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Abstract
Optical-sectioning, digital fluorescence microscopy provides images representing temporally- and
spatially-resolved molecular-scale details of the substructures of living cells. To render such
images into solid models for further computational analyses, we have developed an integrated
system of image acquisition, processing, and rendering, which includes a new empirical technique
to correct for axial distortions inherent in fluorescence microscopy due to refractive index
mismatches between microscope objective immersion medium, coverslip glass, and water. This
system takes advantage of the capabilities of ultra-high numerical aperture objectives (e.g. total
internal reflection fluorescence microscopy) and enables faithful three-dimensional rendering of
living cells into solid models amenable to further computational analysis. An example of solid
modeling of bovine aortic endothelial cells and their nuclei is presented. Since many cellular level
events are temporally and spatially confined, such integrated image acquisition, processing,
rendering, and computational analysis, will enable, in silico, the generation of new computational
models for cell mechanics and signaling.
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INTRODUCTION
Three-dimensional imaging from optical sectioning microscopy is a well-accepted and
routine method for elucidating time- and position-dependent molecular processes in single
cells (Helmke et al., 2001; Poenie et al., 2004; Roux et al., 2004; Sleeman, 2004). Of
particular interest is the improvement of image contrast and resolution through
computational and physical methods of removing out-of-focus light from optical sections.
For example, deconvolution methods computationally remove from the image the point-
spread function of an optical system, which has been convolved with the light-emitting
object. Confocal and multiphoton microscopy remove out-of-focus light through physical
means: either by a pinhole placed in a conjugate image plane of a scanned laser (confocal)
or by selective excitation of fluorophores at the focal point (2-photon). Although each of
these methods has advantages and disadvantages related to the speed of acquisition,
computational overhead, and cost, they all yield high-resolution, three-dimensional
representations of molecular details of the substructures of living cells.
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From such high-resolution studies, it is apparent that at all spatial and temporal scales,
biological systems are complex and interconnected (Murakoshi et al., 2004; Tzima et al.,
2002; Wang et al., 2005). Thus, mathematical modeling of cell mechanics, molecular
messengers, their spatial localization, and temporal regulation can be a useful tool to
summarize experimental data and predict, computationally, the response of a cell to external
stimuli. Recent advances in optical fluorescence microscopy and computer power, and the
commercial availability of advanced computational software, provide unique opportunities
for routine cell-specific, subcellular level computational biology.

In this study, we developed an integrated platform of image acquisition, image processing,
and solid-model rendering to enable finite element analysis (FEA) of the structure,
mechanics, and function of living cells. With the exception of custom image processing
algorithms for the correction of axial distortion and algorithms to convert 3D image data sets
into solid models, this platform consisted entirely of commercially available hardware and
software, thus providing researchers accessibility to versatile tools for 3D cellular
computational modeling.

MATERIALS AND METHODS
Widefield Microscopy

The optical setup is based on an Olympus IX71 fluorescence microscope fitted with a xenon
arc lamp (Olympus, Japan) for fluorescence excitation. The samples were mounted to the
microscope on a piezoelectric z-stage (Mad City Labs, Madison, WI), to adjust focal depth
(resolution ~1 nm), and a stepper-motor-driven stage for x,y-translational positioning
(resolution ~20 nm) (MadCity Labs, Madison, WI). Widefield fluorescent images were
acquired using a PlanApo 60x/1.45 NA TIRFM oil-immersion objective (Olympus, Japan)
and a Sensicam QE CCD camera (Cooke, Romulus, MI). To minimize photobleaching, a
TTL-modulated shutter (Uniblitz, Rochester, NY) was used to illuminate the sample only
during image exposure. Z-stage movement, shutters, and camera triggers were coordinated
through the use of a custom LabVIEW program and an A/D board (National Instruments,
Austin, TX). The amount of z-stage movement was set to a constant 0.2 µm per image
representing a slight over-sampling as determined by the Rayleigh depth of field (Autoquant
Imaging, 2004).

