, a human bacterial pathogen [77]. Other human

pathogens that include Bacteroides fragilis, Salmonella typhimurium,

Yersinia entercolitica, Escherichia coli, and Clostridium perfringens [78,79]

are also known to secrete branched chained amines, as well as

small aliphatic amines (up to 2.3 mM n-propylamine and 250 uM

n-butylamine). Thus, another possible role for the adipocyte-

associated AOC3 is the detection of colonizing bacteria via their

production of branched chain amines and aminoacetone. The

production of H2O2 by bacterial-exposed adipocytes would be

capable of impeding bacterial growth directly or possibly via the

recruitment of immune cells. The location and stationary nature of

adipocytes in subcutaneous tissue, which is often one of the first

tissues infected after a wound [80] could rationalize the presence

of an enzymatic reaction that works in concert with immune cells

to minimize local proliferation of bacteria.

In closing, we also comment on a possible link of the adipocyte-

associated AOC3 to the clinical symptoms of obesity [81], noting

that there are several routes that could increase AOC3 activity,

leading to an accompanying inflamed state. These include a

possible change in gut-associated bacteria toward strains produc-

ing aliphatic amines [82], together with the lipid overload

expected to accompany obesity and/or the increased availability

of acetyl CoA seen in diabetes [83]. The latter states could

enhance aminoacetone production via the condensation of acetyl

CoA with glycine to produce 2-amino 3-ketobutyrate [84], Fig. 4.

Although glycine C-acetyl transferase normally works in concert

with TDH to reduce 2-amino 3-ketobutyrate to threonine in many

microorganisms and animals [71], the absence of a functional

TDH in humans [72] would exacerbate the accumulation of the

immediate product, 2-amino 3-ketobutyrate [85], and its break-

down product (aminoacetone) in obese patients. The resulting

turnover of aminacetone by AOC3, and the accompanying

production of hydrogen peroxide, may then function as one of

the triggers for the high macrophage recruitment and inflamma-

tion that occurs in obese adipose tissue.

Supporting Information

Figure S1 Alignment using MultAlin with identical
amino acids in black and differences in red. The murine

enzyme is 83% identical and 91% similar to the human form.

TPQ results from a post-translational modification at Y471.

(TIFF)

Figure S2 Connolly surface comparison of amine oxi-
dase active sites. Comparison of size of active site ‘‘funnels’’ for

substrate binding to the human AOC3 (A) and to a well-

established methylamine oxidase from H. polymorpha (B) and Active

site copper bound to its histidine ligands can be visualized at the

bottom of each figure as a frame of reference. The cofactor to

which substrate binds is immediately above the copper site.

(TIF)
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