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Abstract
Little research has been done to address the huge opportunities that may exist to reposition
existing approved or generic drugs for alternate uses in cancer therapy. Additionally, there has
been little work on strategies to reposition experimental cancer agents for testing in alternate
settings that could shorten their clinical development time. Progress in each area has lagged in part
due to the lack of systematic methods to define drug off-target effects (OTEs) that might affect
important cancer cell signaling pathways. In this study, we addressed this critical gap by
developing an OTE-based method to repurpose drugs for cancer therapeutics, based on
transcriptional responses made in cells before and after drug treatment. Specifically, we defined a
new network component called cancer-signaling bridges (CSBs) and integrated it with Bayesian
Factor Regression Model (BFRM) to form a new hybrid method termed CSB-BFRM. Proof of
concept studies were performed in breast and prostate cancer cells and in promyelocytic leukemia
cells. In each system, CSB-BFRM analysis could accurately predict clinical responses to >90% of
FDA-approved drugs and >75% of experimental clinical drugs that were tested. Mechanistic
investigation of OTEs for several high-ranking drug-dose pairs suggested repositioning
opportunities for cancer therapy, based on the ability to enforce Rb-dependent repression of
important E2F-dependent cell cycle genes. Together, our findings establish new methods to
identify opportunities for drug repositioning or to elucidate the mechanisms of action of
repositioned drugs.
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Introduction
The study of drug repositioning has so far been limited to the “on-target repositioning” that
applies a drug’s known pharmacological mechanism to a different therapeutic indication; for
example, comparing the structural similarities of small molecules (1, 2) or known side
effects (3). In contrast, “off-target repositioning” attempts to describe the pharmacological
mechanisms still unclear for known molecules. A number of approaches have recently been
developed for off-target repositioning by using gene signatures (4–7), i.e., subsets of genes,
or drug-similarity network (8) identified in the cancer transcriptional profiles following drug
treatment. One common limitation of these methods is that they do not include the disease-
specific prior knowledge or known mechanisms in the off-target repositioning process, so
that they can be used to find similarities between the drugs but not the preference between
them. Thus, we need to develop a method that incorporates prior knowledge of specific
diseases to provide a more precise off-target drug repositioning.

A primary challenge of off-target repositioning is to address the OTEs of a drug on the
proteins downstream in the signaling pathways and the genes that are regulated by those
proteins. As an example, in breast cancer raloxifene, tamoxifen, and fulvestrant are the
pioneering drugs targeting the estrogen receptor (ER) (9). The targeted proteins, however,
often generate downstream effects on the linked signaling proteins and ultimately exert
unexpected off-target effects on cancer transcription (10–12). Creighton et al showed that
tamoxifen together with estrogen deprivation (ED) can shut down classic estrogen signaling
and activate alternative pathways such as HER2, which can also regulate gene expressions.
The unexpected downstream signaling proteins and altered cancer transcription can be
considered as the off-targets of the treated drugs.

Work has been conducted to address the off-targets using biomarkers or gene signatures (4,
12). Although the methods on gene signatures are able to identify which genes are changed
during the treatment of a drug, they cannot explain the associations between the expression
changes of the genes and the OTEs on these genes of the drug in terms of the pathway
mechanism of the disease. Moreover, these methods also fail to identify frequently changed
genes, which were not considered in the gene signatures.

In this paper, we present a new method of off-target drug repositioning for cancer
therapeutics based on transcriptional response. To include prior knowledge of signaling
pathways and cancer mechanisms into the off-target repositioning process, we propose the
use of CSBs to connect signaling proteins to cancer proteins whose coding genes have a
close relationship with cancer genetic disorders and then integrate CSBs with a powerful
statistical regression model, the Bayesian Factor Regression Model (BFRM), to recognize
the OTEs of drugs on signaling proteins. The off-target repositioning method is thus named
as CSB-BFRM.