The total sampling distance in the z-direction was approximately twice the full apparent
depth of the object. Exposure time was adjusted to provide a peak grayscale value at ~80%
of the maximum bin value for the camera (Autoquant Imaging, 2004).

Samples
Microphseres—FocalCheck™ polystyrene fluorescent beads (diameter 15 or 6 µm, index
of refraction 1.5) (Molecular Probes, Carlsbad, CA) were dried onto no. 1 coverslips and
immersed in oil with an index of refraction of 1.33 to simulate the aqueous biological
environment. Beads immersed in water were also imaged as a comparison.

Confluent Endothelial Cells—Bovine aortic endothelial cells (BAECs) (passages 3–10)
were grown to confluence in Dulbecco’s modified eagle medium supplemented with 10%
fetal calf serum, 2 mM L-glutamine, 100 U/mL penicillin and streptomycin (BioSource,
Camarillo, CA) in a culture well on a no. 1 coverslip (Labtek, Campbell, CA). The
cytoplasm was stained with Calcein AM, and the nucleus was counterstained with Hoechst
33258 (Molecular Probes). Imaging was performed with cells in phosphate-buffered saline
(PBS) and 1% albumin at room temperature (Biosource).
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Empirical Axial Distortion Correction
The axial spacing of 2D images in a 3D image stack must be adjusted to account for axial
distortions accompanying imaging through media with different indices of refraction (see
Discussion for origins of axial distortion). To correct 3D data sets of cells with unknown
axial dimensions, we developed an empirical, nonlinear axial distortion correction function
(ADCF) based on 3D image stacks of fluorescent microspheres of known dimensions.
FocalCheck™ fluorescent microspheres (Molecular Probes) (ex. = 488 nm, em. = 530 nm)
were mounted in 1.33 index of refraction oil (Cargille Laboratories, Cedar Grove, NJ) and
sealed between a no. 1 coverslip and a glass microslide. (Use of oil with an index of
refraction that was equivalent to water preserved adhesion to the glass and axial distortion
observed in aqueous solutions). A stack of 2D 16 bit images of a single well-isolated bead
was acquired at 0.2 µm increments of the z-stage. These image sets were deconvolved in
AutoDeblur (AutoQuant, Albany, NY) using 10 iterations of 3D blind deconvolution.

The resultant stack was analyzed using a custom MATLAB-based program (MathWorks,
Natick, MA) to calculate the ADCF. First, a 3D matrix of pixel intensities was generated
from the image stack. Noise was removed using a median filter (window of 3 pixels),
followed by a Gaussian filter (window of 5 pixels and a depth of 5). An appropriate
threshold was selected manually (based on visual inspection of the image) and used to create
a binary matrix. The projected radius of the bead was then calculated in each of the vertical
sections of the matrix. As illustrated in Figure 1, the known radius of the bead (measured at
the widest point) was used to generate an ideal sphere. The z-position of each image slice
was reassigned to the z-position at which the image diameter matched the ideal sphere. This
procedure is illustrated graphically in Figure 1.

In this algorithm, Hm and Hc take the form of arrays. The values of Hm are evenly spaced
and are determined directly from the movement of the z-stage during imaging. It is not
required that Hc values be spaced evenly; the nonuniform spacing accounts for the nonlinear
distortion introduced by the optics. Hc was plotted against Hm and the resulting data were fit
with a polynomial of high order using least-squares regression as performed by the
MATLAB function polyfit (Fig. 4). The exponents and coefficients were automatically
exported to a separate data file and used to adjust z-spacing for image stacks for objects of
unknown axial dimensions. The resultant polynomial curve fit serves as an ADCF that
accounts for the nonlinear image separation and axial elongation caused by the imaging
system.

Solid Modeling
After filtering (described earlier) and scaling with the ADCF, objects were converted to
solid models. Depending on the complexity of the cellular object to be modeled, the solid
geometry was created in MATLAB using a Qhull-based algorithm (for complex or
convoluted geometries with interior features), or a custom “blanket rendering” algorithm for
large scale surface topographies.

