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Abstract Type 2 diabetes and its major risk factor, obesity,
are a growing burden for public health. The mechanisms that
connect obesity and its related disorders, such as insulin
resistance, type 2 diabetes, and hypertension, are still
undefined. Microvascular dysfunction may be a pathophysi-
ologic link between insulin resistance and hypertension in
obesity. Many studies have shown that adipose tissue-derived
substances (adipokines) interact with (micro)vascular function
and influence insulin sensitivity. In the past, research focused
on adipokines from perivascular adipose tissue (PVAT). In this
review, we focus on the interactions between adipokines,
predominantly from PVAT, and microvascular function in
relation to the development of insulin resistance, diabetes, and
cardiovascular disease.
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Introduction

Type 2 diabetes is a growing worldwide problem. One of the
major risk factors for type 2 diabetes mellitus and cardiovas-
cular disease is obesity [1, 2]. Because the incidence of
obesity is increasing worldwide and has reached epidemic
proportions in several countries [3], the prevalence of
obesity-related disorders, such as insulin resistance and
hypertension, is rapidly increasing as well. It has been
demonstrated that microvascular dysfunction affects both
insulin-mediated glucose disposal [4–7] and peripheral
vascular resistance [8, 9], contributing to insulin resistance
and hypertension, respectively. We and others have shown
that microvascular function is impaired in obesity [6, 10, 11,
12•]. Various bioactive compounds produced and released by
adipose tissue (adipokines) influence vascular function and
insulin sensitivity. In particular, signals from perivascular
adipose tissue have been suggested to influence microvas-
cular function contributing to obesity-associated insulin
resistance and hypertension. In this review, we focus on the
interactions between adipokines and microvascular function
in relation to the development of insulin resistance, diabetes,
and CVD.

Microcirculation and Perivascular Fat: Definition,
Structure, and Function

Microcirculation

The microcirculation, including arterioles, capillaries, and
venules, can be defined on the basis of vessel diameter (<
150 μm) or on the basis of the physiologic vasoconstrictor
response to increased internal pressure [13]. The most
important functions of the microcirculation are 1) to regulate
tissue perfusion and exchange surface area to ensure
adequate delivery of nutrients, oxygen, and hormones; 2) to
avoid large fluctuations in hydrostatic pressure at the
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capillary level; and 3) to regulate peripheral vascular
resistance and thereby blood pressure [13]. Optimal micro-
vascular function is, therefore, essential for the regulation of
whole body and tissue metabolism as well as blood pressure.
Various autoregulatory mechanisms (systemic, regional,
metabolic, and myogenic) determine microvascular function
[14, 15]. In particular, endothelial cells (forming the inner
lining of the microvasculature) play a central role in
translating circulating factors (eg, hormones, fatty acids,
nutrients) to vasodilator (nitric oxide [NO], endothelium-
derived hyperpolarization factor [EDHF], prostaglandins
[PGI2/PGE2]) and vasoconstrictor (eg, endothelin-1 [ET-1])
factors [16].

Perivascular Adipose Tissue

Perivascular fat, or perivascular adipose tissue (PVAT),
consists of adipocytes, fibroblasts, stem cells, mast cells,
and nerves [17–19]. It can be found throughout the body,
around most arteries and veins with a diameter > 50 μm.
Specific locations where PVAT has been studied are around
the coronary arteries (epicardial adipose tissue), the aorta
(periaortic adipose tissue), and in the microcirculation of
the mesentery and adipose tissue [20, 21, 22, 23, 24, 25••].
In muscle, regulation of local perfusion by perivascular
adipose tissue has been proposed [23]. Aortic perivascular
adipose tissue expands in situations of nutrient excess and
obesity [26]. In the heart, PVAT volume has been found to
correlate with the amount of intra-abdominal fat [26, 27••].
The mechanisms causing expansion of perivascular adipose
tissue are still under investigation, but likely involve
differentiation of resident mesenchymal stem cells and
preadipocytes, as well as infiltration and differentiation of
stem cells from bone marrow. PVAT, at different locations,
has been shown to secrete a wide variety of adipose tissue-
derived hormones (adipokines) and other substances,
including hormones, cytokines, chemokines, fatty acids,
components of the renin-angiotensin system and oxygen
radicals [20, 28]. However, the rate of excretion of various
adipokines may vary between PVAT at different sites in the
vascular tree and between PVAT and other adipose tissue
depots [25••, 29••]. Adipokines such as fatty acids, tumour
necrosis factor α, (TNFα) and adiponectin have been
shown to affect insulin sensitivity and also inflammatory
responses, appetite, atherosclerosis, and hemostasis [30].

