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One of themost remarkable biological insights in the
past 30 years has been that many genetic programs for
complex traits, such as flower or limb development,
are shared across broad groups of organisms. These
conserved pathways in turn can be tuned to produce
tremendous phenotypic differences, not only between,
but also within species. Intraspecific variation is often
quantitative, one example being the onset of flowering,
although there is also qualitative variation, such as in
the ability to resist pathogens.

While many tools for quantitative genetics were
developed by breeders, the model plant Arabidopsis
(Arabidopsis thaliana) was adopted for studying the
genetic architecture of quantitative traits soon after
molecular markers for mapping became available
(Chang et al., 1988; Nam et al., 1989). The species belongs
to a small genuswith ninemembers. Different frommost
of its congeners, Arabidopsis is self-compatible, and its
life cycle can be as short as 6 weeks, both properties that
greatly facilitate genetic studies. Its native range is
considered to be continental Eurasia and North Africa
(Al-Shehbaz and O’Kane, 2002), but it has been intro-
duced throughout much of the rest of the world,
especially around the northern hemisphere.

The potential of genetic variation to inform many
different areas of Arabidopsis biology wasmost strongly
advocated by Maarten Koornneef and his students.
From the mid-1990s, they published both an impres-
sive number of original research articles on this subject
and a series of influential review articles that adver-
tised the impact that the study of natural genetic
variation could have on questions of both develop-
ment and physiology (Alonso-Blanco and Koornneef,
2000; Koornneef et al., 2004).

Today, the study of natural variation in Arabidopsis
continues to reveal new biology. In addition, the entire

genus is increasingly being used to address funda-
mental questions of evolution (Mitchell-Olds and
Schmitt, 2006; Bergelson and Roux, 2010). Some of
the problems studied are: How, and how frequently,
do new variants arise? Why do some variants rise to
high frequency, while others are eliminated? And why
are certain combinations of new variants incompatible
with each other? Here, I will first give an overview of
the tools and resources available for the study of natu-
ral variation in Arabidopsis. Next, I will present a few
examples of how our knowledge of important biolog-
ical processes has been improved through insights
obtained from varieties other than the common labora-
tory accessions. Where similar or contrasting findings
have been made in other species of the Brassicaceae, to
which Arabidopsis belongs, I will mention these. The
article concludes with a discussion of recent work that
aims to integrate evolutionary and ecological studies
with functional tests.

A final introductory note: Natural accessions of
Arabidopsis have in the past often been referred to
as “ecotypes.” This term implies that a line has a
unique ecology and is adapted to specific environ-
ments, as opposed to differing only in genotype from
other varieties (Turesson, 1922b). Preferable is the
neutral term accession, which merely means that a
unique identifier in a collection has been assigned
(Alonso-Blanco and Koornneef, 2000).

GENETIC TOOL KIT FOR THE STUDY OF
NATURAL VARIATION

Experimental Populations for Genetic Mapping

Accessions of Arabidopsis vary in a number of traits
(Fig. 1; Table I). The most general way to identify genes
is by crossing two accessions, which may or may not
have a different phenotype, but produce nonuniform
F2 progeny. In the F2 or later generations, specific
phenotypes are then associated with segregating ge-
netic markers that distinguish the contributions from
the parental genomes. When phenotypic classes are
not discrete, this is done using the methods of quan-
titative trait locus (QTL) mapping (Falconer and
Mackay, 1996).

Because marker analysis used to be very tedious and
expensive, substantial efforts were invested early on
into producing recombinant inbred lines (RILs), which
constitute immortal populations in which recombi-
nant chromosomes have been fixed through inbreed-
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ing (Reiter et al., 1992; Lister and Dean, 1993; Fig. 2).
RILs, which were first developed in mice (Bailey,
1971), have the advantage that they need to be geno-
typed only once but can be phenotyped repeatedly for
many different traits and under different environmental
conditions. An advantage of Arabidopsis is its self-
compatibility, so that inbred lines can be easily gener-
ated by selfing and single-seed descent. Around 60 RIL
populations are available from the stock centers as of
the time this article is written (end of 2011; http://
www.inra.fr/internet/Produits/vast/RILs.htm, http://
www.arabidopsis.org/ and http://www.arabidopsis.
info/). Importantly, the lengthy inbreeding process
can now be bypassed through a revolutionary tech-
nology introduced by the laboratory of Simon Chan.
This method allows the facile production of doubled
haploid plants from recombinant populations (Ravi
and Chan, 2010).
Even after five or six generations of inbreeding,

which is customary for RILs, a small percent of the

genome remains heterozygous. This turns out to have
its own benefits. In such a heterogeneous inbred family
(HIF), only a small portion of the genome segregates
for the two parental alleles (Tuinstra et al., 1997).
Additional recombinants that further reduce an interval
of interest are easily derived from heterozygous HIF
individuals, as are near isogenic lines (NILs) that are
homozygous for either parental allele at this locus. A
disadvantage of HIF-derived NILs is that each HIF has
a unique genome composition and that one can there-
fore not easily place several QTL in a common genetic
background.

NILs that carry only a small genomic region from
one parent in a background that is otherwise com-
posed of the genome of the other parent can also be
generated directly by repeated backcrosses (Fig. 2).
Such NILs, pioneered in crops where they are also
called introgression lines (Seevers et al., 1971; Rhodes
et al., 1989; Eshed and Zamir, 1995), are powerful for
systematic analyses of interactions between genes
from different genomes, although epistatic interac-
tions among alleles from the introgressed genome are
mostly lost. The properties of NIL sets are in many
ways complementary to those of RILs, and they are
particularly useful when introgression is performed
in two directions (Törjék et al., 2008). NILs can iden-
tify QTL of smaller effect but with lower resolution
than RIL populations (Falconer and Mackay, 1996;
Keurentjes et al., 2007).