Qhull-Based Solid Model Generation—In this approach, a three-dimensional surface
was created from the binary matrix by calling the isosurface function in MATLAB. This
isosurface was then converted to a patch surface that could optionally be displayed for 3D
visualization purposes. The number of faces in the patch object was reduced by a linear
factor to ensure that geometric complexity did not preclude further computational analysis.
This patch was then converted to a cell array of 3D triangular faces by connecting the
vertices in the patch. The triangular faces were then progressively joined to generate
substructures of the main object. Substructures were also progressively joined to piece
together the main object. Once all faces had been joined to the main object, they were
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coerced to a solid. The solid was then ready for FEMLAB importation directly as a
geometry object. For large structures, this approach is computationally expensive, and
generated solids that were difficult to mesh due to the memory constraints of the 32 bit
operating system. Therefore, an alternative “blanket rendering” approach was developed for
larger structures such as portions of a confluent endothelial cell monolayer.

Blanket Rendering Solid Model Generation—In this algorithm, the widest slice in the
binary array was determined automatically; for a bead, the widest slice is the bead center, for
calcein-stained adherent cells, the widest slice is the cell base. A surface was then created by
mapping the height of the highest point above and below the widest slice. In practice, this
procedure can be thought of as dropping a blanket over the 3D surface. An arbitrary 3D
function was fit to these surfaces of the form z = f(x,y). This function was interpolated on a
grid of points in the xy-plane, forming a smooth surface that could be exported to FEMLAB.
The top and bottom surfaces were joined in FEMLAB to create a solid model ready for
further computational analysis.

RESULTS
Deconvolution of Fluorescent Microspheres

Deconvolution of images was used to more accurately determine object edges and
geometries. The effects of deconvolution on 15 µm fluorescent microspheres are shown in
Figure 2. The deconvolved bead image of Figure 2B, in comparison the corresponding raw
image in Figure 2A, suggests that, while deconvolution removes much of the out-of-focus
light and helps delineate bead edges, it fails to completely compensate for distortion along
the z-axis.

Axial Distortion Correction Function
The ADCF was computed as described in Methods. Plots of image slice z-positions (Hm) for
an ideal sphere were plotted against slice positions (Hc) for the actual sphere (Fig. 3). A
slope of 1 for the Hc(Hm) curve corresponds to a perfect sphere. From Figure 3, it is evident
that this function characterizes an elongated sphere and that this elongation is not constant
for different z-positions (nonconstant slope). The curvefit was used to generate corrected z-
positions of slices from samples of unknown shape.

To test the ability of the ADCF to correct for axial distortions, image stacks of beads were
corrected by a linear correction factor and the nonlinear ADCF (Fig. 4A) and converted to
solid models using the Qhull-based approach. Solid models generated from an uncorrected
image stack, one generated using a linear correction factor, and a model generated using the
ADCF are shown in Figures 4A–4C, respectively. A linear correction factor resulted in a
nonspherical shape, while the ADCF resulted in a near perfect spherical solid model.

ADCF Applied to Biological Samples
To demonstrate the utility of the ADCF to correct for axial distortions in biological samples
of unknown axial geometry, the correction algorithm and solid modeling technique was
applied to image stacks of BAECs. In this case we imaged an ROI around one cell in a
confluent monolayer. Solid modeling in this case was accomplished by the “blanket
rendering” approach. In Figure 5A, the results of generating a model with no ADCF and
using the ADCF are shown. For the uncorrected case, the height of the cell was determined
to be ~12 µM, while for the corrected case (Fig. 5B), the height of the cell was ~5 µM,
which is consistent with atomic force microscopy (AFM) measurements of similar cells
(Barbee et al., 1995).
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The ADCF was then also applied to the nucleus of the cell creating a multicomponent solid
model. The ADCF-corrected solid model combined with the nucleus is shown in Figure 6.