Microvascular Dysfunction in Insulin Resistance,
Obesity, and Hypertension

Microvascular dysfunction is not only characteristic for
insulin resistance and hypertension [31], but may be

involved in the pathogenesis and progression of these
conditions as well, as microvascular changes have been
demonstrated to occur very early, even before clinical
manifestation [9, 32–34]. Alternatively, by affecting both
peripheral resistance and glucose metabolism, microvascular
changes that result from hypertension could also predispose
to insulin resistance and vice versa.

Insulin Resistance

The classic definition of insulin resistance is a decreased
sensitivity and/or responsiveness to metabolic actions of
insulin that promote glucose disposal. A major action of
insulin in skeletal muscle is translocation of the glucose
transporter (GLUT-4) to the plasma membrane and subse-
quent activation of downstream pathways of glucose
metabolism [35]. A necessary requirement for this process
is delivery of insulin and glucose to tissue interstitium. This
delivery is regulated to a great extent by insulin itself via
direct effects on vascular function [35, 36•].

Over 20 years ago, several studies demonstrated direct
vasodilator effects of insulin in skeletal muscle-resistance
vessels, thereby increasing muscle blood flow [4, 37–39].
Subsequently, in a wide range of insulin-resistant states (eg,
hypertension, obesity, type 2 diabetes), this vasodilator
effect of insulin was shown to be impaired. This led to the
hypothesis that the vasodilator and metabolic actions of
insulin are functionally coupled [35, 40], although the time
kinetics and dosages of insulin required to increase total
muscle blood flow appear to be different from those for
insulin-induced glucose uptake [41, 42]. This apparent
dissociation in the effects of insulin on muscle blood flow
and glucose uptake resulted in a shift of focus from
insulin’s actions in the macrocirculation to actions in the
microcirculation. The groups of Clark and Barrett then
introduced the concept that distribution of blood flow
within the microcirculation, independent of changes in total
muscle flow, may be important for insulin-mediated
glucose metabolism [4, 43, 44]. They showed that insulin-
induced changes in muscle microvascular perfusion were
consistent with capillary recruitment [42, 45–47]. By
vasodilation of precapillary arterioles connected to nutritive
capillary networks, insulin induces capillary recruitment,
resulting in a redistribution of blood flow from putatively
non-nutritive transit and/or connective tissue microvessels
to nutritive capillaries [40, 48, 49]. This capillary recruit-
ment was shown to be associated with changes in muscle
glucose uptake independently of changes in total blood
flow, to require lower insulin concentrations than necessary
for changes in total blood flow, and to approximate the time
course for insulin-mediated glucose uptake in skeletal
muscle (ie, 5–10 min) [42, 50, 51]. Approximately 40%
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of insulin-stimulated muscle glucose uptake can be attrib-
uted to this capillary recruitment [47, 51, 52].