We applied CSB-BFRM to three cancer transcriptional response profiles and found that
CSB-BFRM accurately predicts the activities of the FDA-approved drugs and clinical trial
drugs for the three cancer types. Furthermore, we employed the identified OTEs and off-
targets to explain the action of the repositioned drugs. Four known drugs each with two
different doses, or eight drug-dose pairs repositioned to MCF7 breast cancer cell line
[raloxifene (0.1 μM and 7.8 μM), tamoxifen (1 μM and 7 μM), fulvestrant (1 μM and 0.01
μM), and paclitaxel (4.6 μM and 1 μM)] were investigated. We showed that these drugs
inhibit the transcription of certain key cell cycle genes by enhancing the Rb-dependent
repression of E2F-mediated gene transcription. They exhibited negative OTEs on the off-
targets, the heterodimer E2F and DP-1, and the kinases CDK2 and CDK4/6, of Rb, but
positive OTEs on the inhibitors p15 and SCF of the Rb’s kinases. The results are consistent
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with the dose-response curves derived from the Developmental Therapeutics Program
(DTP) of the National Cancer Institute (NCI).

Quick Guide to Main Model Equations
The strategy for off-target drug repositioning is illustrated in Figure 1. Facilitated by CSBs,
we established a new method to facilitate drug repositioning for cancer therapy.

Major Assumptions of the Model
CSB Definition—S is denoted as a protein set of a signaling pathway (i.e. NCI-
PID(Pathway Interaction Database) or BioCarta pathway(13)), C is denoted as a cancer
protein set defined by the Online Mendelian Inheritance in Man (OMIM) database (14), in
which each protein’s coding gene (or genes) has a close relationship with a cancer genetic
disorder, Π is the instance set of network motifs (15), ΠS, C is an subset of Π, where an
instance comprises a set of proteins and a number of protein-protein interactions between
them (Supplementary Methods). Each CSB is a specific instance of one type of network
motif; its protein set is denoted as CSB j (j ∈ {1,2,…,|ΠS, C |}). A CSB satisfies that,

(A)

Off-target Repositioning Method, CSB-BFRM
BFRM Model—Bayesian Factor and Regression Modeling (BFRM) (16, 17) is applied to
the off-target drug repositioning. BFRM deconvolutes the cancer transcriptional response
data into signatures with a model of the form,

(B)

where Xi is an n dimension vector of fold-change (treatment vs. control) of drug i in the
cancer transcriptional response data; Xj,i, j = 1, 2, …, n, is the median value of fold-changes
of gene j in consideration of corresponding instances treated by drug i; m is the number of
drugs; and n is the number of the coding-genes for the CSB proteins expanded by the cancer
proteins of a specific cancer type. Ā = (α1, α2, …, αk) is a sparse n×k matrix whose columns
define the signatures Sl, l=1, 2, …, k, and each numerical value Āj,l defines the weight of
gene j in the gene signature Sl To address which parts of the cancer signals are responsible
for the unknown pharmacological mechanisms and to what extent they are targeted, the
CSB-BFRM method needs to identify signatures (the targeted parts in the cancer signals)
and effects (OTEs on the targeted parts) (Figure 1B). Thus, we define a weight matrix, A,
as a combination of one output of BFRM, Ā, and another matrix, P=(ρ1, ρ2, …, ρk), that
contains the (sparse) probabilities that each gene is associated with each signature(See
Methods). We call the matrix, Λ = (λ1, λ2, …, λm), as an effect matrix. Each numerical
value, Λl,i , defines the effect of drug i imposed on the gene signature, Sl Ψ = (ψ1, ψ2, …,
ψm) reflects measurement error and residual biological noise.

Repositioning Profile—The OTEs of a drug on a specific cancer are defined as a
repositioning profile using A and Λ (Figure 1C). A repositioning profile, Ω=(ω1, ω2, …,
ωm)T, is an m×k matrix to characterize the overall effects of m drugs on k signatures. The
known drug targets are essential for identification of a repositioning profile. The targetable
signatures are defined by the non-zero weights at the rows of the targets across signatures
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of A. We denote the targetable signatures for drug i as a set Ti. For each targetable signature
t ∈ Ti, we define the product between Rt and the effect score Λi,t as the overall effect of drug

i imposed on signature t, Ωi,t = Rt × Λi,t, where  denotes the response(or total
weight)of the signature t to the drug i . The repositioning profile for drug i ,ωi, i =1, 2, …, m,
is defined as,

(C)

The target information for certain drugs may be unavailable. To define repositioning profile
for these drugs, we use a randomized process to simulate the targets of these drugs (see
Methods). To reduce the computation bias, we repeated the randomized process for 1,000
times and generated a sequence for repositioning profiles, Ξ = (Ω1,Ω2,…,Ω1,000).