DISCUSSION
In this paper, we present a method that can be used to rapidly create usable solid models of
biological samples from fluorescence images, and a simple algorithm to account for optical
distortions that arise from index of refraction mismatch that is independent of the optical
setup used. The method allows for easy importation to and integration with a commercially
available FEA package. The method also allows for counterstaining of internal cell
structures, and integration of these structures into a multicomponent cell solid model. We
believe these methods provide needed tools toward the development of cell-specific
computational modeling.

Deconvolution, filtering, and smoothing were necessary preprocessing steps to prepare
images for solid model generation. It is possible that these image processing steps generated
unintended geometric artifacts and distortions in the solid model representation of the object
beyond axial distortion. Although it is not possible to rule these types of artifacts out
entirely, we have shown this procedure produces realistic topographies of adherent confluent
endothelial cells when compared to AFM-generated cell topographies by others (Barbee et
al., 1995). Because of the high signal-to-noise ratios in fluorescence imaging, and the ability
of deconvolution to remove out-of-focus light and improve edge detection, it is more likely
that these preprocessing steps remove existing imaging artifacts rather than introduce new
ones. However, these preprocessing steps were not effective in correcting for axial
distortions, necessitating the determination of the ADCF.

Axial distortions originate from objective defects, missing image information, and errors in
the optical system. First, although spherical aberration is a feature of some microscope
objectives, most modern objectives are corrected for spherical aberration for a designated
coverslip thickness, immersion media, wavelength, and sample index of refraction. Some
objectives employ a correction collar to adjust the degree of correction depending on the
setup. However, sample indices of refraction are often not constant everywhere, especially
in biology. In addition, coverslips can vary in thickness from one to another or across a
single coverslip. These effects can combine to introduce unexpected spherical aberration
into a three-dimensional data set even when using high-quality microscope objectives.

Second, in wide-field fluorescence imaging, there exists information in the object that is
missing in the image data set. This missing information is manifested as a “cone of missing
frequencies” in the Fourier transform of the image set. The missing cone is a region of the
spatial frequency in which the optical transform function (OTF) is exactly zero due to the
microscope’s inability to resolve spatial frequencies along the optical axis (McNally et al.,
1994). Subsequently, information in this region is not passed to the image, or to an
experimentally obtained point spread function (PSF), resulting in nonlinear elongation of the
image along the z-axis. There are three reasons why deconvolution cannot compensate for
the distortion caused by the cone of missing frequencies. First, the distortion is often
nonlinear, which violates a deconvolution criterion of linearity. Second, experimentally-
obtained or theoretical PSFs are inherently finite. Therefore, they do not possess the
property that leads to the missing cone, namely that the integrated intensity in each plane
should be the same (McNally et al., 1994). Third, numerically-obtained PSFs are subject to
round-off error resulting in the OTF having small values where it would otherwise be zero in
the missing cone (McNally et al., 1994).
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A third source of axial distortion arises when using high numerical aperture (oil immersion)
objectives to image biological samples in aqueous media in which the sudden change of
index of refraction causes bending of the illumination light path as governed by Snell’s Law.
This distortion is manifested as a simple elongation resulting from the unequal movement of
focal plane and objective (Diaspro et al., 2002).

These three forms of distortion are superimposed on one another and produce a nonlinear
elongation of the object represented in the 3D data set (see Fig. 2) (Diaspro et al., 2002).
Because each of these aberrations shares a common source, it is difficult and often
impossible to accurately represent the axial dimensions in the 3D solid model through
computational or optical methods alone. These various distortions have been characterized
mathematically using ray tracing (Booth and Wilson, 2001). However, ray tracing is
insufficient to characterize the total distortion because, first, rays (particularly off-center
rays from High NA objectives) do not remain paraxial when penetrating the aqueous
environment beyond a few microns (Neuman et al., 2005), and, second, ray tracing does not
account for the “cone of missing frequencies” apparent in Fourier transforms of 3D image
sets collected with widefield optical microscopy (McNally et al., 1994).

