
Poke Weed Mitogen Requires Toll-Like Receptor Ligands
for Proliferative Activity in Human and Murine B
Lymphocytes
Isabelle Bekeredjian-Ding1*, Sandra Foermer1, Carsten J. Kirschning2, Marijo Parcina1, Klaus Heeg1

1 Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany, 2 Institute for Medical Microbiology,

University Hospital Essen, Essen, Germany

Abstract

Poke weed mitogen (PWM), a lectin purified from Phytolacca americana is frequently used as a B cell-specific stimulus to
trigger proliferation and immunoglobulin secretion. In the present study we investigated the mechanisms underlying the B
cell stimulatory capacity of PWM. Strikingly, we observed that highly purified PWM preparations failed to induce B cell
proliferation. By contrast, commercially available PWM preparations with B cell activity contained Toll-like receptor (TLR)
ligands such as TLR2-active lipoproteins, lipopolysaccharide and DNA of bacterial origin. We show that these microbial
substances contribute to the stimulatory activity of PWM. Additional experimental data highlight the capacity of PWM to
enable B cell activation by immunostimulatory DNA. Based on these findings we propose that the lectin sensitizes B cells for
TLR stimulation as described for B cell receptor ligation and that B cell mitogenicity of PWM preparations results from
synergistic activity of the poke weed lectin and microbial TLR ligands present in the PWM preparations.
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Introduction

Due to their immunostimulatory properties plant extracts are

commonly used for immune therapy, usually with the aim of

inducing an immune response in patients considered to be

immunodeficient due to an underlying malignancy. However,

despite frequent reports of successful outcomes little is known on

the exact mechanisms mediating these beneficial effects.

In the recent past, many groups have described plant-derived

substances with immunostimulatory properties. Among them

several reports claimed that their effects were based on the

activation of Toll-like receptor (TLR)-4, a pattern recognition

receptor that mediates proinflammatory immune responses to

Gram negative bacteria due to recognition of the lipid A

component of the cell wall-associated lipopolysaccharide (LPS).

The nature of these substances ranges from proteins such as a

55 kDa protein identified in Aeginetia indica [1] to polysaccharides

as in Acanthopanax senticosus, Acanthopanax koreanum and Carthamus

tinctorius L. [2,3,4]. However, many researchers have raised

concerns since LPS contamination is easily introduced during

the purification procedure, and TLR4 activity may, therefore, not

represent an intrinsic property of the plant-derived molecules.

Another plant-derived polysaccharide is poke weed mitogen

(PWM), a lectin derived from Phytolacca americana. Due to their

potent immunostimulatory properties Phytolacca americana extracts

are used in patients with infections and cancer. Furthermore,

PWM is commonly used for B cell assays in vitro. Along with

‘‘SAC’’, a suspension of formalin-fixed S. aureus cells, it is the most

frequently used stimulatory reagent in assays performed for

diagnostic purposes, e.g. evaluating B cell function in patients

with suspected immunodeficiency. Based on previous studies it is

clear that PWM potently stimulates B cell proliferation and

immunoglobulin production [5,6]. Furthermore, combination of

SAC and PWM results in a synergistic increase in B cell activation

and has therefore been proposed as a better control stimulus for B

cell assays [5].

Previously, we showed that SAC stimulation results from

synergistic effects of S. aureus surface protein A and bacterial

Toll-like receptor (TLR) ligands, such as TLR2-active lipoproteins

[7]. By contrast, the effects of PWM have been attributed to the

crosslinking of glycoproteins on the B cell surface [8,9]. More

recently, however, one report claimed that commercially available

PWM preparations contain contaminant LPS, which contributes

to immune cell activation [10]. However, we previously demon-

strated that human peripheral blood B cells lack relevant TLR4

expression and are unresponsive to LPS stimulation [11,12].

Therefore, TLR4 activity cannot readily explain the mitogenic

activity of the poke weed lectin on human B cells. In views of its

frequent utilization, in the present study we sought to identify its

mode of action.

Materials and Methods

Mice and murine B cell isolation
The use of mice was approved by the interfacultary bio-

medical research facility and the governmental agency at the
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Regierungspraesidium Karlsruhe (written permit #T4/08).

TLR22/2 [13] and MyD882/2 mice [14] were backcrossed to

C57Bl/6 background for .6 generations. For B cell isolation

spleens were passed through a mesh, filtrated and B cells isolated

with anti-B220 (Fig. 1D) or anti-CD19 microbeads (Fig. 1E)

(Miltenyi Biotec, Bergisch-Gladbach, Germany). B cell purity was

9563%. B cells were resuspended in culture medium (RPMI 1640

(Invitrogen, Karlsruhe, Germany) supplemented with 10% FCS

(BioWest, Nuaille, France), 1% Penicillin-Streptomycin, 1%

HEPES buffer and 1:50000 b-mercaptoethanol (all from Sigma,

Munich, Germany)).