These vasodilator actions of insulin involve the endo-
thelial insulin receptor, insulin receptor substrate 1 and 2
(IRS1 and IRS2), PI3-kinase, phosphoinositide-dependent
kinase 1 (PDK-1), and protein kinase B (Akt) [35, 36•].
Insulin-induced stimulation of Akt directly increases
endothelial nitric oxide (NO) production via endothelial
nitric oxide synthase (eNOS) [35, 53]. The metabolic
action of insulin to stimulate glucose uptake in skeletal
muscle and adipose tissue is mediated through stimulation
of similar PI3-kinase–dependent signaling pathways.
Besides vasodilator actions, insulin has vasoconstrictor
effects as well. These vasoconstrictor effects are mainly
mediated by the vasoconstrictor peptide endothelin-1 (ET-
1) [35]. ET-1 is produced in the vascular endothelium
through stimulation of the intracellular mitogen-active
protein kinase (MAPK) signaling pathway and the
extracellular signal-regulated kinase-1/2 (ERK1/2) [54].
Thus, insulin has opposing endothelium-derived vasodila-
tor and vasoconstrictor effects, with the net effect being
dependent on the balance between these two [12•].
Normally, the net result is vasodilation.

Microcirculation in Obesity and Insulin Resistance

Most studies examining microvascular function in the
insulin-resistant state have been performed in obese
individuals [55]. These studies have demonstrated that
obese insulin-resistant individuals are characterized by
several impairments in the microvasculature. The presence
of endothelial dysfunction has been established by blunted
NO-mediated vasodilator responses in skin and resistance
arterioles to classic endothelium-dependent vasodilators
[11, 56–61] and impaired capillary recruitment to reactive
hyperemia [11, 62]. In support of a causal role for obesity
in the pathogenesis of endothelial dysfunction, weight loss
has been found to improve endothelial function [63]. At the
same time, obese insulin-resistant patients have elevated
plasma ET-1 levels [64]. A key feature of insulin resistance
is that it is characterized by specific impairment in PI3K-
dependent signaling pathways, whereas insulin’s signaling
through the MAPK pathways remains intact [36•, 65–67],
resulting in vasoconstriction. Indeed, several studies have
demonstrated impaired vasodilation and capillary recruit-
ment in response to insulin in skin and skeletal muscle of
insulin-resistant individuals [11, 68, 69, 70•, 71, 72]. As
metabolic insulin resistance is usually accompanied by
compensatory hyperinsulinemia (to maintain euglycemia),
this hyperinsulinemia in the vasculature will stimulate
unaffected MAPK-dependent pathways, leading to decreased
production of NO and increased secretion of ET-1 [54, 66,

73–75]. As a consequence, vasoconstriction of resistance
arteries and terminal arterioles occurs, leading to impaired
regulation of muscle perfusion, glucose uptake, and blood
pressure [13]. Recently, resistance to insulin’s effects on
vascular endothelium has indeed been shown to control
insulin sensitivity in mice [36•].

Microcirculation in Hypertension

Hypertension per se is also characterized by functional as
well as structural changes in the microcirculation [31],
including impaired vasoregulation [76], increases in wall-
to-lumen ratio of small arteries [31, 77], and structural and
functional capillary rarefaction [5, 13, 78, 79]. The
presence of endothelial dysfunction in hypertension has
been established by blunted vasodilator responses and
capillary recruitment to classic endothelium-dependent
vasodilators (eg, acetylcholine) and mechanical stimulation
(shear stress) [5, 80]. Recent studies also demonstrated
impaired insulin-mediated NO-dependent vasodilation in
different animal models of hypertension [81–83]. In
addition to the decrease in NO availability, hypertension
is characterized by a parallel increase in the release of the
endothelium-derived contracting factor ET-1 and in the
vasoconstrictor angiotensin II (Ang II) [76, 84].