Thus, in this study, we developed a nonlinear empirical function to correct for all known and
unknown sources of axial distortion of 3D image data sets by generating the ADCF via
processing of images of a fluorescent microsphere whose dimensions and shape were known
precisely. It is possible that we could have chosen other optical setups (matched indices of
refraction) or other imaging modalities (e.g. confocal) to obtain less distorted images
directly. Although the use of an oil immersion (n = 1.515) objective with an NA = 1.45 to
image cells in aqueous media (n = 1.33) exacerbates axial distortions, it improves light
collection efficiency and lateral resolution. More importantly, this objective enables the use
of objective-based total internal reflection fluorescence microscopy (Axelrod, 2001),
allowing determination of basal surface topographies. Thus, locations of focal adhesions can
be obtained and used in computational models to characterize mechanical coupling of the
cell to the substrate (not shown). This correction algorithm represents a novel method to
improve image formation with high NA objectives while maintaining accurate axial
dimensions.

Kuypers et al. have developed a novel technique to determine the thickness of fluorescent
thin layers using confocal microscopy that accounts for refractive index mismatch between
the immersion medium and the sample (Kuypers et al., 2005). In their method, the lower and
upper edges of a completely fluorescent sample are detected through novel analysis of the
slope of the fluorescence intensity along the optical axis with corrections for refractive index
mismatch. Although an excellent approach for measuring the thickness of very thin
fluorescent samples, this technique was not appropriate for the correction of adherent cells
obtained with widefield fluorescence in our study, does not yield a continuously varying
axial correction function, and does not appear to be sensitive enough to detect distortions
originating <10 µm from the coverglass.

Volume rendering of cells and tissues can create impressive three-dimensional images by
reconstructing stacks of confocal or widefield fluorescence images into spatially-oriented
grid points either on a convex hull or in point-cloud data. Such methods have provided
improved volume estimation and 3D visualization (Kubinova et al., 1999). However, even
after deconvolution of confocal data sets, when the index of refraction between immersion
medium and sample were not matched, accurate volumes were not obtained (Difato, 2004).
Also, the computational usefulness of grid data beyond visualization and volume estimation
is somewhat limited. Solid models are generally needed for complex computation (beyond
volume estimation, etc.) on the 3D space generated by the data set.
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There have been significant advances in generating solid models from data originating from
magnetic resonance imaging and computer-aided tomography produce striking 3D solid
models with little distortion (Mehta, 1997). These imaging modalities have the ability to
image at many angles (up to 3608), with direct compensation for 3D distortion. However, on
the cellular level, the acquisition of accurate three-dimensional data is not so straight
forward due to the difficulty in imaging from multiple directions and the inherent
inadequacies of microscopes to correctly acquire axial data. Cellular FEA has been reported
for simulated cells and membranes (Yamaguchi et al., 2000), idealized cells (Mack et al.,
2004), and living cells (Charras and Horton, 2002). Although simulation of cell structures
can provide insight into the general behavior of systems, these methods lack the ability to
directly correlate computational data with experimental values obtained on the same cells.
AFM is currently used for high-resolution surface imaging of cells and can be integrated
with other imaging modalities (Mathur et al., 2000). It has also been used for simultaneous
mechanical characterization of cells to create models for FEA of cell deformations with
applied external forces (Charras and Horton, 2002; Ohashi, 2002). While the concurrent
collection of detailed surface topography and mechanical properties are an advantage of
AFM, the collection of images is slow, the true height of the cell is difficult to obtain, and
cells must be fixed to image their internal structures (Chen et al., 2005). Furthermore, the
need of AFM for a stylus protruding from above the sample precludes the use of closed flow
chambers, simultaneous use of some other imaging modalities (e.g. transmitted light
microscopy), and the depiction of convoluted structures and the basal regions of cells.
Electron microscopy (EM) has also been used to create solid models from thin serial
sections (Silber et al., 2004). However EM also requires fixed samples that preclude its use
in correlating computational analysis and experimentation on the same cells.