Although the genomes of RILs already contain more
recombination events than F2 populations and there-
fore afford higher mapping resolution, this can be
further increased with advanced intercross RILs, in
which individuals from the F2 and later generations
are intermated before inbred lines are derived (Darvasi
and Soller, 1995; Balasubramanian et al., 2009). Other
approaches involve the use of multiple parents, as
in the MAGIC (for multiple advanced generation
intercross) and AMPRIL (for Arabidopsis multiparent
RIL) populations (Fig. 2; Kover et al., 2009; Huang
et al., 2011). The MAGIC design is more elaborate
and generates more recombination events per line
than the AMPRIL strategy, but the founder genomes
are less evenly represented in the final lines. Mapping
in either population is more complex than with RILs,
but with a sufficiently high density of intermediate
frequency markers, one can infer the most likely local
founder genotype. Even more so than simple F2 or
RIL populations, AMPRILs and MAGIC lines are
likely to contain genotypic combination not found
in the wild.

QTL mapping accuracy increases with the MAGIC
and AMPRIL populations, but not all possible QTL
that can be found in pairwise crosses between some of
the parents are detected. An alternative would be to
combine the most informative subsets of RIL popula-
tions and to perform a joint QTL analysis. Especially
when genotyped with common markers, a joint anal-
ysis can confirm common QTL (Bentsink et al., 2010;
Salomé et al., 2011b).

Figure 1. Gross morphological variation in Arabidopsis and relatives.
A, Variation between Arabidopsis accessions. On top, vegetative
rosettes of accessions grown for 4 weeks in long days are shown.
They vary in rosette diameter and compactness, leaf shape, and tissue
necrosis or onset of senescence. Similarly, variation in size and shape of
individual leaves, in this case the sixth in the rosette, is apparent in the
10 examples shown on the bottom left. Finally, differences in overall
architecture are illustrated with five plants. On the left is an early
flowering accession with few rosette leaves. The next two flower later,
but the second one from the left has reduced apical dominance. Finally,
the two accessions on the right have similarly tall main inflorescences
but differ in the number of secondary inflorescences. The appearance on
the far right is common among wild-grown plants. B, Some characters,
such as flower size and fruit shape, vary relatively little within Arabi-
dopsis, but more dramatic variation is found in comparison with closely
related taxa, such as Capsella rubella (left) and A. lyrata (right). Images
courtesy of Eunyoung Chae, Sang-Tae Kim, and George Wang.
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Some of the advantages of using RIL-type popula-
tions will continue to apply in the future. Trait values,
especially those with low heritability, can be estimated
more precisely due to replication (Soller and Beckmann,
1990; Mackay, 2001). Perhaps most importantly, one
can study correlations between different traits, which

can reveal fitness trade-offs, and reaction norms, the
response of a specific genotype to different environ-
ments. However, not every geographic region where
Arabidopsis is found is fairly represented in the avail-
able RIL populations because geographic sampling
of Arabidopsis has so far been rather uneven (Fig.
3). Thus, forward genetics in additional material, even
if composed mostly of F2 populations, will likely
be informative. Fortunately, with reduced representa-
tion approaches such as restriction-associated DNA
sequencing (RAD-seq) or genotyping-by-sequencing
(Baird et al., 2008; Elshire et al., 2011) and multiplexing
of genomic DNA from many individuals (currently, at
least 96), costs for interrogating thousands of markers
have dropped to a few U.S. dollars.

Finally, a general caveat when performing conven-
tional genetic mapping is that chiasma frequencies
differ between accessions (Sanchez-Moran et al., 2002).
Data from F2 populations also support the conclusion
that recombination rates vary depending on the cross
(Salomé et al., 2011a). Thus, the ease with which loci
are mapped will differ from cross to cross, even more
so if structural variants interfere with recombination
near the loci of interest.

Table I. Traits studied by natural variation in Arabidopsis

For references, see Supplemental Table S1.

Trait
Gene(s)

Cloned?a

Aluminum content N
Autonomous endosperm development N
Auxin response N
Carbohydrate availability and content N
Cell wall composition N
Chiasma frequency N
Chromatin compaction N
Circadian clock C
Copper tolerance Y
Crowding response C
Disease resistance Y
Drought response N
Editing and processing of mitochondrial transcripts Y
Elemental composition Y/N
Flowering time Y
Freezing tolerance Y
Fruit number C
Genetic robustness N
Glucosinolate content Y
Inflorescence replacement (mimicking grazing) N
Jasmonate response N
Leaf senescence N
Leaf, inflorescence, and flower morphology Y
Lethality in interploidy crosses N
Life history traits other than flowering and growth N
Light response Y
Molybdenum content Y
Nitrogen availability response N
Oil content N
Osmotic and salt stress tolerance N
Phosphate content N
Phytate content N
Recruitment of bacterial rhizosphere communities N
Root hydraulics N
Root system size N
Salicylic acid response N
Salinity tolerance N
Seed dormancy Y
Seed germination, longevity N
Seed lipids N
Seed mucilage composition Y
Sinapoylmalate biosynthesis Y
Sodium accumulation Y
Stomata density N
Submergence tolerance N
Sulfate content Y
Terpene biosynthesis Y
Thermal dissipation N
Trichome density Y
Zinc response Y

aY, Yes; N, no; C, likely candidates.

Figure 2. Populations for mapping genes causing trait variation. Colors
indicate contribution from different parental accessions. Only one
chromosome pair is shown for each individual. HIF individuals are
derived from RILs, in which a small portion of the genome is still
heterozygous.
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Identification and Validation of Causal Genes
and Polymorphisms