Whereas it has been known for many years that these
microvascular alterations can be secondary to sustained
elevation of blood pressure [85, 86], there is also evidence
that microvascular changes can be a cause rather than a
consequence of hypertension [8, 9, 87]. Microvascular
abnormalities occur early during development of hyperten-
sion in spontaneously hypertensive rats (SHR) [81, 88], and
prevention of oxidative stress by antioxidant treatment not
only prevents rarefaction [88] but also prevents the age-
related development of hypertension [89]. Furthermore,
capillary rarefaction, similar to the magnitude seen in
patients with established hypertension, can already be
demonstrated in individuals with borderline hypertension
[8] and in individuals with a familial predisposition to
hypertension, even if they themselves are normotensive [9,
32]. Thus, it seems likely that microvascular abnormalities
can both result from and contribute to hypertension, and a
continuing cycle may exist in which the microcirculation
maintains or even amplifies an initial increase in blood
pressure. However, microvascular dysfunction (including
vascular insulin resistance) due to hypertension may also
directly reduce the access of insulin and glucose to skeletal
muscle, resulting in reduced insulin sensitivity.

To summarize, there are several arguments for a causal role
of microvascular insulin resistance and dysfunction in
metabolic insulin resistance and hypertension (Fig. 1) [90].
Subsequently, the hyperglycemia and hyperinsulinemia that
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evolve with metabolic insulin resistance can further impair
endothelial function [91, 92] and consequently glucose
disposal and blood pressure. Hence, it is possible to envision
a vicious circle of progressive microvascular dysfunction that
contributes to and is exacerbated by worsening metabolic
insulin resistance and hypertension.

Adipose Tissue and Microvascular Dysfunction

The fact that there are associations between measures of
adiposity and microvascular function [93] indicates the
existence of signaling pathways between adipose tissue and
the microcirculation. A large number of recent studies have
proven that adipose tissue functions as a highly active
endocrine organ. Adipose tissues secrete a variety of
bioactive substances called adipokines. In obesity, it has been
shown that there is an enhanced production of several
adipokines (eg, free fatty acids [FFA], angiotensinogen,
leptin, resistin, and several inflammatory cytokines) [63,
94–97], whereas the production of adiponectin, an anti-
inflammatory adipokine, is reduced [98]. In recent years,
perivascular adipose tissue has been identified as a source of
adipokines, which are summarized in Table 1 and Fig. 2. The
rate of excretion of various adipokines differs between
perivascular adipose tissue and other adipose tissue depots,

and may vary between PVAT at different sites in the vascular
tree [25••, 29••]. Here we discuss some major adipokines and
their effects on (micro)vascular function.

Adiponectin

Adiponectin is an abundant protein in the human circulation
that has been shown to be inversely associated with risk for
type 2 diabetes, to increase insulin sensitivity, and to improve
vascular function [99, 100]. Adiponectin expression is limited
to adipocytes, but paradoxically, its levels are decreased in
obesity. This defect has been proposed to be caused by TNFα
and interleukin-6 (IL-6), as well as other inflammatory
mediators [30, 101]. Adiponectin itself can reduce production
of proinflammatory cytokines, and favorably affects insulin-
signaling pathways [102].

It has been shown that PVAT in the coronary circulation
[103] and in adipose tissue produces adiponectin [25••]. In
subjects with coronary artery disease, production of adipo-
nectin is reduced in epicardial adipose tissue [104]. In mice,
a high-fat diet was found to decrease adiponectin secretion
from PVAT [29••]. The secretion of adiponectin by differen-
tiated coronary perivascular adipocytes was much lower
when compared to subcutaneous and perirenal adipocytes,
suggesting that PVAT would have a more inflammatory
profile than other fat depots [29••]. Conversely, another

Fig. 1 The postulated
pathophysiologic framework
underlying the hypothesis that
microvascular dysfunction
links hypertension and insulin
resistance. ACE—angiotensin-
converting enzyme; ARB—
angiotensin II receptor blocker;
RAS—renin-angiotensin
system; TNFα—tumor
necrosis factor α. (Adapted
from Jonk [90].)
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study has reported similar concentrations of adiponectin in
PVAT, and subcutaneous and abdominal visceral adipose
tissue [105]. However, in the latter study, adiponectin was
measured in homogenates of the adipose depots, and
synthesis does not necessarily equal secretion.