Repositioning Score—The identified repositioning profile is applied to define a
numerical value, called repositioning score, to distinguish the OTEs of the drugs. We used
a supervised regression model, Support Vector Regression (SVR), to define the
repositioning score. If a drug i is approved by the FDA or undergoing clinical trials, the
element of the label vector for prior knowledge, Li, equals to 1. SVR outputs a regression
prediction vector, Ph, for each regression between repositioning profile Ωh, h=1, 2, …,
1,000, and the label vector, L. Ph is sorted in a descending order. The drugs’ ranks in the
sorted Ph is recorded in a repositioning score vector, ℜh. Thus, we have a sequence for
repositioning score,

(D)

The repositioning score for each drug is defined as mean± standard variation across the
1,000 repositioning score vectors.

Off-targets and OTEs—The proposed repositioning score recognizes a drug’s activity
from the OTEs on the targetable signatures that comprise a number of off-targets. The off-
targets are identified as the CSB proteins whose OTEs are non-zero. For a drug i, its OTE
on a CSB protein j, j = 1, 2, …, n, in a targetable signature t, t ∈ {1, 2, …, k}, is defined as
the product of Aj,t and Λt,i. Thus, the OTEs that drug i on the targetable signature t is a
vector,

(Ea)

The OTE of drug i on CSB protein j is defined as the summation of all of Ei,t, j (t = 1, 2, …,
k) across all of the targetable signatures Ti,

(Eb)
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Materials and Methods
The drug-treated transcriptional response data were derived from Connectivity Map 02
(CMAP 02) (4). There are 6,100 treatment instances, in which 6,066 instances were treated
on 3 types of cancer cell lines: MCF7 breast cancer cell line, PC3 prostate cancer cell line,
and HL60 promyelocytic leukemia cell line. Each instance has a treatment case for one drug
with one dosage and variable numbers of controls (1, 5, or 6). There are 3,095, 1,742, and
1,229 instances designed for MCF7, PC3, and HL60 cell lines respectively. The
transcriptional response data of MCF7 include 3,628 gene microarrays for 1,198 single-dose
drugs, 96 multiple-dose drugs and 1, 390 drug-dose pairs. The transcriptional response data
of PC3 have 2,017 gene microarrays for 1,150 single-dose drugs, 31 multiple-dose drugs
and 1,215 drug-dose pairs. The transcriptional response data of HL60 comprise 1,406 gene
microarrays for 1,061 single-dose drugs, 17 multiple-dose drugs, and 1,099 drug-dose pairs.
Additional data used in this paper can be found in the Supplementary materials.

Figure 1 illustrates the strategies used in our off-target repositioning method, CSB-BFRM,
and the Quick Guide provides an overview of the key definitions and modeling components.

Figure 1A shows the advantage of combining CSB and BFRM (16–19) to reposition drugs
that cater not only the treatment response but also the expanded cancer signaling
mechanisms, making it feasible for off-target repositioning for cancers. In Figure 1B, the
input to CSB-BFRM is a treatment-response matrix X (n×m) whose m columns correspond
to the treated drugs and n rows correspond to the coding genes for the identified CSB
proteins for the cancer type of interest. The statistical factor analysis, BFRM, decomposes
the treatment-response matrix X into another two matrices, weight matrix A (n×k) and effect
matrix Λ(k×m). A weight matrix, A (n×k), is a sparse matrix (most of elements are zero, as
indicated by white color) whose columns define k signatures and their non-zero elements
indicate which proteins are included in the signatures. BFRM imposes a sparse prior on the
association of the genes to the signatures. Another matrix, P=(ρ1, ρ2, …, ρk), contains the
(sparse) probabilities that each gene is associated with each factor. The cutoff for each
element, Pi j, of P matrix was chosen as the mean of all the non-zero values in the P matrix.
If Pi j is higher than the cutoff, the corresponding value, Ai j, of weight matrix A will be
kept, and else, Ai j is set as zero. An effect matrix, Λ(k×m), demonstrates the effects of the m
drugs imposed on the k signatures. BFRM model applies hierarchical priors for values of the
non-zero elements in A and gets posterior via Markov Chain Monte Carlo (MCMC).
MCMC analysis for the posterior simulation is implemented in a Gibbs sampling manner.
The BFRM model is implemented by a software package, BFRM 2.0 (16, 17). The number
of signatures, k, is determined by an evolution algorithm in the BFRM 2.0 software.