To prepare corrected image stacks for FEA, a MATLAB program was constructed to
generate solid models. This program rapidly creates solid models from a sequence of
fluorescence images in a form that can be readily imported into a FEA software package.
We have chosen the program FEMLAB (COMSOL, Sweden) for FEA. The reasons for this
choice include FEMLAB’s integration with MATLAB and the parametric CAD program
SolidWorks, its ability to employ coupled multiphysics solutions in a single problem, and
the multitude of solution types that it offers in a single software package. Furthermore,
FEMLAB provides the means to input user-generated partial differential equations and to
couple them with finite element methods allowing for sophisticated modeling of the
interplay between complex cellular geometry, mechanics, and biochemical signaling.
Finally, the versatility of FEMLAB and the ability to generate predictive models, in-house,
allows for direct correlation of model and experiment. Other excellent software programs
have been developed for 3D computational modeling on single cells including virtual cell
(reviewed in Slepchenko et al., 2003) and MCell (Coggan et al., 2005). Virtual cell software
provides solutions of partial differential equations in user-generated 3D geometries while
MCell is a Monte Carlo-based solver. However, currently, neither is capable of coupling cell
mechanics to biochemical reactions, an area of intense study among cell biologists and
bioengineers (reviewed in Davies, 1995; Huang et al., 2004). In fact, there exists no
commercially-available software dedicated to computational cell mechanics. Thus, we
believe that the current study provides a bridge between cell biology and solid modeling of
cell mechanics and dynamic cellular processes. As the understanding of biological
phenomena increase in complexity and scope, a flexible and versatile modeling program like
FEMLAB can provide the means to represent data from disparate sources and to provide
new solutions to many problems in biology.

In conclusion, we report a new integrative method of rapid optical-sectioning, deconvolution
microscopy, that takes advantage of ultra-high numerical aperture objectives while
correcting for their inherent axial distortions, thus providing input for high-resolution solid
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models of cells and subcellular organelles which are amenable to FEA. This method
employs rapid 3D widefield deconvolution fluorescence imaging to obtain optical sections
of the sample. An empirical correction function (ADCF) compensates for the inherent
distortions along the z-axis and produces improved object representation, including internal
cellular structures (e.g. nucleus). With the rapid improvements in optics, computer
hardware, and modeling software, the methods presented bridge the gap between living cells
and cell-specific computational modeling and provide accessibility of such detailed cellular
investigations to scientists and students.
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Fig. 1.
Graphical representation of the ADCF algorithm: The maximum diameter of the distorted
sphere (D) is measured to determine the ideal sphere shape. The projected diameter of each
slice (Di) is determined and assigned a new position (Hc) based on projected diameter a
perfect sphere should have. The corrected position (Hc) is then related to the distorted
position (Hm) for curve fitting purposes. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Fig. 2.
FocalCheck™ 15 µm microsphere imaged under widefield fluorescence. A: Raw image set
viewed as a 3 view max projection. B: Image set after 10 iterations of the blind
deconvolution algorithm.
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Fig. 3.
Plot of corrected slice position (Hc) versus actual slice z-position (Hm). ADCF was
generated by fitting a 7th order Polynomial to the Hc(Hm) data. Slices are spaced at 0.2 µm.
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Fig. 4.
Three-dimensional visualization of 15 µm FocalCheck™ microsphere. A: Uncorrected bead
which has a height of ~24 µm. B: Bead shape corrected by a linear factor. C: Bead corrected
with the ADCF. Axes in microns.
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Fig. 5.
Blanket-rendered cell solid models. A: Uncorrected BAEC monolayer portion. B: ADCF-
corrected BAEC monolayer portion.
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Fig. 6.
ADCF-corrected solid model including nucleus.
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