Leptin

Leptin, the product of the ob gene discovered in 1994, is one
of the best-known adipokines. Deficiency of leptin activity
leads to severe obesity, insulin resistance, and vascular
dysfunction in mice and rats [7, 106], showing that leptin
controls metabolism and vascular function. Leptin has been
shown to increase NO production in the presence of insulin
[107]. In humans, leptin deficiency is associated with
hyperphagia, obesity, and insulin resistance [108], although
circulating levels of leptin are generally increased in obesity.
Recent data have suggested that obesity is a leptin resistant
state [109]. Perivascular adipose tissue expresses leptin,
although to a somewhat lower extent than subcutaneous and
perirenal adipose tissue, and leptin secretion increases during
diet-induced obesity [29••, 110].

Cytokines and Chemokines

A substantial number of studies have shown that PVAT
is a source of predominantly proinflammatory, cytokines
and chemokines [20, 111, 112]. Mazurek et al. found that
epicardial PVAT from 42 patients who underwent elective
coronary artery bypass graft (CABG) surgery excreted
higher amounts of IL-1β, IL-6, IL-6sR, and TNFα than
subcutaneous adipose tissue from these same patients [20].
In another study, IL-6 and IL-8 excretion in differentiated
perivascular adipocytes was higher than in subcutaneous
and perirenal fat, as well as MCP-1 release [29••].
Importantly, the amount of cytokines excreted by PVAT
did not correlate with plasma cytokine concentrations.
These findings illustrate the importance of adipose tissue
location and that systemic concentrations of adipokines
may not be representative of local concentrations in
tissues. Also, the inflammatory properties of epicardial
adipose tissue were independent of obesity [20]. Aside
from cytokines, PVAT is also a source of chemokines such
as IL-8, MCP-1, and RANTES [111, 113]. These have
been implicated in the initiation of vessel wall inflamma-
tion and concomitant production of cytokines.

Adventitia-Derived Relaxing Factor

Perivascular adipose tissue around the aorta and mesen-
teric arteries of rats has been shown to exert a direct
relaxing effect on vascular smooth muscle, mediated by
one or more adventitia-derived relaxing factors (ADRFs)
[22, 114]. One of these ADRFs has been identified in rats
as angiotensin 1–7 [115]. In humans, adiponectin is a
prominent ADRF, and the role of angiotensin 1–7 has not
been proven.

Renin-Angiotensin System

Perivascular adipose tissue has been shown to express all
components of the renin-angiotensin system except renin
[116], and this has been implicated in the pathogenesis of
hypertension. The production of angiotensin II by mesen-
teric adipose tissue was found to be higher than that in
periaortic adipose tissue, showing regional differences in
this system [116]. Interestingly, angiotensin II type-1 (AT1)
receptor blockade (ARB) improves insulin sensitivity,
which seems to be related to effects on adipose tissue
[117, 118]. Although acute angiotensin II infusion in
healthy subjects reduces capillary density and acute ARB
treatment in hypertensive subjects stimulates capillary
density, these acute changes in capillary densities are not
directly coupled to subsequent changes in insulin-mediated
glucose uptake [119, 120].

Table 1 Products of perivascular adipose tissue involved in regulation of
vascular function

References

Cytokines

TNFα [20, 27••]

IL-1β [20, 27, 27••]

IL-6 [7, 19, 20]

Chemokines

MCP-1 [20, 111]

IL-8 [111]

MIP-1α [29••]

Hormones and fatty acids

Leptin [29••, 110]

Adiponectin [25•, 29••], [103–105]

FABP4 [29••]

FFA [110]

Vasoactive agents

Angiotensinogen [116]

Ang II [116, 130]

Ang (1–7) [115]

ROS [110, 113, 121, 125]

H2S [128]

Ang II angiotensin II; Ang (1–7) angiotensin (1–7); FABP4 fatty acid-
binding protein 4; H2S hydrogen sulphate; FFA free fatty acids; IL
interleukin-; MCP-1 monocyte chemoattractant protein-1; MIP-1α
macrophage inflammatory protein-1α; ROS reactive oxygen species;
TNFα tumor necrosis factor α
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Reactive Oxygen Species

Production of reactive oxygen species by PVAT has primarily
been found in the larger arteries of rats and mice. ROS
production in PVAT is produced by NADPH oxidase in
immune cells [113, 121], can be increased by angiotensin II
[122], and has been found to be increased in experimental
obesity [121].

