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In eukaryotes, small noncoding RNAs of approxi-
mately 21 to 24 nucleotides function as guide mole-
cules in many biological processes, including genome
organization and stability, developmental timing and
patterning, and antibacterial and antiviral defense
(Carrington and Ambros, 2003; Poethig, 2009; Simon
and Meyers, 2011). The small RNAs regulate the
functions of target DNA or RNA in a sequence-specific
manner at either the transcriptional or posttranscrip-
tional level through an RNA-silencing mechanism
(Hammond, 2005; Czech and Hannon, 2011). Based
on whether RNase III family proteins participate in the
biogenesis, the small RNAs are divided into at least
two classes: RNase III family protein-dependent small
RNAs, including microRNAs (miRNAs) and many
small interfering RNAs (siRNAs); and RNase III fam-
ily protein-independent small RNAs, including Piwi-
RNAs and secondary siRNAs that are processed from
single-stranded precursors in worms (Czech and
Hannon, 2011). The mature miRNAs and siRNAs are
sorted and loaded specifically with Argonaute (AGO)
subfamily proteins, forming the RNA-induced silenc-
ing complexes (RISCs) that undergo a specific RNA-
silencing mechanism (Ender and Meister, 2010; Fabian
et al., 2010). Here, we briefly summarize the molecular
basis of miRNA biogenesis pathways and provide an
update on nuclear dicing bodies (D-bodies), structures
involved in miRNA processing in plant cells. For an
overview on siRNAs and other small RNAs, readers
are referred to recent excellent articles (Li et al., 2006;
Pontes et al., 2006; Ahmad et al., 2010; Chen, 2010a;
Law and Jacobsen, 2010; Czech and Hannon, 2011;
Simon and Meyers, 2011; Zhang and Zhu, 2011).

THE MIRNA BIOGENESIS PATHWAYS IN ANIMALS
AND PLANTS

MiRNAs (approximately 21–22 nucleotides) are a
class of small, regulatory RNAs that are found in
almost all of the eukaryotes (Reinhart et al., 2000; Lau

et al., 2001; Llave et al., 2002; Molnár et al., 2007; Zhao
et al., 2007; Chen, 2010b). Like protein-coding genes,
miRNA genes in both plants and animals are tran-
scribed by RNA polymerase II into primary tran-
scripts, known as pri-miRNAs. Animal miRNAs are
often clustered on the same precursor. These pri-
miRNAs are subject to 5# capping, 3# polyadenylation,
and splicing, as some of the pri-miRNAs may contain
introns. A pri-miRNA contains a stem-loop structure:
an imperfect double-stranded (ds) RNA hairpin that
harbors the mature miRNA (Bartel, 2004; Cai et al.,
2004; Lee et al., 2004; Xie et al., 2005; Kim and Nam,
2006; Laubinger et al., 2008; Chen, 2010b). The pri-
miRNAs are then processed by two substantial site-
specific endonucleolytic events and eventually turned
into miRNA duplexes. In animals, the initial step is
converting the pri-miRNAs into precursor miRNAs
(pre-miRNAs) in the nucleus through the micropro-
cessor, a complex that contains the RNase III family
protein Drosha and its partner Pasha/DiGeorge syn-
drome critical region gene 8, a dsRNA-binding
(dsRBD) protein (Denli et al., 2004; Han et al., 2004a;
Landthaler et al., 2004; Zeng et al., 2005). The specific
sites of the pri-miRNA are recognized by the micro-
processor and cleaved by Drosha to generate an ap-
proximately 60- to 70-nucleotide, folded pre-miRNA
with a two-nucleotide overhang at the 3# end (Han
et al., 2006; Chen, 2010a). Mitrons, some intronic pri-
miRNAs, are converted into pre-miRNAs by the RNA-
splicing machinery rather than the microprocessor
complex (Berezikov et al., 2007; Okamura et al., 2007;
Ruby et al., 2007; Flynt et al., 2010). Recently, addi-
tional factors, including the nuclear export receptor
Exportin1, the cap-binding complex, and ARSENITE-
RESISITANCE PROTEIN2, were found to participate
in this process (Laubinger et al., 2008; Gruber et al.,
2009; Sabin et al., 2009; Buessing et al., 2010). The pre-
miRNAs are then recognized by the nuclear export
protein Exportin5 and transported to the cytoplasm
in a Ran-GTP-dependent manner (Yi et al., 2003;
Bohnsack et al., 2004; Lund et al., 2004). The secondary
step is to generate the approximately 22- to 23-nucleotide
miRNA/miRNA* duplex from the pre-miRNA through
a cytoplasmic RNase III-like enzyme and its specific
dsRBD partner (Bernstein et al., 2001; Hutvágner et al.,
2001). In mammals, the RNase III enzyme Dicer func-
tions in association with the cytoplasmic dsRBD protein
TAR RNA-binding protein 2, whereas in Drosophila
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melanogaster, Dicer1 with its cofactor Loquacious
plays a role in this transition (Chendrimada et al.,
2005; Jiang et al., 2005; Saito et al., 2005; Park et al.,
2007). The mature RNAs are sorted and loaded with
specific AGO proteins to assemble RISCs. Sorting
may depend on the interaction between components
of biogenesis and effectors, 5# end nucleotide and
thermodynamics of the small RNA duplexes, and/or
the structure biases of the AGO family (Khvorova
et al., 2003; Schwarz et al., 2003; Gregory et al., 2005;
Miyoshi et al., 2005; Rand et al., 2005; Mi et al., 2008;
Okamura et al., 2009; Frank et al., 2010).