Human PBMC and B cell isolation
In accordance with the declaration of Helsinki venous blood

was drawn from healthy volunteers after verbal and written

information on potential adverse events of the blood draw,

research goals and measures securing the anonymity of the

donors. We obtained written informed consent before venous

puncture. The procedure was approved by the ethics commission

of the Medical Faculty of the University of Heidelberg, Germany

(written approval #157/2006). PBMC were isolated from

heparinised venous blood by Ficoll gradient centrifugation. B

cells were isolated with anti-CD19 microbeads (Miltenyi). B cell

purity was 9861%. B cells were resuspended in culture medium

and incubated over night before stimulation to obtain resting B

cells.

Cell Stimulation
The stimulatory reagents were used at the following concentra-

tions, unless otherwise indicated: all ODN were used at (1 mM) and

purchased from MWG Biotech, Munich Germany: CpG ODN

1668 PTO (59-tccatgttcctgatgct-39; full-length PTO), CpG ODN

2006 PTO (59-tcgtcgttttgtcgttttgtcgtt-39; full-length PTO), GpC

ODN 2006 PTO (59-tgctgcttttgtgcttttgtgctt-39; full-length PTO),

CpG ODN 2006 PO (59-TCGTCGTTTTGTCGTTTTGTCG-

TT-39); Pam3CSK4 and FSL-1R (HEK293 and monocytes:

200 ng/ml; B cells: 1 mg/ml)) (EMC Microcollections, Tübingen,

Germany), MALP-2 (HEK293: 25 ng/ml; B cells: 1 mg/ml) (Alexis

Biochemicals, Loerrach, Germany), highly purified LPS from

Salmonella (gift from U. Seidel, Research Center Borstel, Germany),

SpA (Amersham, Uppsala, Sweden), anti-human IgM+IgG+IgA

F(ab9)2 fragments (Dianova, Hamburg, Germany), PMA (1 mM)

and ionomycin (0.5 mg/ml) and polymyxin B (250 U/ml), all from

Sigma. The PWM preparations used in this study were purchased

from Sigma (Lot. O L8777-5MG (Lot. # not available, purchased

in 2005), Lot. A: L8777-5MG #045K7550, Lot. B: L8777-5MG

#077K76801, Lot. C: L9379-40MG #038K7680V) and from EY

Laboratories, San Mateo, CA, USA (Lot. D: L1901 #260529-5)

and used at 1 and 10 mg/ml as indicated. The tomato (Lycopersicon

esculentum)-derived lectin was purchased from EY laboratories (Lot#
270624-1). As for PWM Lot. D this lot was nearly free of

contaminants in LAL, 16 s rDNA PCR and TLR2 assays (data not

shown). For neutralisation of human TLR2-transfected HEK293

cells and B cells were pretreated with 10 mg/ml anti-TLR2 mAb for

30 minutes (Genentech, South San Francisco, CA, USA) or the

respective isotype control, i.e. murine IgG1k (Dako, Hamburg,

Germany).

For DNAse treatment 20 ml PWM stock 0.1 mg/ml were

incubated with or without 1 unit RNAse-free DNAse (Roche,

Mannheim, Germany) and 2 ml 106 incubation buffer provided

by the manufacturer over night at 37uC. For enzyme inactivation

probes were heated to 75uC for 10 minutes and then frozen until

further use. N,N-di-acetylchitobiose and N,N,N-tri-acetylchito-

triose were purchased from Sigma and used at 400 mg/ml.

Proliferation assays
For analysis of 3H-thymidine incorporation B cells were plated

at 0.25610*6/ml and stimulated for 72 hours, and pulsed 16–

18 hours before harvest with 1 mCi/well 3H-methyl-thymidine.

Proliferation was quantified by detected counts per minute (cpm).

For CFSE dilution assays B cells were stained with 10 mM CFSE

(Invitrogen), plated at 1610*6 B cells/ml, stimulated and analyzed

by flow cytometry on day 4 or 5.

Transfection of HEK293 cells and IL-8 ELISA
For IL-8 measurements HEK293 cells were transfected with

pTLR2 [15] 200 ng/well complexed with lipofectamine 2000

(Invitrogen) as previously described [7]. Cellular supernatants

were harvested 24 hours after stimulation and analyzed for IL-8

by ELISA (BD Opteia, BD Bisociences, Heidelberg, Germany).

LAL assay
Endotoxin content was determined by kinetic chromogenic

limulus amoebocyte lysate (LAL) test (Bio Whittaker, Verviers,

Belgium) performed according to the supplier’s instructions.