Perivascular Adipose Tissue as a Regulator
of Microvascular Function

Accumulating evidence suggests that the products of PVAT
contribute to regulation of (micro)vascular function and,
subsequently as a consequence, may influence organ
function and even insulin sensitivity [23, 40]. The hypothesis
that perivascular adipose tissue controls glucose metabolism
is supported by strong statistical relationships between
ectopic fat and insulin sensitivity, the fact that vascular
function contributes to regulation of insulin sensitivity [36•],
and by recent evidence that PVAT controls vascular tone
[25••]. At present, the role of PVAT in the pathogenesis of
diabetes and the associated cardiovascular disease is still
being defined.

PVAT and Endothelium-Dependent Vasodilation

Endothelium is an important modifier of vascular tone, and
recent evidence suggests PVAT alters the balance between
endothelium-dependent vasodilator and vasoconstrictor sub-
stances such as NO and endothelin-1 [123]. This is illustrated
by studies showing that the amount of PVAT surrounding the

brachial artery is negatively associated with post-ischemic
increases in forearm blood flow. In contrast, increased PVAT
around the brachial artery does not associate with flow-
mediated dilatation of the brachial artery itself [27••],
suggesting that PVAT is able to affect microvascular function
at distal sites (“vasocrine” signaling) and that the effects of
PVAT are vessel specific. Anti-contractile properties of PVAT
are not only seen in large arteries but also in the
microcirculation of the mesentery and adipose tissue [25••].

In subcutaneous gluteal fat of healthy lean subjects, anti-
contractile properties of PVAT around microvessels have also
been demonstrated [25••]. The anti-contractile properties of
PVAT were shown to be mediated by adiponectin and were
abrogated in patients with metabolic syndrome, suggesting
functional differences between PVAT from lean subjects and
subjects with metabolic syndrome. Moreover, hypoxia, which
is known to decrease adiponectin production, attenuates the
anti-contractile properties of PVAT [25••, 124].

PVAT has also been shown to attenuate endothelium-
dependent vasodilatation in pathologic situations, and this
effect may be mediated by leptin and reactive oxygen species.
Epicardial PVAT from swine with a diet-induced metabolic
syndrome excretes more leptin than epicardial perivascular
adipose tissue in lean swine, and the increased production of
leptin attenuates endothelium-dependent vasodilation by
activating protein kinase C [110]. In New Zealand obese
mice with metabolic syndrome, a role for PVAT-derived
reactive oxygen species in attenuation of endothelium-
dependent vasodilatation has been demonstrated [121].

Healthy PVAT enhances endothelium-dependent vasodi-
lation, probably through adiponectin or leptin. Contrarily,
leptin may also enhance vascular constriction. However, in
pathologic conditions these properties of PVAT seem to be

Fig. 2 Products of perivascular
adipose tissue involved in
regulation of (micro)vascular
function. Depicted is perivascular
adipose tissue in a biopsy taken
from the quadriceps muscle of a
type 2 diabetic patient. The black
arrow indicates a microvessel.
ADRF—adventitia-derived
relaxing factor; Ang II—
angiotensin II; Ang (1–7)—
angiotensin (1–7); FABP4—fatty
acid-binding protein 4;
H2S—hydrogen sulphate; IL—
interleukin-; MCP-1—monocyte
chemoattractant protein-1; MIP-
1α—macrophage inflammatory
protein-1α; ROS—reactive
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attenuated. The exact mechanisms through which PVAT
modulates (micro)vascular tone remain to be investigated.