In Figure 1C, the repositioning profile definition takes advantages of the identification of the
targetable signatures. If a drug’s target information is available, the targetable signatures are
defined by the non-zero weights at the rows of the targets across signatures of A. The
proteins in each targetable signature are determined by the non-zero elements in each
corresponding column of A. For each targetable signature, the total of the non-zero weights
is used to evaluate the response of the signature to the drug. In Λ, the score corresponding to
the row of the signature and the column of the drug shows the effect of the drug on the
signature. The OTE that the drug imposes on the signature is defined as a weighted score
obtained by multiplying the response of the signature to the drug by the effect of the drug on
the signature. The repositioning profile is used to illustrate the OTEs of the drug on all of the
signatures, in which the OTEs for the targetable signatures are defined as the weighted
scores while those for the untargetable signatures are zeros.
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Sometimes, the target information of a drug may be unavailable. We designed a randomized
process to find these targetable signatures. In the randomized process, a number of proteins
randomly chosen from the CSB proteins were considered as the candidates for drug-targets.
The hypothesis is that these drugs generate off-target effects (OTEs) on the CSB proteins
even if they do not target the CSB proteins directly. The number of proteins chosen is
determined by a random numerical value drawn from a uniform distribution between 1 and
μ, where μ is the mean value of the targets for the drugs whose targets are known. The
randomized process is repeated 1,000 times for those drugs whose targets are unknown to
reduce the computational bias in the identification of their candidate targets or off-targets.
Still some drugs have known drug-targets that are not included in the CSB protein set. These
targets are led to the CSB proteins, using the shortest-paths in the protein-protein interaction
network. The CSB proteins identified are considered as the targets or off-targets of these
drugs.

To rank the activities of drugs, we propose a single numerical value, repositioning score, for
each drug. In this study, since a number of drugs are known to be FDA-approved or
undergoing clinical trials for breast cancer, prostate cancer, and promyelocytic leukemia, we
used the supervised regression model to define the repositioning score (Figure 1D). For
other cancer types, the FDA-approval and clinical trial information may be unavailable. To
apply the CSB-BFRM method to these cancer types, the supervised method should be
replaced by an unsupervised data mining method, for example, clustering. The SVR
algorithm is implemented in R, using the package “e1071.” All of the parameters are used as
default except that the parameter ‘c’ for cross validation is set to be 5. We specified cross
validation as 5-fold.

All of the materials and methods reported in this paper are included in a web-based tool,
R2D2-CSB, which is available at http://r2d2drug.org/Software/csb/csb.aspx

Results
CSBs expand the signaling proteins to cancer proteins

To investigate the off-target drug repositioning for cancers, we introduced the new network
elements, CSBs, that can be used to extend the known canonical signaling pathways (13, 20)
to the proteins whose coding genes have a close relationship with cancer genetic disorders
(14, 21), for short, cancer proteins (Figure 2A). The data sources for definition of CSBs are
listed in Supplementary Table 1. CSBs are the instances of network motifs (15, 22, 23), or
building blocks, of the protein interaction networks (24–28) (Supplementary Table 2).