After a genomic interval underlying phenotypic dif-
ferences has been identified, there are various options
to track down the responsible gene, assuming that
only a single gene is causal. Different from induced
mutations, simply resequencing a region with dozens
or more genes is on its own generally not informative
because of the high number of polymorphisms that
distinguish an arbitrary pair of accessions, about 1 in
every 200 bp. Fortunately, compared to other multicel-
lular organism in which natural variation is studied,
Arabidopsis has the enormous advantage that almost
all accessions are quite easily transformed by dipping
flowering plants into a suspension of Agrobacterium
tumefaciens containing a T-DNA vector with the trans-
gene of interest (Clough and Bent, 1998).
If the final mapping interval does not contain a gene

previously implicated in the trait of interest, one of the
first steps will often be to investigate whether null
alleles affect this trait. For the vast majority of genes,
T-DNA insertion lines in the reference Columbia-0
(Col-0) background are available from the stock cen-
ters (http://arabidopsis.org, http://arabidopsis.info;
for review, see Alonso and Ecker, 2006). The most
straightforward approach to investigate the activity of
individual genes in other genetic backgrounds is gene
silencing, and collections of vectors for knocking
down a large fraction of genes present in the reference
genome are available, both for conventional hairpin
RNA interference and artificial microRNAs (amiRNAs;
for review, see Ossowski et al., 2008b). Gene silencing
is a convenient tool to test the relative activity of
alleles, an approach that we have called quantitative
knockdown (Schwartz et al., 2009). It is conceptually
related to quantitative complementation, where dif-
ferent alleles are examined in the hemizygous state, by

crossing a homozygous strain to a tester that carries a
knockout allele of the gene of interest (Mackay, 2001;
Fig. 4).

As an alternative, one can introduce genomic frag-
ments spanning the region of interest to identify the
gene(s) affecting the trait under investigation. Trans-
genic complementation also allows the examination of
chimeric genes in different backgrounds to pinpoint
the causal region, or even nucleotide, within an allele.
A possible complication arises from the fact that the
addition of an extra wild-type copy of an independent
gene in the same pathway can quantitatively affect the
phenotype and thus confound the interpretation of the
observed phenotypes. An attractive feature of amiRNAs
is that one can engineer transgenes that do not change
the encoded protein but do not respond to silencing by
a specific amiRNA anymore (Palatnik et al., 2003). One
can thus use an amiRNA to knock out the endogenous
gene and at the same time introduce a variant copy of
the gene that is not affected by the amiRNA. This
allows in essence the functional replacement of one
allele with another.

A final word of caution: Spontaneous mutations are
not as rare as one might think, with direct measure-
ments indicating about one new single base pair mu-
tation per haploid genome and generation (Ossowski
et al., 2010). Thus, not every genetic variant that dis-
tinguishes accessions must be a natural variant in the
sense that it was present in nature. Indeed, there are
now several reports of mutations with large pheno-
typic effects that were segregating in an accession and
may only have arisen after the accession was collected.
Two of these cases affect parents of commonly used
RIL populations, Landsberg erecta-0 and Bayreuth-0
(Doyle et al., 2005; Loudet et al., 2008; Laitinen et al.,
2010). Thus, even if misidentification of an accession
has been ruled out, which is not uncommon (Anastasio
et al., 2011; Simon et al., 2011), there can be true genetic

Figure 3. Distribution of over 7,000 Arabidopsis accessions collected from the wild and available in the stock center or soon-to-
be-released collections. Western and southern Europe, including Great Britain, is heavily overrepresented, although sampling is
not even. Accessions from the presumed native range are in yellow and likely introductions in red. Whether the distribution
across China to Japan is continuous with the native range is unclear. Arabidopsis has been reported in additional locales, such as
South Korea, and several African countries (Alonso-Blanco and Koornneef, 2000). Maps courtesy of George Wang.
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and phenotypic differences between accessions that
share recent common ancestry.

WHOLE-GENOME RESOURCES FOR THE STUDY OF
NATURAL VARIATION

Enabling Genome-Wide Association Studies

Genetic mapping in crosses is greatly facilitated
when genome-wide polymorphisms, or better yet the
entire genome sequences, of the investigated acces-
sions are known. If a sufficient number of genome
sequences is available, one can even dispense with
experimental crosses and exploit shared ancestry to
directly identify common alleles that are responsible
for phenotypic variation in the entire population. This
approach was first proposed for human, already be-
fore the first finished human genome sequence was in
sight (Lander, 1996; Risch and Merikangas, 1996).
Because obtaining complete genome sequences for
many individuals of the same species was out of
question at the time, it was proposed to rely on linkage

disequilibrium (LD). LD refers to the fact that in most
species there has not been enough historic recombina-
tion to produce all possible combinations of physically
adjacent polymorphisms, but rather that sequence
variants are normally found in haplotype blocks of
various lengths. Thus, a causal polymorphism can in
principle be identified indirectly through its associa-
tion with any of the other sequence variants in its
haplotype block (Kruglyak, 1999; Jorde, 2000). The
term that is normally used today for this experimental
strategy is genome-wide association study (GWAS). A
shortcut that reduces the required genotyping effort
has been to make use of prior information and to first
focus on genes already shown to affect a trait of
interest (Long et al., 1998; Caicedo et al., 2004; Olsen
et al., 2004; Balasubramanian et al., 2006; Ehrenreich
et al., 2009), but this has become largely obsolete today.

While the principles of GWAS are easy to under-
stand, important limitations arise from population
structure, that is, not all investigated individuals being
equally distantly related to each other. Powerful
methods have been developed to correct for popula-
tion structure, but how to reliably detect alleles that are
largely fixed between populations remains a chal-
lenge. Other issues are allelic heterogeneity, that is,
alleles at a single locus with similar effects on gene
function having arisen repeatedly; or complex genetic
architecture, where many different genes affect the
same trait. A recent article by Myles et al. (2009)
provides an excellent primer of the challenges for
GWAS.

As with RIL analyses, the selfing nature of Arabi-
dopsis is a boon for GWAS, since each accession needs
to be genotyped or sequenced only once but can be
phenotyped many times. Magnus Nordborg almost
single-handedly convinced the Arabidopsis community
of the feasibility and usefulness of GWAS approaches,
even before high-density genotype information was
available (Aranzana et al., 2005; Zhao et al., 2007). While
initial estimates of LD in Arabidopsis were too high
(Nordborg et al., 2002, 2005), it finally turned out that
LD in the global population extends over not more than
about 5 to 10 kb, or one to two genes, which is very
convenient for GWAS (Kim et al., 2007). It is thought that
the relatively low LD reflects a history of frequent
outcrossing together with rapid dispersal enabled by
the selfing mode of reproduction.