Immunofluorescence
For immunofluorescence analysis 0.5610*6/well HEK293 cells

were grown over night on poly-lysine D (Sigma) coated coverslips

in 24-well plates. Cells were transfected with pTLR2 or with

lipofectamine alone and stained for TLR2 24 hours after

transfection. For immunofluorescence analysis cells were fixed

with PBS/4% PFA, stained with anti-TLR2 mAb or the murine

IgG1k isotype control in Fix & Perm Medium B (Invitrogen),

mounted in 0.1 mM DAPI (Invitrogen)-containing PBS/glycerol

and stored at 4uC until analysis on a Leica DMI 6000B (Leica

Microsystems, Mannheim, Germany).

Flow cytometry
All experiments were performed on a FACSCanto device (BD

Biosciences) and analyzed using the FACS Diva software. Only

live gated cells were subjected to analysis. Analysis of intracellular

TNF expression in human monocytes was performed as previously

described [16]; briefly, PBMC (2610*6/ml) were incubated with

stimulatory reagents with/without Brefeldin A (1 mg/ml, Sigma)

for 4 hours, fixed, permeabilized, stained with PE-conjugated anti-

human TNF (Becton Dickinson) and analyzed by flow cytometry.

Monocytes were gated based on forward scatter (FSC)/side scatter

(SSC) properties.

Amplification of bacterial ribosomal DNA and
sequencing

Isolation of DNA was performed with the QIAamp DNA Blood

Mini Kit (Qiagen, Hilden, Germany). For amplification of 16S

ribosomal DNA PCR was performed with the following

degenerate primers: forward 59-AGA GTT TGA TCM TGG

CTC AG-39; reverse 59-CCG TCA ATT CMT TTR AGT TT-39

and the FastStart TaqPolymerase Mix (Roche, Mannheim,

Germany). Annealing: 53uC 1 min., Extension: 72uC 1.5 min.,

35 cycles. The expected fragment size (E. coli) is 919 bp. 16S

rDNA-PCR products were purified using the PCR purification kit

from Qiagen, Hilden, Germany and sequenced at GATC Biotech

AG, Konstanz, Germany. Sequences were blasted against the

NCBI database.
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Results

Poke weed mitogen activity is modulated by B cell
receptor ligation

Despite the mechanism of action remains unclear, researchers

and clinicians frequently use PWM as a B cell-specific stimulatory

reagent with the aim of inducing polyclonal B cell proliferation

and immunoglobulin (Ig) secretion. As shown in Figure 1A PWM

triggers a long lasting B cell expansion visualized by CFSE dilution

and concomitant terminal differentiation into antibody-secreting

cells (ASC) (reflected by loss of CD20 expression). It should,

however, be noted that high concentrations of PWM ranging from

1–10 mg/ml are required to elicit this response.

Next, we assessed the co-stimulatory potential of the PWM

preparation. To this end, we combined PWM with two distinct B

cell receptor (BCR) stimuli, i.e. Staphylocoocus aureus protein A (SpA)

and anti-human IgM+IgG+IgA F(ab9)2 fragments (anti-Ig). The

results showed that the percentage of PWM-induced proliferating

cells and the overall B cell survival were almost unaffected by SpA

(Fig. 1A). In marked contrast, BCR crosslinking with anti-Ig

resulted in an increased percentage of proliferating B cells and a

concomitant decrease in B cell survival (Fig. 1A). Moreover,

stimulation with PWM or PWM with SpA not only supported

prolonged B cell division cycles but also promoted plasma blast

differentiation coinciding with loss of CD20 surface expression in

the cells with the highest CFSE dilution (Fig. 1A). In contrast,

combination of PWM with anti-Ig did not support terminal

differentiation and prevented repeated cell division ($2 genera-

tions) despite the increased cellular turnover (Fig. 1A). BCR

crosslinking with anti-Ig, thus, interferes with PWM-triggered

effector functions.

PWM induces TNF in monocytes and PWM-induced B cell
expansion is blocked by TLR4 antagonist polymyxin B

The finding that PWM displayed co-stimulatory activity when

combined with a BCR stimulus prompted us to ask whether the

PWM preparations contained TLR ligands, e.g. microbial substanc-

es well-known to synergize with BCR signaling [7,17,18]. This

assumption was further supported by the finding that PWM activated

human monocytes (Fig. 1B). PWM-induced TNF expression was

observed in a flow cytometric assay routinely used to detect minute

amounts of microbial contaminants in cell culture reagents [16]. We

concluded that low concentrations of microbial molecules such as

LPS could account for this finding. Furthermore, PWM-induced B

cell proliferation could be inhibited in the presence of polymyxin B, a

cationic detergent frequently employed to antagonize LPS (Fig. 1C).

PWM activates B cells in a MyD88-dependent manner
In line with this observation PWM-triggered murine B cell

proliferation was found to depend on MyD88, the key adaptor

molecule in TLR signaling: in contrast to the wild type B cells

MyD882/2 B cells failed to proliferate in response to PWM albeit

proliferation could be induced by PMA and ionomycine (Fig. 1D).