Besides being able to link many previously unrelated cancer proteins to a known signaling
pathway of interest (Supplementary Figure 1), CSBs have the following four characteristics
that determine their important role in off-target drug repositioning: i) CSBs are significantly
enriched in the connections between oncogenic signaling pathways and cancer proteins
(Supplementary Table 3 and Supplementary Methods); ii) most CSBs, nearly 70%, are not
shared by multiple types of cancers but are specific to one cancer type (Figure 2B); iii)
signaling proteins and cancer proteins linked by CSBs are significantly more likely to be
targeted by known anti-cancer drugs (Figure 2D); and iv) although most known anti-cancer
drugs select the proteins in signaling pathways as their targets (Figure 2C), they still
generate relatively high effects, transmitted by CSBs, onto cancer proteins (Figure 2E, and
Supplementary Methods).

Application of CSB-BFRM to cancer transcriptional response data
We applied the proposed off-target repositioning method, CSB-BFRM, to three cancer
transcriptional response datasets of MCF7 breast cancer cell line, PC3 prostate cancer cell
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line, and HL60 promyelocytic leukemia cell line (Supplementary Methods). The inputs and
outputs of CSB-BFRM are shown in Supplementary Tables 4–12. We tested the
performance of CSB-BFRM to predict the activities of FDA-approved drugs and clinical
trial drugs for breast cancer, prostate cancer, and promyelocytic leukemia, and employed the
identified off-targets and OTEs to explain the mechanisms of action of repositioned drugs.

Performance of repositioning prediction—To evaluate the performance of CSB-
BFRM in prediction of drug activities based on the identified repositioning profiles of drugs,
we employed the Receiver Operating Characteristic (ROC) method. The area under the ROC
Curve (AUC) illustrates how useful the repositioning profiles are for prediction of the
known data of FDA-approval and clinical trials information. In Figure 3A and 3B, we show
the ROC curves for the predictions on the activities of FDA-approved and clinical trial
breast cancer drugs. The AUCs for the ROCs in Figure 3A are 0.94±0.02 (P<10−4, Fisher’s
exact two-tailed test) and those for the ROCs in Figure 3B are 0.79±0.04 (P<10−4, Fisher’s
exact two-tailed test). Since the FDA-approval information for prostate cancer and
promyelocytic leukemia is limited, it was merged with clinical trial information in order to
do the repositioning predictions. The performance of the prediction on the FDA-approved
and clinical trial prostate cancer drugs is indicated by the ROC curve shown in Figure 3C.
The AUC of the ROC curve in Figure 3C is 0.78±0.03 (P<10−4, Fisher’s exact two-tailed
test). The ROC curve for the prediction on the FDA-approved and clinical trial
promyelocytic leukemia drugs is shown in Figure 3D and its AUC is 0.91±0.06 (P<10−4,
Fisher’s exact two-tailed test). The results indicate that the activities of the FDA-approved
and clinical trials drugs for breast cancer, prostate cancer, and promyelocytic leukemia are
accurately predicted by the CSB-BFRM.

For the repositioning on the MCF7 breast cancer cell line, we listed the first 22 drugs with
the highest repositioning scores in Table 1 and showed the ranks for all the 1,390 drugs in
Supplementary Table 14. These first 22 drugs predict all 14 FDA-approved drugs (with drug
dosages) from the 1,390 drugs (P<10−10, Hypergeometric test). Furthermore, we listed the
repositioned drugs with their repositioning scores for PC3 prostate cancer cell line and HL60
promyelocytic leukemia in the Supplementary Tables 15 and 16. The relatively small
numbers of drugs with highest repositioning scores predict the FDA-approved drugs and
clinical trial drugs for prostate cancer and promyelocytic leukemia (PC3: P<10−4,
Hypergeometric test; HL60: P<10−2, Hypergeometric test).