The first enterprise with the goal of finding a large
fraction of sequence variants used high-density custom
arrays with almost one billion unique oligonucleotides
to interrogate the genomes of 20 accessions, including
the Col-0 reference accession (Clark et al., 2007). This set
was chosen to be maximally diverse based on a previ-
ous analysis of 96 accessions, from which about 1,000
short fragments distributed throughout the genome
had been dideoxy sequenced (Nordborg et al., 2005).
The most important information to come from the
array-based resequencing study was a collection of
hundreds of thousands of nonsingleton single nucleo-
tide polymorphisms (SNPs) that could be used for

Figure 4. Quantitative complementation and knockdown to determine
whether QTL are allelic to a candidate gene. Both tests rely on
quantitative comparisons between genotypes; the dashed boxes indi-
cate phenotypic differences to the genotype to the left. In a quantitative
complementation test, one determines whether the two QTL alleles,
Q1 and Q2, are differentially affected when heterozygous with the
wild-type (wt) or mutant (mut) allele of a candidate gene (Mackay,
2001). If the QTL alleles respond differently, i.e. if in this example only
Q1 complements the mutant phenotype, the candidate gene and the
QTL are probably allelic. Similarly, in a quantitative knockdown
experiment, a differential effect of an amiRNA (amiR) against the
candidate gene indicates that the Q1 allele has lower activity than Q2
and that the candidate gene is likely responsible for the QTL.
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GWAS (Kim et al., 2007). About 216,000 SNPs, or one
every 0.5 kb, have been subsequently typed in over
1,000 accessions (Horton et al., 2012), chosen from a
larger panel of more than 5,000 accessions for which
information from 149 intermediate frequency markers
was available (Platt et al., 2010). The high density of
SNPs meant that a typical haplotype block was tagged
with several SNPs, which made GWAS in Arabidopsis
right away more powerful than in humans. Despite
similar LD characteristics, GWAS in human initially
used only about 1 SNP per 6 kb (Wellcome Trust Case
Control Consortium, 2007).

Prospects of GWAS in Arabidopsis

Several proof-of-concept examples have now been
published, indicating that GWAS will often be suc-
cessful in Arabidopsis. In the first comprehensive
study, over 100 different morphological, physiological,
and molecular traits were analyzed in 96 to 192 acces-
sions (Atwell et al., 2010). In several cases, known
genes were rediscovered, and in many others, plausi-
ble candidates were identified with high precision.
The most impressive results, in agreement with pre-
vious pilot studies (Aranzana et al., 2005), were
obtained for disease resistance, which is often con-
trolled by single genes with very large effects. This is
in contrast with humans, where effect sizes of QTL
detected by GWAS are often small (McCarthy et al.,
2008; Manolio et al., 2009).
The utility of GWAS can be increased by making use

of prior information, such as functional data from
mutant studies, gene annotation, or membership of
genes in specific regulatory networks to prioritize
GWAS candidates (Aranzana et al., 2005; Schadt
et al., 2005; Atwell et al., 2010; Chan et al., 2011).
Similarly, QTL mapping in experimental populations
can greatly reduce the portion of the genome that one
has to consider for the location of GWAS QTL (Brachi
et al., 2010; Nemri et al., 2010). This approach becomes
particularly powerful when both strategies are directly
integrated using experimental populations with sev-
eral parents, so that alleles pinpointed by GWAS are
represented in multiple founder backgrounds. The
term nested association mapping has been coined for
this approach, which was pioneered in maize (Zea
mays; Yu et al., 2008; McMullen et al., 2009). Arabi-
dopsis populations, such as the MAGIC lines and
AMPRILs, serve a similar purpose (Kover et al., 2009;
Huang et al., 2011). An alternative will be to examine
several independent RIL populations. An advantage
of using RIL sets over F2 individuals in this case is that
for each set of founders, the lines can be chosen to be
maximally informative in terms of contribution of the
founder genomes, thus greatly reducing phenotyping
efforts (Xu et al., 2005; Simon et al., 2008).
Because of the plasticity of plant development and

physiology, the influence of genes on the phenotype
is very often dependent on the environment, often
codified as gene-by-environment or GxE interaction.

Similarly, the effects of individual genes are often
modified by other genes in the genome because genes
do not act on their own but form more or less complex
functional networks. When genes have nonadditive
effects, this is called GxG or more commonly an epi-
static interaction. While the identification of epistatic
QTL is standard fare for mapping in experimental
populations (Mackay, 2001), this continues to be amajor
challenge for GWAS. This has been suggested to be
computationally and statistically feasible several years
ago (Marchini et al., 2005), and several computational
strategies have been developed since (Mitchell-Olds,
1995; Cordell, 2009; Kam-Thong et al., 2011). However, I
am not aware of an example where all variants were
used in a GWAS to detect epistatic loci. Here again,
mapping in experimental populations, perhaps in com-
bination with network reconstruction (Rowe et al., 2008;
Jiménez-Gómez et al., 2010; Kerwin et al., 2011), should
help to reduce the search space for GWAS of epistatic
loci.

A Proliferation of Genome Sequences

In addition to the anonymous SNPs for the first
generation of GWAS in Arabidopsis, array-based re-
sequencing revealed tens of thousands of amino acid
replacements along with hundreds of more drastic
mutations that are likely to eliminate the function of
many genes in various accessions. In addition, a large
percentage of the reference genome was found to be
missing in each accession (Borevitz et al., 2007; Clark
et al., 2007; Zeller et al., 2008; Plantegenet et al., 2009).
This implied that, conversely, the reference accession
Col-0 likely lacked a substantial portion of genes
present in other accessions. The analysis of individual
loci had already shown that some gene families could
differ greatly between accessions. Foremost are the
disease resistance genes of the nucleotide-binding site-
Leu-rich repeat (NB-LRR) class, with both presence/
absence polymorphisms and highly divergent alleles
in different accessions (Grant et al., 1995; Caicedo
et al., 1999; Noël et al., 1999; Stahl et al., 1999; Rose
et al., 2004). A logical next step was therefore to scru-
tinize the genomes of accessions for sequences not
represented in the reference genome. With the advent
of new sequencing technologies, this goal became at-
tainable at a reasonable cost. Even before these methods
were exploited to the same end for human genomes, it
was shown that they not only gave an accurate account
of small-scale polymorphisms in Arabidopsis genomes
but that they could also be used to detect copy number
variants and to assemble sequences absent from the
reference (Ossowski et al., 2008a).