In contrast to the nuclear cropping and cytoplasmic
dicing of pri-miRNAs in animals, both of the steps in
pri-miRNA processing occur in the nucleus of plant
cells. In addition, a single plant RNase III family
protein, DICER-LIKE1 (DCL1), plays similar roles to
both nuclear Drosha and cytoplasmic Dicer in animals
(Park et al., 2002; Reinhart et al., 2002; Schauer et al.,
2002; Kurihara and Watanabe, 2004). Plant miRNA
genes are also transcribed by RNA polymerase II, and
the primary transcripts are 5# capped and 3# polyade-
nylated (Xie et al., 2005; Kim and Nam, 2006; Chen,
2010a). The pri-miRNAs are cropped into pre-miRNAs
with a shorter stem-loop structure, which are further
cut into the miRNA/miRNA* duplex. This process
requires the interaction of DCL1 with its dsRBD pro-
tein partner HYPONSTIC LEAVES1 (HYL1), similar to
Drosha and Dicer in animals, which are assisted by a
specific dsRBD protein partner (Han et al., 2004a,
2004b; Vazquez et al., 2004; Kurihara et al., 2006; Yang
et al., 2010). The C2H2 zinc finger protein SERRATE
(SE) also interacts with DCL1 and HYL1 and partici-
pates in the transition process (Yang et al., 2006a;
Laubinger et al., 2008; Montgomery and Carrington,
2008). HYL1 together with SE promotes the accuracy
of miRNA processing (Dong et al., 2008). Many
miRNAs are reduced in abundance, while their corre-
sponding pri-miRNAs accumulate in the dcl1, hyl1, or
se mutant (Han et al., 2004b; Kurihara and Watanabe,
2004; Vazquez et al., 2004; Yang et al., 2006a). Other
proteins such as DAWDLE (an RNA-binding protein)
and the nuclear cap-binding complex also act in this
process, probably by facilitating DCL1 to access or
recognize pri-miRNAs or the loading of miRNA pro-
cessing factors onto pri-miRNAs (Laubinger et al.,
2008; Yu et al., 2008). Recently, plant Mediator was
found to participate in miRNA biogenesis by recruit-

ing RNA polymerase II to MIR gene promoters and
then promoting their transcription (Kim et al., 2011).
After the miRNA/miRNA* duplex is released from
the precursor, each strand of the duplex is methylated
by the small RNA methyltransferase HUA EN-
HANCER1 (HEN1) in the 2#-OH of the 3# terminal
nucleotide (Li et al., 2005; Yu et al., 2005; Yang et al.,
2006b). The methylation is a protection from further
polyuridylation and from the subsequent degradation
by the exonucleases of the Small RNA-Degrading
Nuclease family (Li et al., 2005; Yu et al., 2005;
Ramachandran and Chen, 2008).

The 3#methylated miRNA/miRNA* duplex may be
transported by a plant Exportin5 homolog HASTY
(HST) or through HST-independent mechanisms to
the cytoplasm (Park et al., 2005; Eamens et al., 2009),
where RISC can be assembled as in animals. However,
the exact form of the exported miRNA and the sub-
cellular localization of plant RISC loading and matu-
ration are still not clear (Voinnet, 2009). Plant RISC
may also be assembled in the nucleus. In this scenario,
only mature AGO1 with a single-stranded miRNA can
be exported to the cytoplasm (Eamens et al., 2009).
Plant AGO1 is the major part of RISC and has an
endonucleolytic cleavage activity that cleaves comple-
mentary mRNAs in the center of the miRNA-mRNA
paired region (Vaucheret et al., 2004; Baumberger and
Baulcombe, 2005; Qi et al., 2005).