OTEs and off-targets—We investigated eight pairs of drug-doses with relatively high
repositioning scores repositioned for MCF7 breast cancer cell line, as shown in Table 2. The
eight drug-dose pairs are raloxifene at 0.1 μM and 7.8 μM, tamoxifen at 1 μM and 7 μM,
paclitaxel at 4.6 μM and 1 μM, and fulvestrant at 1 μM and 0.01 μM. We identified the off-
targets for the four repositioned drugs and listed them with their OTEs in Supplementary
Table 17. To remove the redundant off-targets with relatively lower OTEs, we used the
mean of the absolute values, |OTE|, of all off-targets as a threshold, δ. We chose those off-
targets whose OTEs are higher than the threshold δ or lower than −δ for the following
analysis. We did the gene set enrichment analysis (GSEA) (29) on the off-targets of each
drug. The off-targets of each drug are significantly enriched in two important cellular
functions, cell cycle (P<10−5, Hypergeometric test) and apoptosis of cells (P<10−26,
Hypergeometric test). The enrichment P-values for all of the eight drugs are shown in
Supplementary Table 18. We also did pathway analysis on the identified off-targets, using
IPA (Ingenuity Pathway Analysis) software. Subsequently, two important signaling
pathways related to cell cycle and apoptosis were identified, namely, cell cycle G1/S
checkpoint and p53 signaling pathways.
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Mechanisms of repositioned drugs—The Rb-dependent repression of E2F-mediated
transcription (30) is the key to understanding the mechanisms of the eight repositioned drug-
dose pairs. We summarized the signal cascade as the following:

The OTEs and off-targets of the eight repositioning drug-dose pairs for this signaling
cascade are shown in Table 2. To better illustrate the drugs’ effects on the signaling cascade,
their OTEs and off-targets are also displayed in Figure 4. All eight drug-dose pairs inhibit
the core part of the signaling cascade, the heterodimer of E2F and DP-1. The inhibition of
either E2F or DP-1 ensures that the gene expression is repressed even if Rb is
phosphorylated. Still, some drug-dose pairs targeting on other parts of the signaling cascade
enforce the transcriptional repression. Paclitaxel at 4.6 μM has a relatively high positive
OTE (higher than 0) on the RBL1 protein (a member of the Rb protein family), which
increases the expression of RBL1 protein and strengthens the recruitment of HDACs and
other nuclear factors to repress gene expression. Paclitaxel at 4.6 μM also has positive OTEs
on the INK4 (p15) and SCF proteins, which enhances the inhibition of CDK4/6 and Cyclin
D/E as well as phosphorylation of Rb, so that the association of Rb family members with
both HDACs and E2Fs are enhanced and gene expression is repressed. Fulvetrant at 1 μM
and 0.01 μM have negative OTEs (lower than 0) on the kinase CDK2, and decrease its
expression, which in turn reduce the phosphorylated Rb and enhance the Rb-dependent
repression of E2F-mediated transcription. Thus, by various means, these drugs enforce the
transcriptional repression of key cell cycle genes.

Consistency with dose-response curves—We used the dose-response data derived
from the Developmental Therapeutics Program (DTP) of NCI/NIH (31) to validate our
hypothesis. Checking the dose-response curves for raloxifene, tamoxifene, paclitaxel, and
fulvestrant (Figure 5), we found that all of the four drugs with considered dosages (lower
than 10 μM) have a significant inhibition on the cell growth. This result is well consistent
with the predicted OTEs enhancing the Rb-dependent repression of E2F-mediated
transcription of the key genes for cell cycle progression.

The four repositioned drugs not only generate OTEs on the cell cycle G1/S checkpoint
signaling pathway but also impose OTEs on the p53 signaling pathway (Table 2 and Figure
4). The OTEs on the p53 signaling pathway are helpful to understand why raloxifene,
tamoxifen, and paclitaxel induce apoptosis at higher dosages, while fulvestrant does not
induce any cell death on MCF7 (Figure 5). Comparing the OTEs of raloxifene at lower and
higher dosages, these two OTEs are opposite to each other. At the lower dosage, the
negative OTE decreases TP53 and blocks apoptosis while at the higher dosage it increases
apoptotic cell death. This is also seen with tamoxifen. On the other hand, paclitaxel is
predicted to increase the expression of TP53 and induce apoptosis of cells at both lower and
higher dosages. Several experiments on paclitaxel with dosages between 10−7 M and 10−5M
induce cell death. In contrast, fulvestrant decreases the expression of TP53 at both lower and
higher dosages and cannot induce the apoptosis of cells at any of the considered dosages.