The 1001 Genomes Project for Arabidopsis was an-
nounced in 2007 (Nordborg and Weigel, 2008; Weigel
and Mott, 2009). The initial proposal was to pursue a
two-pronged hierarchical strategy for defining the
pangenome of Arabidopsis. The first hierarchical as-
pect was a sampling of accessions throughout the
range of Arabidopsis such that diversity could be
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analyzed at global, regional, and local scales. Thus,
rather than equidistant distribution of samples, it was
envisioned that the project would include regional
populations separated by distances measured in kilo-
meters as well as individuals from within local stands
spaced only meters apart. The second hierarchical
aspect was to produce genome sequences at different
levels of accuracy and completeness such that a rela-
tively small number of highly accurate and complete
genomes would inform the analysis of a much larger
number of genomes that had not been completely
assembled. The rationale behind this proposal was
that mere lists of sequence variants that result from
simple resequencing approaches, in which sequence
reads are only aligned to a target genome, can be mis-
leading. Specifically, because of false-negative prob-
lems, trying to reconstruct contiguous sequences by
superimposing known isolated polymorphisms on the
reference genome information can be problematic. To
overcome these limitations, two groups have intro-
duced reference-guided assembly approaches (Gan
et al., 2011; Schneeberger et al., 2011), in which the
Col-0 reference genome (Arabidopsis Genome Ini-
tiative, 2000) is first used to identify portions of the
genome that are conserved in other accessions. Gaps
are then filled in by assembling sequence reads and
anchoring them to the known bits. As expected, mul-
tiple out-of-phase insertions or deletions in coding
sequences can combine to restore open reading frames
(Schneeberger et al., 2011). Similarly, additional muta-
tions can make up for defects in splice acceptor or
donor sites, as can be inferred from transcriptome
analysis by RNA sequencing (Gan et al., 2011). The
error rates of these reference-guided assemblies in
single-copy regions were close to what was deemed as
the lower acceptable bound in the initial reference
genome sequencing project, about 1 in 10,000 bp
(although final error rates in the reference genome
were probably only about one-fifth; Ossowski et al.,
2008a).

As expected from previous resequencing studies, up
to 2% of reference positions were judged to be absent
from the new assemblies. Conversely, up to 0.6% of the
new assemblies represented sequences not found in
the reference genome (Gan et al., 2011; Schneeberger
et al., 2011). Because the new sequencing technologies
generate more error-prone and shorter reads, and the
insert sizes for paired-end sequencing libraries are
generally smaller as well (Metzker, 2010), there are
limits to closing gaps between regions that are well
conserved relative to the reference genome. That bases
present in the reference, but missing from a nonrefer-
ence accession, outnumber the opposite class several-
fold indicates the shortcomings of the reference-guided
assemblies, since it should be equally likely that inser-
tions and deletions occur on either lineage. We are thus
currently faced with a paradox: .90% of the euchro-
matic portion of an accession’s genome can be se-
quenced for a few hundred dollars, but the remainder
can only be recovered when investing many hundred

or thousand times that amount. This is particularly
relevant because some of the most interesting genes in
the genome, such as many disease resistance genes,
reside in highly variable gene clusters with often nearly
identical tandem repeats that are even challenging for
assembly from dideoxy sequenced bacterial artificial
chromosomes or fosmid clones (Noël et al., 1999).

While the most common approach for the identifi-
cation and annotation of variants has been comparison
against the reference, a multiple alignment consensus
benefits the evaluation of complex alleles (Gan et al.,
2011). However, with the rapid increase in the number
of genome sequences, simple all-against-all compari-
sons will soon not be feasible anymore because of the
time required to perform them. It has therefore been
proposed to represent the pangenome, that is, the
collection of all possible sequence variants along each
chromosome, in a single data structure as a graph,
which would both facilitate the identification of poly-
morphisms in newly sequenced genomes and their
classification as shared or unique (Schneeberger et al.,
2009).

Insights from Comparing Genome Sequences

Apart from supporting forward genetic studies in
Arabidopsis, genome sequences have increased our
understanding of the evolutionary history of the spe-
cies. Array-based comparison of 20 accessions re-
vealed only a single large region in the genome that
was shared by the majority of accessions, indicative of
this region having experienced recent and strong
selection in many different populations (Clark et al.,
2007). Remarkably, the much more fine-grained infor-
mation from short-read sequencing of 80 lines did not
substantially change this picture of strong selective
sweeps being rare, even though population differen-
tiation along the genome is not uniform (Cao et al.,
2011).

In addition to local polymorphism patterns that are
shaped by selection and demography, there are con-
sistent chromosomal-scale differences that are proba-
bly caused by molecular and genetic factors, such as
mutation, recombination, and biased gene conversion.
One of these is an excess of polymorphisms in regions
adjacent to the centromeres (Borevitz et al., 2007; Clark
et al., 2007), which has also been reported in Medicago
truncatula and rice (Oryza sativa), but not in maize
(Gore et al., 2009; Huang et al., 2010c; Branca et al.,
2011). The interpretation of polymorphism patterns in
Arabidopsis has also benefited from the high-quality
reference sequence available now for the close relative
Arabidopsis lyrata (Hu et al., 2011). In agreement with
lack of conservation between the two species reflecting
either that sequences are dispensable or subject to
species-specific positive selection, regions found only
in Arabidopsis are more polymorphic than shared
regions (Cao et al., 2011).

Finally, Arabidopsis accessions harbor extensive
variation in mitochondrial genomes (Forner et al.,
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2005; Arrieta-Montiel et al., 2009), in subtelomeric
regions (Kuo et al., 2006; Wang et al., 2010), and in
heterochromatic repeats, including retrotransposons
and rDNA (Fransz et al., 2000; Davison et al., 2007; Ito
et al., 2007). Structural differences between mitochon-
drial genomes can be revealed relatively easily by new
sequencing methods (Davila et al., 2011). Furthermore,
although read lengths and insert sizes are insufficient
for long-range reconstruction of highly repetitive re-
gions of the genome, read coverage and sequence
variation in individual reads can be exploited to de-
termine differences in genome size and repeat content
(James et al., 2009; Tenaillon et al., 2011).