PLANT MIRNA PROCESSING PROTEINS
CONCENTRATE IN DISCRETE D-BODIES

Recent progress in live-cell imaging proposed that
nuclear chromatin is packaged into a higher order
three-dimensional structure that may correlate to the
regulation of the genes (Hübner and Spector, 2010;
Misteli, 2010). In addition, the interchromatin region in
the cell nucleus is highly heterogeneous and contains
various nuclear domains or bodies, for example,
nuclear speckle, paraspeckle, nucleolus, perinucleolar
compartment, Cajal body (CB), cleavage body, gemini
of coiled bodies, OPT (for Oct1/PTF/transcription)
domain, SAM68 (for Src associated in mitosis of 68
kD) nuclear body, polymorphic interphase karyoso-
mal association, polycomb body, promyelocytic leu-
kemia body (Mao et al., 2011), and plant-specific
nuclear bodies, such as cyclophilin, phytochrome, or

Figure 1. Arabidopsis nuclear D-bodies. A,
HYL1-YFP signals in the nucleus of a leaf epider-
mal cell. B, 4#,6-Diamidino-2-phenylindole stain-
ing of the nucleus in A. C, Overlay of A and B. Two
D-bodies are observed in the image, one of them
close to the nucleolus as shown in C. Bar = 10
mm.
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abscisic acid-activated protein kinase-containing nu-
clear bodies (Shaw and Brown, 2004; Chen et al., 2010).
These bodies are present in the nucleus at steady state
and dynamically respond to basic cellular processes as
well as to diverse metabolic conditions, alterations in
cellular signaling, and various forms of stress (Dundr
and Misteli, 2010; Mao et al., 2011). Live-cell imaging
of plant miRNA processing proteins DCL1 and HYL1,
which were fused to fluorescent proteins and expressed
in transgenic Arabidopsis (Arabidopsis thaliana) plants
under the control of their endogenous promoters,
revealed that DCL1 was enriched in round nuclear

bodies measuring 0.2 to 0.8 mm in diameter as well as
being diffusely distributed throughout the nucleo-
plasm, predominantly excluded from nucleoli (Fig. 1;
Fang and Spector, 2007). The number of nuclear bodies
present in each nucleus ranged from zero to four, with
the majority of the nuclei having one nuclear body.
A population of DCL1 bodies (approximately 60%)
localize in close proximity to nucleoli in projection
images, but three-dimensional deconvolution analysis
revealed that they are not within nucleoli. The DCL1
partner protein HYL1 displays a similar localization
pattern of nuclear bodies to DCL1 bodies. Colocaliza-

Figure 2. Plant nuclear D-bodies, which contain proteins for miRNA processing and are involved in miRNA biogenesis. In
eukaryotic cells, the nucleus is encapsulated in two layers of membranes in which nuclear pore complexes are embedded for
transport between the nucleus and the cytoplasm. Chromosomes in the nucleus are organized into chromosome territories. The
interchromatin region of the cell nucleus is highly heterogeneous, containing various nuclear domains or bodies. In a plant cell,
these nuclear bodies include nucleolus, CB, nuclear speckles, phytochrome nuclear body, AAPK-Interacting Protein1 (AKIP1)-
containing nuclear body, and D-body. These bodies have different sizes, shapes, components, dynamics, and functions.
D-bodies play a role in the biogenesis of miRNAs. Plant miRNA genes are transcribed by RNA polymerase II to generate
pri-miRNAs. The RNA-binding protein DAWDLE presumably stabilizes pri-miRNAs and facilitates DCL1 to access or recognize
pri-miRNAs. The nuclear cap-binding complex (CBC) likely facilitates the loading of miRNA processing factors onto pri-miRNAs.
The pri-miRNAs are then recruited to D-bodies, which contain DCL1, the dsRBD protein HYL1, and the C2H2 zinc finger protein
SE. These pri-miRNAs are then processed into a shorter stem-loop structure called pre-miRNAs and then further into the miRNA/
miRNA* duplex. The miRNA/miRNA* duplex is methylated by the small RNA methyltransferase HEN1 in the 2#-OH of the 3#
terminal nucleotide. The mature miRNA/miRNA* may be transported in an HST-dependent or -independent manner through the
nuclear pore complex, or the guide strand of mature miRNA/miRNA* is probably selectively loaded into AGO1-RISC in the
nucleus and the miRISC is transported into the cytoplasm. The miRISC carries out the silencing reactions through translation
repression or mRNA cleavage in the cytoplasm.

D-Bodies
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tion analysis revealed that DCL1 bodies and HYL1
bodies are the same structures as they colocalize
(Fang and Spector, 2007; Song et al., 2007). Unlike
DCL1 and HYL1, SE was distributed in nuclear
speckles or interchromatin granule clusters containing
the Ser/Arg (SR) splicing factor SR33 (Fang et al., 2004;
Fang and Spector, 2007). In a small population of
cells, the SE signal was also present in HYL1 bodies
in addition to its nucleoplasmic distribution. The dual
localization patterns of SE both in nuclear speckles
and DCL1/HYL1 nuclear bodies may correlate with
its dual roles in both splicing and miRNA processing
(Fang and Spector, 2007; Laubinger et al., 2008).