Discussion
In summary, we presented a new computational method for off-target drug repositioning
using cancer transcriptional response data before and after treatment. Facilitated by the new
network elements, CSBs, we have shown the potential of the proposed method, CSB-
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BFRM, in the repositioning of drugs for specific cancer types. CSB-BFRM performs well in
predicting the activities of FDA-approved drugs and clinical trial drugs for breast cancer,
prostate cancer, and promyelocytic leukemia, using the corresponding transcription response
datasets. The predicted OTEs and off-targets help to better understand the mechanisms of
action of repositioned drugs.

In Table 1, the repositioning list for MCF7 breast cancer cell line includes all of the FDA-
approved breast cancer drugs targeting on ER, which appear in the 1,390 drug set. The drugs
are raloxifene at 0.1 μM and 7.8 μM, tamoxifen at 1 μM and 7 μM, fulvestrant at 1 μM and
0.01 μM, and estradiol at 4.6 μM and 1 μM. The repositioning result is consistent with the
fact that MCF7 is an ER+ breast cancer cell line. In addition, raloxifene and tamoxifen are
the Selective Estrogen-Receptor Modulators (SERMs) (32). These SERMs function as pure
antagonists when acting through estrogen receptor β on genes containing estrogen response
elements but can function as partial agonists when acting on them through estrogen receptor
α. The repositioning results for raloxifene and tamoxifen are consistent with the “partial
agonist” property of raloxifene and tamoxifen. These two drugs generate higher effects at
lower dosages. Raloxifene at 0.1 μM has a higher repositioning rank than raloxifene at 7.8
μM, and tamoxifen at 1 μM has a higher repositioning rank than tamoxifen at 7 μM.

The identified off-targets and OTEs display the complexity of drugs’ activities. On one
hand, some drugs at higher dosages have their own specific off-targets or OTEs. In the
repositioning for the MCF7 breast cancer cell line, paclitaxel at 4.6 μM has extra positive
OTEs on the RBL1 protein, Rb’s kinase (CDK2), the cyclin proteins’ inhibitor (SCF), and
the inhibitor of kinase CDK4/6, INK4 (p15), which are absent at the lower dosage. These
OTEs ensure that paclitaxel can strengthen the transcription repression on the key genes
regulating the cell cycle. On the other hand, at different dosages, the same drug would
generate different effects on its specific off-targets and signaling pathways. For example, at
the higher dosages, raloxifene and tamoxifen have positive OTEs on p53 protein while
exhibiting negative OTEs on p53 protein at the lower dosages. Since the complexity of
drugs’ activities is not easily explained by “on-target” studies, the OTEs on the downstream
signaling proteins have to be identified and linked to transcription, rather than simple
analysis of the effects on known drug-targets.

Bayesian Factor Regression Model (BFRM) plays a central role in recognizing the OTEs of
repositioned drugs. It factorizes the response (fold-change of expression) of a molecule into
different component values according to the latent factors (signatures). The CSB-BFRM
recognizes the essential latent factors (targetable signatures) and factorized component
values (OTEs) for these signatures. For the repositioning on the MCF7 breast cancer cell
line, we compared the original response (fold-change) on off-targets in cell cycle G1/S
checkpoint and p53 signaling pathways with the recognized OTEs on these targets
(Supplementary Figure 2). The data scale is changed. Fold-changes of the molecules are
between 0.4 and 1.6 while OTEs are between −0.10 and 0.10. The factorized OTEs allow
the easy recognition of positive and negative effects. For instance, all of the original fold-
changes of tamoxifen at 1 μM are higher than 1, while the OTEs are between −0.05 and
0.05. If we use the original fold-changes, we cannot tell the difference between OTEs on the
heterodimer of E2F and DP-1 (negative) and those for p53 (positive). The recognized OTEs
are better in reflecting the mechanism of action of repositioned drugs.