Utility of Genome Sequences

As of the time that this article was written (end of
2011), over 100 genome sequences for Arabidopsis had
been published. In addition, sequence data for over
300 additional accessions were already publicly avail-
able. In aggregate, commitments for over 700 acces-
sions had been made, indicating that the initial goal of
1,001 genome sequences would be reached well before
the end of 2012 (http://1001genomes.org).
Several of the Arabidopsis genome sequences were

immediately useful. For example, the Landsberg erecta
accession is commonly used for mutant screens, and
its genome sequence is facilitating the mapping and
analysis of induced mutations. Similarly, several of the
accessions are parents of RIL populations (Ossowski
et al., 2008a; Schneeberger et al., 2009, 2011; Gan et al.,
2011), and their genome sequences are aiding the
identification of polymorphisms responsible for QTL.
Genome sequences also provide an inventory of poten-
tial knockout mutations, which is informative given
that a considerable fraction of natural genetic variation
is due to loss-of-function alleles. Examples are new
alleles of PHYTOCHROME D (PHYD) and FRIGIDA
LIKE1 (FRL1), for which before only single alleles were
known (Aukerman et al., 1997; Schläppi, 2006; Cao
et al., 2011).
In addition, the 1001 Genomes Project is advancing

GWAS. As discussed above, the first phase of GWAS in
Arabidopsis has been based on a set of 216k tag SNPs,
which were estimated to predict .90% of all common
variants (Kim et al., 2007; Horton et al., 2012). It is
simple to call the same SNPs in any of the accessions of
the 1001 Genomes Project and to include any line that
has not been array genotyped into GWAS projects that
makes use of the 216k tag SNP array data. Further-
more, it is possible to accurately impute common
variants identified by whole-genome sequencing in
array genotyped accessions and GWAS with imputed
data detects additional polymorphisms linked to traits
under consideration (Cao et al., 2011).
Apart from increasing the chances that sequence

differences directly responsible for trait variation are
found by GWAS, a major advantage of complete ge-
nome sequences is that they support the prediction of
activity differences between potentially causal alleles.

For example, in coding regions, mutations that disrupt
the open reading frame or affect splicing are more
likely to affect gene function than codon or silent
changes. And among amino acid substitutions, one
can estimate how probable it is that a mutation has
deleterious effects based on conservation of that amino
acid in other species (Ng and Henikoff, 2006).

Complete genome sequences will thus help to tackle
one of the major challenges of GWAS, allelic hetero-
geneity, where several different alleles have similar
effects on the trait of question. That independent al-
leles at the same locus can have the same phenotypic
consequences has been known for a quarter of a cen-
tury, since the first genes responsible for genetic disor-
ders or cancer in humans were cloned (Royer-Pokora
et al., 1986; Clark et al., 1989; Botstein and Risch, 2003).
In Arabidopsis, the flowering regulators FRIGIDA (FRI)
and FLOWERING LOCUS C (FLC) are often partially
or completely inactivated, with many of these alleles
being found only in single accessions (Johanson
et al., 2000; Le Corre et al., 2002; Gazzani et al., 2003;
Michaels et al., 2003; Lempe et al., 2005; Shindo et al.,
2005; Méndez-Vigo et al., 2011). Drastic mutations that
prematurely terminate or partially delete the same
open reading frame are found more often than ex-
pected by chance in the genomes of different acces-
sions (Cao et al., 2011; Fig. 5). This might be the
outcome of positive selection, as is the case for FRI and
FLC (Toomajian et al., 2006), or purifying selection
being weak or absent. In either case, the presence of
multiple alleles with similar effects on a particular
phenotype makes the detection of such loci in GWAS
analyses difficult since each polymorphism is consid-
ered separately (Myles et al., 2009). If, instead, all
alleles with similar predicted activity differences were
combined or, better yet, if alleles were considered ac-
cording to their relative degree of activity, this hurdle
could be overcome.

Figure 5. Comparison of expected and observed occurrences of 8,133
independent premature stops in 4,263 protein coding genes, consid-
ering all genes with .90% coverage in 75 out of 80 accessions. Data
are from Cao et al. (2011).
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The methods discussed in the preceding paragraph
would be a considerable improvement over the strat-
egy that is gaining popularity in humans: the search
for an excess of rare variants in candidate genes. In
rare-variant-burden methods, rare variants are com-
bined for the purposes of contrasting phenotypically
distinct classes of individuals, but functional effects of
alleles are ignored, and these methods are not inte-
grated into standard GWAS (Asimit and Zeggini,
2010).

Epigenomic Variation

GWAS in humans, where it is not unusual that tens
of thousands of individuals are analyzed, has been
successful in detecting many alleles, even with very
small effects, but the fraction of the total variation
explained by these variants is often only small. This
also has been the case for traits such as height that are
known to be highly heritable from family studies.
Some possibilities are that genetic architecture may
be more complex, with many interacting loci, or that
rare alleles are more important than anticipated (see
above). An alternative explanation, which is en vogue
in many circles, is that epigenetic variation unlinked
to sequence variants and, hence, not detectable by
conventional GWAS is responsible for many pheno-
typic differences (McCarthy et al., 2008; Manolio et al.,
2009).

Epigenetic differences can have obvious conse-
quences in plants. In several species, including Arabi-
dopsis, spontaneously occurring epialleles with overt
phenotypes have been described (Jacobsen and
Meyerowitz, 1997; Cubas et al., 1999; Hollick et al.,
2000; Soppe et al., 2000; Stam et al., 2002; Manning
et al., 2006; Martin et al., 2009). The epialleles often
show increased cytosine methylation of the promoter
and strongly reduced RNA expression. In several cases,
the epialleles are associated with structural changes,
such as the g mutation in melon, which is apparently
caused by the insertion of a transposon and spread of
DNA methylation into adjacent sequences.