Direct Effects of PVAT on Smooth Muscle Tone

Aside from interaction with vascular endothelium, perivas-
cular adipose tissue is also able to act directly on vascular
smooth muscle to determine vascular tone and diameter via
release of both vasodilator and vasoconstrictor substances.

Vasorelaxation by perivascular adipose tissue of the
aorta was the first vasoactive effect reported for PVAT,
leading to the proposed release of an ADRF (or perivas-
cular adipose tissue derived relaxing factor [PVRF]) [125].
In spontaneously hypertensive rats [126] and insulin-
resistant fructose-fed rats [127], the relaxing effect of PVAT
on mesenteric arteries was found to be impaired. At present,
the nature of the ADRFs is not fully clear, although
angiotensin 1–7 [115], adiponectin [25••], and hydrogen
sulfide [128] have been mentioned as ADRFs. Interestingly,
adiponectin receptor blockade did not inhibit the relaxing
effect of PVAT in the rat mesenteric bed [129], in contrast
to the PVAT effect in human adipose tissue. This indicates
that ADRFs may be different between various tissues,
species, or both.

PVAT is also able to enhance vasoconstrictor responses, the
mediator of which is likely angiotensin II. In mesenteric
arteries, PVATwas shown to enhance constriction induced by
nerve stimulation, an effect mediated by angiotensin II [130].

In summary, PVAT interacts with smooth muscle tone
via direct as well as indirect mechanisms, which are likely
tissue specific. The net effect of PVAT can either be
vasoconstrictor or vasodilator, and it is modulated by
obesity and hypertension.

PVAT and Insulin Sensitivity

As mentioned above, vascular function, and especially
microvascular blood volume in muscle, is related to insulin
sensitivity. Because obesity is associated with insulin resis-
tance, reduction of microvascular blood volume, and altered
properties of PVAT, we have proposed that PVAT causes
microvascular dysfunction and insulin resistance in obesity
[23, 131]. Although there are at present no studies that
prospectively link PVAT to diabetes, a number of studies
provide indirect evidence for this hypothesis. First, accumu-
lation of ectopic adipose tissue, especially within muscles,
strongly relates to local insulin sensitivity. The amount of
PVAT surrounding the brachial artery [27••] and adipose
tissue between muscles (intermuscular adipose tissue
[IMAT]) [132] are inversely related to insulin sensitivity.
Even though IMAT accounts for only 3% of total thigh
adipose tissue, it has the strongest correlation with insulin
sensitivity in obese subjects and subjects with type 2 diabetes

mellitus [133]. Second, aside from intermuscular adipose
tissue and PVAT around the femoral artery, we have found
accumulation of PVAT around the arterioles that regulate
muscle perfusion [131]. By regulating endothelium-
dependent vasodilatation, insulin-mediated vasoreactivity,
and muscle perfusion, PVAT may control muscle glucose
uptake and, hence, determine risk of future type 2 diabetes.

Taken together, these data support the hypothesis that
PVAT is one of the causes of insulin resistance. The
strongest data for or against this hypothesis will likely come
from PVAT-specific transgenic mouse models, but at
present such models do not exist.

Conclusions

There is solid evidence for an important role for the
microcirculation as a possible link between the cardiometa-
bolic risk factors insulin resistance and hypertension, con-
ditions that may further develop into diabetes with subsequent
cardiovascular disease. Obesity is an important risk factor for
insulin resistance and hypertension, and it is associated with
several impairments in the microcirculation, including im-
paired endothelial function and rarefaction. Recent studies
have shown that PVAT relates to endothelium-dependent
vasodilatation and inflammation by secreting a variety of
substances that affect vascular tone and infiltration of
inflammatory cells (Fig. 2). However, the mechanisms
controlling the quantity of PVAT and its secretion of
adipokines remain to be determined. Because PVAT is
located within insulin target tissues, controls (micro)vascular
function, and is associated with insulin resistance, it may
well contribute to the pathogenesis of type 2 diabetes and
cardiovascular disease.
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