However, MyD88-deficiency is associated with attenuated B cell

responses [19] and MyD882/2 B cells were, thus, also less

responsive to stimulation with PMA and ionomycine than wild

type B cells. We, therefore, limited our conclusions to the

statement that a role for Toll-like receptor (TLR) ligands in

PWM-driven B cell proliferation could not be excluded.

Experiments using B cells deficient in single TLRs, i.e. purified

from TLR2- or TLR9-deficient mice, did not display any relevant

deficit in their response to PWM albeit selective unresponsiveness

to TLR2- or TLR9 ligands, respectively, was confirmed (Fig. 1E).

This finding was compatible with previously described endotoxin

(LPS) contamination in PWM preparations [10] or a redundant

contribution of multiple TLR ligands to B cell proliferation.

Proliferation of human peripheral blood B cells is
triggered via TLR2 or TLR9 but not by TLR4 ligand
lipopolysaccharide

To assess a possible contribution of TLR-stimulatory substances

in PWM-induced human B cell activation, we stimulated human B

cells with ligands for TLR2 (MALP-2), TLR4 (LPS) and TLR9

(CpG ODN) in the presence or absence of BCR crosslinking with

SpA or anti-Ig. After 5 days B cell survival and proliferation were

detectable after exposure of B cells to TLR2 and TLR9 ligands

and were more pronounced when the TLR agonists were

combined with SpA and/or anti-Ig (Fig. 2A). In contrast, survival

and proliferation above the levels observed in unstimulated B cells

were not observed when B cells were treated with LPS at varying

concentrations (Fig. 2A). This indicated that LPS contamination

cannot account for human B cell activity of PWM preparations,

although it could contribute to murine B cell activation as

suggested in [10].

PWM preparations contain TLR2 ligands
This prompted us to ask whether PWM contained other TLR

ligands. To test for TLR2 activity we transfected HEK293 cells

with or without a human TLR2 expression plasmid (Fig. 2B), and

challenged these cells with PWM or a synthetic triacylated

lipopeptide, namely Pam3CSK4. TLR2-dependency of lipopeptide

activity indicated specificity of the assay (Fig. 2C). Interestingly,

Figure 1. TLR-dependency of Poke weed mitogen (PWM)-induced cell stimulation. A: B cell proliferation. Human CD19+ peripheral
blood B cells were stained with CFSE and stimulated with 1 or 10 mg/ml PWM in the presence or absence of 5 mg/ml Staphylococcus aureus protein A
(SpA) or 5 mg/ml anti-human Ig F(ab9)2 fragments (aIg) as B cell receptor stimuli, with SpA or aIg alone, or left unstimulated. After 5 days B cells were
harvested, stained with anti-CD20 and live gated cells were analyzed for CFSE dilution. The percentages of live gated cells (upper right corner) and
proliferating cells (left) are indicated in each diagram. The diagrams depict the results from one representative experiment of n = 3. B: TNF-
induction. Human PBMC were stimulated for four hours with or without PWM, TLR2 ligands FSL-1R (FSL) and Pam3CSK4 (P3), phosphorothioate-
modified DNA ODN CpG 2006 (CpG) and 2006 GC (GC) and LPS in the presence of Brefeldin A (BfA) or with LPS in the absence of BfA. Subsequently,
intracellular staining was performed with an anti-human TNF mAb and TNF expression was analyzed by flow cytometry. The results show a summary
of the data obtained in n = 4 experiments. Mean values of anti-TNF mean fluorescence intensities are provided 6 SEM. C: Antagonization with
Polymyxin B. CFSE-stained human CD19+ B cells were stimulated with PWM in the presence and absence of polymyxin B. Proliferation was assessed
by flow cytometric analysis of CFSE dilution on day 5. The results obtained in two representative donors of n = 3 are shown. D: MyD88-
dependency of B cell stimulation. B220+ B cells were isolated from the spleens of MyD882/2 mice and their wild type counterparts. B cells were
stimulated with CpG, P3, PWM and PMA/Ionomycin (P/I) and harvested after 72 hours and a 18 hour pulse with 3H-thymidine. The diagram shows the
average values in counts per minute (cpm) of n = 4 experiments 6 SEM. E: TLR-dependency. Wild type, TLR22/2 and TLR92/2 B cells were
isolated from murine spleen with anti-CD19 microbeads, labelled with CFSE and stimulated with TLR2 ligands Pam3CSK4 (P3) and FSL-1R (FSL), PWM
(10 mg/ml), TLR9 ligand CpG ODN 1668 or 1668 GC control ODN. After 4 days B cell proliferation (CFSE dilution) was quantified by flow cytometry. The
diagram depicts the mean fluorescence intensity (MFI) for CFSE in live gated cells as mean value 6 SEM from n = 4 experiments. Note that low MFI
corresponds to strong proliferation while high MFI values reveal absence of proliferation.
doi:10.1371/journal.pone.0029806.g001
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this lot of PWM (Lot. 0) induced basal IL-8 secretion from non-