The proposed off-target drug repositioning method, CSB-BFRM, takes advantage of the
availability of disease-specific prior knowledge. For example, the definition of CSBs as
shown in Figure 1 needs the prior knowledge of the cancer genes that have genetic disorders
associated with the cancer type of interest. However, CSB-BFRM would face difficulties in
repositioning drugs for rare cancer types, as prior knowledge is often unavailable.
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Fortunately, with the rapid development of next generation sequencing, more people will be
willing to study these rare cancer types and to generate corresponding genetic mutation data.
The identification of key genes with genetic disorders would allow further identification of
CSBs for these cancer types. Thus, we believe that using CSB-BFRM for repositioning
drugs for rare cancer types will also be feasible.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
CSB-BFRM model

Jin et al. Page 12

Cancer Res. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2. Cancer signaling bridges (CSBs) and their roles in cancer study and drug discovery
(A) CSBs extend the signaling proteins to cancer proteins. (B) Linked cancer types of CSBs.
(C) Known anti-cancer drugs targeted on the proteins for signaling pathways, CSBs, and
cancer. (D) Extended proteins by CSBs are more likely to be targeted by anti-cancer drugs
than non-extended ones (Signaling proteins: P<10−5, Cancer proteins: P<10−14, Fisher’s
exact two-tailed test). (E) The overall effects on protein sets evaluated by E-scores (see
Supplementary Methods for details). For known anti-cancer drugs, they have significantly
higher effects on cancer protein set than those of signaling pathways and CSB proteins
(P<10−20, Mann–Whitney U test).
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Fig. 3.
The prediction performance of CSB-BFRM on FDA approved drugs and clinical trial drugs
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Fig. 4. OTEs and off-targets of raloxifene, tamoxifen, paclitaxel, and fulvestrant on the cell cycle
G1/S checkpoint and P53 signaling pathways
The right side is for the signal cascade in the cell cycle G1/S checkpoint signaling pathway
while the left side is for the P53 signaling pathway. The drug-dose pairs are listed in the
middle. The drug-targeted pathway was generated using IPA software (Ingenuity Systems,
Inc. Redwood City, CA).
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Fig. 5. Dose-response curves for raloxifene, tamoxifen, fluvestrant, and paclitaxel
The value of dots between 0% and 100% means the drug inhibits the cell growth. The
growth percentage of −100 means all cells are killed. The dose-response curves for
raloxifene and tamoxifen imply that they induce the cell death at higher dosages while the
curve for paclitaxel shows that some experiments also cause the cell death. In contrast, the
curve for fulvestrant indicates that at higher dosages fulvestrant does not induce the cell
death. The data source is Developmental Therapeutics Program (DTP) of NCI/NIH (31).
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Table 1

The activities of drugs predicted by repositioning scores for MCF7 breast cancer cell line

Predicted Rank Repositioned drugs Repositioning score (mean) Repositioning score (std) Status*

1 raloxifene 0.0000001 0.85 0.77 FDA CT

2 paclitaxel 0.0000046 2.75 1.01 FDA CT

3 tamoxifen 0.000001 3.43 1.97 FDA CT

4 paclitaxel 0.0000001 5.46 33.73 FDA CT

5 fulvestrant 0.000001 6.31 0.98 FDA CT

6 exemestane 0.00000001 21.82 86.28 FDA CT

7 letrozole 0.000014 26.43 96.52 FDA CT

8 sulindac 0.00005 29.02 18.10 CT

9 fulvestrant 0.00000001 31.01 42.76 FDA CT

10 daunorubicin 0.000007 37.95 83.48

11 clomifene 0.0000066 38.97 20.41

12 sulindac 0.0001 46.48 19.31 CT

13 estradiol 0.00000001 53.47 79.65 FDA CT

14 imatinib 0.00001 55.64 68.28 CT

15 estradiol 0.0000001 58.60 30.09 FDA CT

16 methotrexate 0.0000088 59.80 127.82 FDA CT

17 bezafibrate 0.000011 68.08 139.31

18 doxorubicin 0.0000068 70.22 218.72 FDA CT

19 valproic acid 0.00005 76.00 69.52

20 raloxifene 0.0000078 80.74 84.14 FDA CT

21 amiloride 0.0000132 113.04 193.55

22 tamoxifen 0.000007 124.33 137.36 FDA CT

*
FDA: FDA-approved breast cancer drug, CT: Clinical trial breast cancer drug
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