Skip to main content
. Author manuscript; available in PMC: 2013 Feb 1.
Published in final edited form as: Neuroimage. 2011 Sep 5;59(3):2636–2643. doi: 10.1016/j.neuroimage.2011.08.076

Table 1.

Regularization parameter estimates found for SVR, ridge regression and PLS. With the exception of Ridge(HKB), all parameters were estimated in the secondary CV and these are the average parameter values over the 500 iterations for each simulation setup.

U(0,4) U(2,6) U(4,8) U(6,10)
SVR-ε

noise σ = 0.8 0.466 0.503 0.494 0.483
noise σ = 1.6 0.537 0.562 0.539 0.565
noise σ = 3 0.595 0.631 0.659 0.661

SVR-C

noise σ = 0.8 2.840 0.496 0.318 0.277
noise σ = 1.6 0.708 0.195 0.159 0.149
noise σ= 3 0.301 0.134 0.120 0.118

Ridge(λ-HKB)

noise σ = 0.8 10.188 17.734 23.315 28.990
noise σ = 1.6 22.914 49.834 66.571 83.993
noise σ = 3 33.320 79.759 114.133 148.313

Ridge(λ-CV)

noise σ = 0.8 14.992 1.608 0.310 0.000
noise σ = 1.6 39.201 18.395 6.151 0.698
noise σ = 3 40.000 39.441 32.404 18.840

PLS-component number

noise σ = 0.8 8.095 12.314 8.709 6.807
noise σ = 1.6 2.051 8.009 8.268 7.635
noise σ= 3 2.000 3.638 4.683 6.013