transfected HEK293 cells. This indicated that the PWM

preparation (Lot. 0) contained immune stimulatory components

acting independently of TLR2, a result well compatible with

conserved PWM responsiveness in TLR2-deficient murine B cells

(Fig. 1E). Nevertheless, PWM-induced IL-8 production was almost

doubled in the presence of TLR2 expression (Fig. 2C) and, when

compared to the isotype control, reduced by approximately 50%

by an anti-TLR2 neutralizing monoclonal antibody (mAb)

(Fig. 2D). This proved the presence of TLR2-active substances

within the PWM preparation.

PWM contains bacterial DNA
Since TLR9-dependent sensing of bacterial DNA is a potent

inductor of B cell proliferation (Fig. 2A) we also analyzed the

bacterial DNA content of PWM preparations. To this end, we

amplified ribosomal bacterial 16S DNA by PCR. Our results

showed that bacterial DNA was detectable in PWM preparation

(Lot. 0) (Fig. 2E). Sequence analysis of the 16S rDNA sequence

revealed that the sequence corresponds to Propionibacterium acnes

with 99% homology. Bacterial DNA might, thus, represent an

additional stimulatory PWM component.

Neutralization of TLR2 diminishes the proliferative
response to PWM in human B cells

To assess the relevancy of the TLR2 activity present in the

PWM preparations we stimulated human B cells with Pam3CSK4

or PWM in the absence or presence of the TLR2-blocking mAb or

the isotype control already used in Fig. 3A. To better visualize

TLR2-mediated B cell activity both stimuli were combined with

SpA, that we previously identified as an important enhancer of

TLR2 recognition in B cells [7]. In contrast to the experiments

performed with murine B cells the results revealed an important

contribution of TLR2 activity to PWM-induced proliferation of

human B cells: the percentage of proliferating B cells was reduced

under TLR2-neutralizing conditions in both Pam3CSK4- and

PWM-stimulated B cells in the presence and absence of SpA

(Fig. 3A). Nevertheless, these data also indicated that other TLR2-

independent stimuli are involved in PWM-induced B cell

activation.

DNAse treatment of PWM reduces the B cell stimulatory
capacity of PWM

To assess the impact of TLR9 ligands on B cell mitogenicity of

PWM preparations we treated PWM Lot. 0 with DNAse and

tested these fractions in regards to mitogenic activity on human B

cells. Proliferative activity was markedly reduced when compared

to B cells stimulated with PWM incubated with reaction buffer but

no enzyme (Fig. 3B). By contrast, DNAse treatment of TLR2-

active lipopeptide Pam3CSK4 did not alter its stimulatory

capacity, nor did addition of heat-inactivated DNAse to the

medium affect B cell responsiveness to stimulation (data not

shown). We concluded that bacterial DNA contributes to PWM-

triggered stimulation of human B cells.

PWM enables B cell stimulation with atypical DNA ODN
According to a common view DNA ODN lacking the

phosphorothioate (PTO) modification and naked bacterial DNA

display reduced B cell activity (Fig. 3B) and [20]. Thus, our

findings raised the question how the stimulatory effect of the

PWM-contained bacterial DNA was conferred. We proposed that

the lectin might facilitate bacterial DNA-driven B cell activation.

To test this hypothesis we combined PWM with DNA oligodeox-

ynucleotides (ODN) that by themselves display comparably low

mitogenic activity (Fig. 3B), e.g. a PTO-modified GpC control

ODN that lacks the TLR9-stimulatory CpG motif (GpC PTO)

and a CpG ODN lacking the PTO modification previously shown

to be essential for cellular uptake and activity of CpG ODN [21]

(CpG PO). CFSE dilution experiments revealed that these ‘‘less

active’’ ODN displayed B cell activity when combined with PWM

and synergistically enhanced the mitogenic property of the PWM,

independent of prior DNAse treatment. As shown in Fig. 3B the

comparably weak proliferative response to PTO-modified GpC

ODN was strongly augmented in the presence of PWM; and

unmodified phosphodiester CpG ODN gained stimulatory activity

and augmented PWM-induced proliferation. Altogether, these

data demonstrated that the PWM preparation contains substances

that promote the activity of otherwise inactive synthetic DNA

ODN and/or facilitate TLR9-mediated B cell activation.