Tiling array analyses comparing two different pairs
of Arabidopsis accessions have shown that these differ
in the extent of methylation at individual cytosines.
That there are fewer differences in transposable ele-
ment than genic methylation between natural acces-
sions (Vaughn et al., 2007) agrees with transposable
element methylation being more stable in inbred lines
(Becker et al., 2011; Schmitz et al., 2011). Methylation
differences seem to be largely stable in F1 hybrids
(Woo and Richards, 2008; Zhang et al., 2008; Groszmann
et al., 2011), but methylation patterns can change at
relatively high rates, around 1% or more, in subse-
quent generations (Vaughn et al., 2007). The fluidity of
the genomic methylation landscape after crosses is
consistent with RNA-dependent DNA methylation
mediated by short interfering RNAs being able to
target other loci in trans, as long as these harbor
sufficient levels of sequence similarity (Melquist and

Bender, 2003). This is substantiated by nonadditive
expression levels of short interfering RNAs and cor-
related effects on DNA methylation in F1 hybrids
(Groszmann et al., 2011).

Importantly, although epialleles with phenotypic
effects are largely stable and can be inherited over
many generations, most revert occasionally to the wild-
type form (Jacobsen andMeyerowitz, 1997; Cubas et al.,
1999; Hollick et al., 2000; Soppe et al., 2000; Stam et al.,
2002; Manning et al., 2006; Martin et al., 2009). The
stability of DNA methylation in inbred Arabidopsis
lines has recently been examined directly (Becker
et al., 2011; Schmitz et al., 2011). While loss and gain
of methylation at individual sites occurred much more
often than mutations in the nucleotide sequence
(Ossowski et al., 2010), changes in larger methylated
regions similar to the ones that distinguish epialleles
identified by forward genetics were rare. However,
both types of methylation changes were distinguished
from DNA mutations in that the same positions were
affected in independent lines much more often than
expected by chance and that there was an appreciable
rate of reversions.

Crosses of wild-type lines to mutant strains with
largely demethylated genomes have also revealed a
wide range in the stability of epialleles after the causal
mutations had been segregated away (Reinders et al.,
2009; Teixeira et al., 2009). Consistent with the more
labile nature of epialleles, heritability estimates in such
lines are considerably lower than they are in natural
accessions for the same traits (Roux et al., 2011). Thus,
while the large majority of DNA methylation differ-
ences is sufficiently stable to account for inheritance
within a limited number of generations, it remains
unclear how often epialleles can become subject to
Darwinian selection and thus make a contribution to
long-term evolution. If reversion rates exceed the se-
lective advantage conferred by an epiallele, its fre-
quency in the population will be largely determined
by the equilibrium of forward and reverse epimutation
rates (Slatkin, 2009; Johannes and Colomé-Tatché,
2011).

In summary, although natural epialleles are often
due to nearby structural variation, crosses between di-
vergent accessions can induce new epialleles in trans.
While the first class does not pose a problem for con-
ventional GWAS, as such alleles should be tagged
by linked sequence polymorphisms, the second class
would only be revealed if GWAS would be extended
to directly include information on DNA methylation
profiles. A different question is whether epialleles are
equally, more, or less likely than DNA alleles to reflect
adaptation to the local environment.

LEARNING NEW BIOLOGY FROM THE STUDY OF
NATURAL VARIATION

While knowledge about the origin and phenotypic
effects of sequence polymorphisms is central to un-
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derstanding how species adapt to their natural envi-
ronment, most studies of genetic variation in Arabi-
dopsis have probably been motivated by the desire to
identify regulatory and other genes that are not pre-
sent in the common laboratory accessions. An espe-
cially original use of natural variation has been the
search for second site modifiers of ABA insensitive3
and leafy cotyledon1 mutant phenotypes. Both mutants
suffer from impaired seed maturation, and seed via-
bility declines much more rapidly than in wild-type
plants. Introgression of the mutant alleles into other
accessions identified natural modifiers that can par-
tially suppress the mutant phenotypes, possibly point-
ing to new regulators of seed maturation (Sugliani
et al., 2009). In a similar manner, the CAULIFLOWER
(CAL) gene was discovered serendipitously as an en-
hancer of the apetala1 (ap1) mutant phenotype. CAL
and AP1 turned out to be paralogs with an asym-
metrical relationship: While AP1 can compensate for
loss of CAL activity, the reverse is not true. Thus, in
contrast with induced ap1 mutations, natural loss-of-
function alleles of CAL have no overt phenotype on
their own and are only noticed if AP1 is inactive as
well (Bowman et al., 1993; Kempin et al., 1995).
Arabidopsis was used early on to identify genes that

control seed dormancy (van Der Schaar et al., 1997).
For ease of cultivation, common laboratory accessions
had been selected to be early flowering (more below)
and to have little dormancy, meaning that seeds would
germinate relatively quickly after harvest. The DELAY
OFGERMINATION1 (DOG1) locus, the first dormancy
QTL cloned, encodes the prototype of a small gene
family of unknown molecular function. There is ex-
tensive variation in DOG1 expression levels between
accessions, suggesting the presence of many function-
ally distinct alleles of DOG1 (Bentsink et al., 2006).
Arabidopsis accessions also remain an important re-
source for functional and evolutionary analyses of
large-effect resistance genes (Staskawicz et al., 1995).
This is a large area for which there are several recent
in-depth reviews (Nishimura and Dangl, 2010).
Below, I will discuss three naturally variable traits in

some more detail: trichome density, which provides a
paradigm for how information from multiple genome
sequences can be used to pinpoint causal polymor-
phisms; glucosinolate content, which has an underly-
ing biochemical pathway with variation at almost
every step; and the onset of flowering, a developmen-
tal trait with a well-understood molecular basis.

Trichome Density

Early studies by Rodney Mauricio and Mark
Rausher came to the conclusion that both physical
defenses in the form of leaf hairs (trichomes) and
chemicals (glucosinolates) reduce herbivore damage
to Arabidopsis in the field but that these are not
without costs (Mauricio and Rausher, 1997; Mauricio,
1998). Several genes have been identified as affecting
trichome density of natural Arabidopsis accessions.