The DCL1/HYL1-containing bodies are different
from most known nuclear bodies, due to their round
shape, size, and average number per nucleus (Shaw
and Brown, 2004), but are similar to CBs, as they are
round in shape and their distribution is frequently
perinucleolar (Nizami et al., 2010). CBs contain
components involved in the processing/assembly
of small nuclear RNAs, small nucleolar RNAs, and
possibly siRNAs (Li et al., 2006; Pontes et al., 2006;
Nizami et al., 2010). However, colocalization analy-
sis indicated that DCL1/HYL1-containing bodies
are different from CBs (Fang and Spector, 2007;
Song et al., 2007), since they show no overlay with
the AtCoilin signal, a signature marker of CBs.
DCL1/HYL1-containing bodies are called dicing
bodies or D-bodies (Fang and Spector, 2007; Fig. 1).
In living cells of Arabidopsis plants, D-bodies move
in the nuclei in a constrained manner.

HOW ARE D-BODIES FORMED?

Nuclear bodies are membraneless subnuclear
organelles. A specific nuclear body is formed in a
stochastic or ordered assembly manner (Dundr and
Misteli, 2010). In addition, a seeding mechanism
has been proposed to assemble, maintain, and reg-
ulate particular nuclear bodies (Mao et al., 2011).
DCL1 contains two C-terminal dsRBDs. The mutant
DCL1-6, with truncation of its two dsRBDs, is em-
bryo lethal, while DCL1-9, a mutant with truncation
of only the second dsRBD, results in infertility and
severe defects in the biogenesis of most miRNAs,
suggesting an important role of these dsRBDs in
miRNA processing (Schauer et al., 2002). Live-cell
imaging revealed that DCL1-9 failed to localize to
D-bodies but instead distributed diffusely in the
nucleoplasm, demonstrating that the dsRBD of DCL1
is critical for its localization to D-bodies. HYL1 con-
tains two N-terminal dsRBDs, and these two dsRBDs
are sufficient for pre-miRNA processing and locali-
zation to D-bodies (Wu et al., 2007). These results
suggested that the dsRBDs in these miRNA process-
ing proteins are essential for their targeting to
D-bodies, possibly forming the seed for the assembly
of D-bodies.

WHAT ARE THE FUNCTIONS OF D-BODIES?

In vivo tracking of a pri-miRNA using 24 tandem
MS2 translational operators (MS2 repeats) and the
MS2 coat protein-yellow fluorescent protein (MS2-
YFP) system demonstrated that an introduced pri-
RNA concentrates in DCL1-containing D-bodies in
addition to being present in a diffuse distribution in
the nucleoplasm, indicating that the pri-miRNAs can
be recruited to D-bodies, where the machinery for
their processing is enriched (Fang and Spector, 2007).

The precise and efficient pri-miRNA processing
requires protein-protein interactions between the
miRNA processing proteins (Kurihara et al., 2006).
Using bimolecular fluorescence complementation,
Fang and Spector (2007) found that DCL1, HYL1,
and SE interact in the nuclear D-bodies in vivo, while
the bimolecular fluorescence complementation signal
in the surrounding nucleoplasm is very weak. In ad-
dition, DCL1 and HYL1 self-interact in the D-bodies.
By contrast, DCL1-9 showed no interaction with SE,
HYL1, or DCL1. Together, these results suggested a
role of D-bodies in the dicing reaction of pri-miRNAs
mediated by DCL1 and its interacting partner HYL1
(Fig. 2).

PERSPECTIVES

Apart from DCL1, HYL1, and SE, which localize
predominantly or transiently to D-bodies, the miRNA/
miRNA* duplex, the methyltransferase HEN1, and
the slicer AGO1 also exhibited some localization to
D-bodies in addition to their nucleoplasmic and cyto-
plasmic distribution patterns when examined by co-
localization analysis with HYL1 (Fang and Spector,
2007). Therefore, it is of interest to investigate if HEN1
and AGO1 are recruited to D-bodies to methylate the
miRNA/miRNA* duplex and load mature miRNAs to
AGO1 to assemble the RISC complex in D-bodies.
In this case, only mature AGO1 and miRNA contain-
ing RISC can be exported to the cytoplasm through
nuclear pore complexes (Eamens et al., 2009; Fig. 2).
In addition, HYL1 was observed to colocalize with its
homolog DRB4 in D-bodies (Y. Fang and D.L. Spector,
unpublished data). It was known that DRB4 interacts
with DCL4 in vivo and is involved in the biogenesis
of siRNAs (Fukudome et al., 2011). Therefore, more
extensive studies are needed to learn about the po-
tential roles of D-bodies in orchestrating the process-
ing, sorting, RISC assembly, and functioning of small
RNAs.
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