Mitogenic activity correlates with presence of TLR ligands
in PWM preparations

To further assess the impact of TLR-active substances in PWM

preparations on PWM-induced B cell activation we compared four

different commercially available PWM preparations in regards to

their mitogenic potential and TLR stimulation. The results

showed that PWM Lot. A, B and C were superior to Lot. D in

the induction of human B cell proliferation (Fig. 4A). This increase

in stimulatory activity correlated with higher endotoxin content

determined by limbulus assay (LAL assay) (Fig. 4B) and with

stronger TLR2-activity in the HEK293 system (Fig. 4C). Notably,

TLR2 activity lay below the detection threshold when measured in

1 mg/ml PWM, but was detectable at a concentration of 10 mg/

ml. Comparable levels of IL-8 secretion were achieved by

stimulation of transfected HEK293 cells with 300 ng/ml of

TLR2 ligand Pam3CSK4. Interestingly, when compared to Lot.

0 in these more recently purchased lots of PWM the levels of

TLR2 activity were overall lower, IL-8 induction was restricted to

TLR2-transfected HEK293 cells and we did not amplify bacterial

DNA by PCR. In fact, in Lot. D, which was purchased as ‘‘highly

purified’’ PWM, even LPS content and TLR2 activity were

negligible. This PWM preparation also failed to induce B cell

Figure 2. Contribution of TLR ligands to B cell activation. A: Stimulation of human B cells with TLR ligands. CFSE-labelled CD19+
human B cells were stimulated with or without TLR ligands (TLR2 ligand MALP-2, TLR4 ligand LPS (0.1 and 1 mg/ml) or TLR9 ligand CpG ODN 2006
(CpG)) and/or BCR stimuli (5 mg/ml SpA or anti-Ig (aIg)). After 5 days cells were harvested, stained with anti-CD20 and analyzed by flow cytometry.
The graphs depict cell survival (percentage of live gated cells; upper right angle) and cell proliferation (CFSE dilution; % proliferating cells of live gated
cells (left) where indicated). The experiment shown is representative of n$3 experiments. B–D: Assessment of TLR2 activity in PWM
preparations. HEK293 cells were transfected with pTLR2 or lipofectamine alone (Lf). B: non-transfected and pTLR2-transfected HEK293 cells were
stained for TLR2 expression with anti-TLR2 mAb or the respective isotype control as indicated. C: HEK293 cells transfected with pTLR2 or Lf only were
stimulated with Pam3CSK4 (P3) or PWM (10 mg/ml). After 24 hours cellular supernatants were collected and analyzed for IL-8 secretion. One
representative experiment of n$3 experiments is shown. D: HEK293 cells transfected with pTLR2 were pretreated with anti-TLR2 mAb or the isotype
control before stimulation with Pam3CSK4 (P3) or PWM (10 mg/ml). IL-8 was quantified in the 24 hour supernatants. E: 16S rDNA PCR. DNA isolation
and PCR amplification of bacterial 16S ribosomal DNA from DNA from E. coli (EC), a negative clinical specimen (NC), a positive clinical sample (CS) and
the PWM preparation (PW) or the water control (H2O), with an expected PCR fragment size of approximately 900 bp.
doi:10.1371/journal.pone.0029806.g002
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Figure 3. Synergistic effects of TLR ligands with poke weed lectin. A: Effect of TLR2 blockage on human B cell proliferation in response
to PWM. CD19+ human peripheral blood B cells were labelled with CFSE, preincubated with anti-TLR2 mAb or the corresponding isotype control
(murine IgG1k), and stimulated with Pam3CSK4 or PWM (10 mg/ml) 6 SpA (5 mg/ml) for 5 days. Proliferation was assessed by CFSE dilution. The gate
denotes the percentage of live gated proliferating B cells as depicted. One representative experiment of n = 3 is shown. B: Synergistic effects of PWM
and immunostimulatory DNA. Human B cells were stained with CFSE for assessment of B cell proliferation. Stimulation was performed with CpG
ODN 2006 (PTO), DNAse- or mock (reaction buffer only)-treated PWM, 2006 GC (PTO) or CpG 2006 (PO) and combinations thereof as indicated. The
graphs show the results from one representative experiment from n$3. The percentage of proliferating B cells is indicated in the graphs.
doi:10.1371/journal.pone.0029806.g003
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proliferation (Fig. 4A), thus, corroborating the concept that PWM-

induced proliferation is driven by TLR ligands.

(GlcNAc)3-binding lectins costimulate B cell proliferation
induced by immune stimulatory DNA

Earlier studies have described the (GlcNAc)3 carbohydrate

specificity of Phytolacca americana (PWM) lectin [8]. It was further

shown that the (GlcNAc)3 binding can be antagonized by N,N-di-

acetylchitobiose and N,N,N-tri-acetylchitotriose. We, therefore,

used these substances to assess the contribution of the lectin

component within the PWM preparation. As shown in Figure 5A

the effect of N,N-di-acetylchitobiose was negligible, but N,N,N-tri-

acetylchitotriose inhibited PWM-triggered B cell proliferation,

thus confirming the contribution of (GlcNAc)3 binding to

mitogenicity.

Based on these findings we hypothesized that the lectin

component in PWM might act as a sensitizer for B cells towards

microbial ligands as previously described for BCR ligation [7,22].

To test this hypothesis human B cells were stimulated with highly

purified PWM (Lot. D) or a BCR stimulus (SpA or anti-Ig) in the

presence and absence of GpC PTO, as introduced in Fig. 3B. The

results indicated that, similarly to SpA and anti-Ig, PWM increases

the proliferative activity of immune stimulatory DNA (Fig. 5B).

Lastly, a non-related lectin with (GlcNAc)3 specificity from

Lycopersicon esculentum (tomato) [23] was used to corroborate our

findings. Albeit by themselves highly purified preparations of

PWM and tomato lectins displayed very little activity, compar-

ative analysis in CFSE dilution assays demonstrated that both

lectins augmented B cell proliferation induced by GpC PTO

(Fig. 5C). Lectin-typical carbohydrate binding may, thus, co-

stimulate B cell activation by nucleic acid-sensing pattern

recognition receptors.

Discussion

The results obtained in this study indicate that the mitogenic

activity of PWM on human B cells is based on the synergistic

action of the poke weed lectin and the co-purified bacterial TLR

ligands specific for TLR2 and TLR9. DNA contained in the PWM

preparation was found to be of bacterial origin, since ribosomal

bacterial DNA was amplified with specific PCR primers when

Figure 4. Detection of TLR ligands in PWM preparations. A: Human B cells were stimulated with different lots of PWM. Proliferation rates were
quantified by 3H-thymidine incorporation (cpm = counts per minute). The diagram shows the mean values 6 SEM from n = 3 experiments. B: LAL-
assay was performed to quantify the LPS content in PWM Lot. A–D. The diagram depicts the mean values 6 standard deviation obtained by testing in
quadruplicates. C: TLR2 activity was assessed by measuring IL-8 concentrations in the supernatants of pTLR2-transfected or non-transfected HEK293
cells stimulated with different lots of PWM (left) or Pam3CSK4 (right) at the concentrations indicated. One representative experiment performed in
triplicates of n = 2 is shown.
doi:10.1371/journal.pone.0029806.g004
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PWM-extracted DNA was used as a template (Fig. 2E). Similarly,

TLR2-specific ligands (Fig. 2C and 3A) are most likely derived

from bacterial lipoproteins, considering that, to date, there is no

evidence for plant-derived TLR2 ligands. Although we did not

follow this up, it is very likely that the PWM preparations contain

low concentrations of other bacterial molecules such as peptido-

glycan or lipoteichoic acids.

It is well-known that specific bacterial species preferentially

interact with plants. Rhizobium spp. for example are plant symbionts

while others including most Agrobacterium spp. and Burkholderia spp.

are phytopathogens [24]. These genus have a Gram negative cell

wall and, thus, carry LPS among other specific microbial

molecules that confer bacterial recognition by mammalian pattern

recognition receptors. However, despite the attractiveness of the

hypothesis, our findings provided no evidence for plant-associated

pathogens as a source for TLR ligands and we could not exclude

contamination of PWM during the purification procedure:

sequencing of the 16S rDNA PCR product in Lot. 0 revealed

the presence of DNA from Propionibacterium acnes, a typical

inhabitant of human skin containing CG-rich TLR9-stimulatory

genomic DNA [25].

Taking into consideration that different classes of bacterial

molecules are detectable in the PWM preparation, we propose

that the endotoxin content in PWM preparations (Fig. 4B and

[10]) could originate from inaccuracies in the chemical purifica-

tion procedure as well as from plant-derived bacteria. Neverthe-

less, regardless of its origin LPS will contribute to the stimulation

of TLR4-carrying immune cells such as human monocytes

(Fig. 1B) and murine B cells (Fig. 1E).

However - in contrast to monocytes and murine B cells -

human B cells lack expression of the lipopolysaccharide sensors

CD14 and TLR4 [12,18]. Correlating with receptor expression

human B cells fail to respond to LPS despite the presence or

absence of a BCR stimulus (Fig. 2A). As a consequence, LPS is

not an important PWM component conferring mitogenic activity

on human B cells although it may act on other leukocyte subsets.

Since polymyxin B is a cationic detergent antagonization of

PWM-induced B cell activation does not necessarily need to be

limited to LPS, but could also involve bacterial lipoproteins or

DNA. Nevertheless, PWM-derived LPS may very well contribute

to murine B cell stimulation as was recently reported for a

polysaccharide isolated from Acanthopanax senticosus that activated

murine B cells and macrophages in a TLR4-dependent manner

[4] and a polysaccharide purified from Acanthopanax koreanum that

displayed TLR2- and TLR4-dependent B cell stimulatory

activity [3].

In contrast to TLR4 stimulation, human peripheral blood B

cells respond to TLR2 and TLR9 specific challenge and the

response is increased in the presence of BCR stimulation (with

SpA or anti-Ig) that was previously found to enable TLR2 activity

and to augment the TLR9 response in human B cells (Fig. 2A

and [7,17,22]). In contrast to TLR2 ligands PWM displays

mitogenic activity in the absence of BCR stimulation (Fig. 1A).

This indicates that PWM contains stimulatory agents that either

circumvent the requirement for BCR ligation or directly engage

the BCR. This effect could be attributed to the lectin compound

that binds to cell surface N-acetylglucosamine-containing glyco-

proteins [8,26]. Lectin-mediated engagement of rather ill-defined

surface receptors may, thus, enable TLR2 activity and/or

enhance the activity of other TLRs such as the DNA sensor

TLR9 [7,17,22].

Surprisingly, the combination of PWM with SpA failed to

increase proliferation although it was recently suggested that

combined stimulation of PWM and SAC, a suspension of S. aureus

cells with high SpA content, provides a stronger and more reliable

stimulus in human PBMC [5]. However, the fact that our

experiments were carried out using purified human B cells, e.g. in

the absence of antigen presenting cells, may account for this

difference. Notably, in our experimental setting a slight decrease in

the percentage of proliferating B cells observed when SpA was

used together with PWM (Fig. 1A) could indicate that SpA and

PWM compete for the same B cell binding sites. Again, we can

only speculate whether this could involve a subgroup of B cell

receptors such as the VH3+ BCR targeted by SpA [27]. However,

this observation was supported by the finding that BCR

stimulation with anti-Ig markedly reduced the duration of

proliferation and terminal differentiation in B cells stimulated

with PWM (Fig. 1A). This provides the notion that BCR

stimulation might interfere with the cellular binding of Phytolacca

americana lectin.

Taking into consideration that only traces of bacterial DNA and

lipoproteins are present in the PWM preparations it is evident that

high concentrations of PWM (1–10 mg/ml) are required for B cell

stimulation. Moreover, our data suggest that the poke weed lectin

enables B cell stimulation by low concentrations of bacterial DNA

that by themselves would be ineffective. They further highlight

that non-CpG DNA sequences and non-PTO modified ODN

display immune stimulatory activity in the presence of PWM

(Fig. 3B and 5). Interestingly, similar observations were made

when B cell stimulation with non-CpG ODN occurred together

with a BCR antigen or when ODN lacking B cell activity were

targeted to the BCR [28,29]: B cell ODN sequence requirements

were found to be less stringent in the presence of BCR activation,

and uptake of ODN improved.

In the present context, we propose that similarly to a BCR

signal PWM sensitizes B cells for pathogen-associated molecular

patterns (PAMPs). It can only be speculated whether the

positive charge of the Phytolacca americana-derived lectin might

enable complexation with negatively charged bacterial mole-

cules such as DNA [30]. Similarly to PTO-modification of

synthetic ODN or formation of autoimmune complexes as in

[28] these complexes could protect DNA from degradation and

promote cellular uptake of bacterial DNA. Alternatively, lectin-

mediated binding to carbohydrates on cell surface receptors

facilitates uptake of these substances and/or cellular activation.

Endocytotic uptake, in turn, could provide access to TLR9 and

induces intracellular redistribution of TLR9 to the autophago-

somes [31,32].

Figure 5. Contribution of the lectin component. A: Human B cell proliferation in response to PWM (Lot. B and C) in the presence or absence of
N,N-di-acetylchitobiose or N,N,N-tri-acetylchitotriose was assessed by 3H-thymidine incorporation given in counts per minute (cpm). The mean values
6 SEM from one representative experiment performed in triplicates of n = 2 is shown. B: Human CD19+ B cells were left unstimulated or stimulated
with 0.25 mM GpC PTO ODN (GC) and/or 10 mg/ml of PWM, 5 mg/ml SpA or 10 mg/ml anti-Ig (aIg) for 72 hours. Proliferation was quantified by 3H-
thymidine incorporation. The diagram shows the means from n = 4 experiments 6 SEM. The values obtained were normalized to GC = 1
(7106280 cpm = mean 6 SEM). C: Human CD19+ B cells were stained with CFSE and stimulated with highly purified PWM (Lot. D) or Lycopersicon
esculentum lectin (LEA) with or without GpC PTO ODN (GC). Proliferation was quantified by CFSE dilution on day 4. The percentage of proliferating
cells is provided in each dot plot. The results from two independent donors of n = 4 are shown.
doi:10.1371/journal.pone.0029806.g005
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