The most dramatic effects are seen in accessions that
are glabrous, that is, lack trichomes completely, and at
least two different loss-of-function mutations at GLA-
BRA1 (GL1) have been found. Whether a fitness trade-
off, as suggested for other defense traits, underpins the
GL1 polymorphisms is unknown. Balancing selection,
however, which is often taken as a sign of trade-offs,
does not appear to be responsible for maintaining
different GL1 alleles (Hauser et al., 2001). Glabrous-
ness caused by inactivating mutations in GL1 also
segregates in A. lyrata and Arabidopsis halleri popula-
tions (Hauser et al., 2001; Kärkkäinen and Ågren, 2002;
Kivimäki et al., 2007; Kawagoe et al., 2011).

A less extreme phenotype of reduced trichome
density is caused in some Arabidopsis accessions by
a nonsynonymous substitution in MYC1 (Symonds
et al., 2011). As another warning to population genet-
icists, one of the exons was found to exhibit a strong
signal of divergent selection, with many amino acid
substitutions. However, this signal was not correlated
with trichome density.

Other accessions have increased trichome number
relative to the Col-0 reference accession, and EN-
HANCER OF TRY AND CPC2 (ETC2) has been iden-
tified as the causal gene (Hilscher et al., 2009). ETC2,
MYC1, and GL1 all encode transcription factors, with
GL1 promoting and ETC2 repressing trichome forma-
tion by competing for interaction with common part-
ners, a group of basic helix-loop-helix proteins that
includes GL3 and MYC1 (Ishida et al., 2008). In con-
trast with MYC1, the high- and low-activity variants
of ETC2 segregate at intermediate frequencies, indi-
cating that ETC2 is a major determinant of natural
variation in trichome number. ETC2 very likely cor-
responds to one of the first QTL that was mapped
in Arabidopsis, REDUCED TRICHOME NUMBER
(Larkin et al., 1996), and consistent with alleles of dif-
ferent activity being common, ETC2 can also be de-
tected by GWAS (Atwell et al., 2010). Notably, it had
initially been suggested that ETC2 has only a minor
role in trichome formation, a conclusion that came
from studies done with common accessions that have
an ETC2 allele without obvious disruptions but with
nevertheless low activity.

The work on ETC2 is noteworthy because of how the
causal polymorphism was first pinpointed using a
strategy that should be broadly applicable. To trian-
gulate the causal region in the final mapping interval,
accessions with either very high or very low trichome
densities were selected, and the extent of haplotype
sharing in each group was compared, which identified
a small region with only two candidate polymor-
phisms (Hilscher et al., 2009). Transformation with
chimeric transgenes provided conclusive support that
one of the variants, a nonsynonymous mutation, was
reducing the activity of ETC2. With the resources of the
1001 Genomes Project, these types of local association
studies should become a common strategy for the
endgame in identifying QTL after conventional map-
ping in F2 or similar populations.

Natural Variation in Arabidopsis
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Glucosinolate Content

In addition to the gene-for-gene resistance loci that
are effective against individual pathogen strains (for
review, see Nishimura and Dangl, 2010), Arabidopsis
accessions also show quantitative variation in resis-
tance, in particular against herbivorous insects. As
with trichomes, chemical defenses in the form of a
Brassicaceae-specific class of secondary metabolites,
the glucosinolates, can reduce herbivore damage (Blau
et al., 1978). There are considerable inter- and intra-
specific differences in the repertoire of glucosinolates,
which are hydrolyzed by the enzyme myrosinase into
the active defense compounds (Kliebenstein et al.,
2005). In Arabidopsis, METHYLTHIOALKYLMALATE
SYNTHASE (MAM) and AOP are the two major loci
responsible for variation in glucosinolate biosynthesis,
with additional contributions from the GSL-OH locus
(Kliebenstein et al., 2001; Kroymann et al., 2001, 2003).
Hydrolysis of the glucosinolates is further affected by
the polymorphic EPITHIOSPECIFIER PROTEIN and
EPITHIOSPECIFIER MODIFIER1 loci (Lambrix et al.,
2001; Zhang et al., 2006). In other Brassicaceae, several
of the same genes are responsible for intraspecific
variation in glucosinolate content, including A. lyrata
(Li and Quiros, 2003; Heidel et al., 2006).

Notably, both the MAM and AOP loci are complex,
with several tandem arrayed genes that vary in pres-
ence, enzyme activity, or expression level between
accessions, giving rise to more than two alternative
allelic states, processes that are apparently driven by
positive selection (Kliebenstein et al., 2001; Kroymann
et al., 2001, 2003). At least MAM shows a similar
pattern of diversity created by gene duplication and
neofunctionalization between other members of the
Arabidopsis genus as well as closely related genera
(Benderoth et al., 2006).

The detailed understanding of the control of gluco-
sinolate accumulation in turn supports research into
broader questions of genetic variation, such as the
importance of stochastic variation, which was found to
be genetically encoded as well (Jimenez-Gomez et al.,
2011).

Flowering Time

Seed production is one of the most important com-
ponents of fitness, and to optimize seed set, plants
need to flower at the right time of year. In agreement
with Arabidopsis is found in places with very different
growing seasons, natural accessions differ greatly in
their flowering behavior. Beginning with Laibach
(1943, 1951), several investigators reported flowering
variation not only in inbred accessions, but also in
individuals collected from the wild (Napp-Zinn, 1957;
Cetl et al., 1968; Jones, 1971; Westerman, 1971). That
this trait is under selection has also been inferred from
population genomics analyses (Flowers et al., 2009)
and from the finding of latitudinal and altitudinal
clines, likely due to covariation of flowering time with

climatic factors (Caicedo et al., 2004; Stinchcombe
et al., 2004; Lempe et al., 2005).

The first natural allele to be mapped with molecular
markers in Arabidopsis was at the FRI locus, which
segregates in a Mendelian manner in crosses between
late- and early-flowering accessions (Lee et al., 1993;
Clarke and Dean, 1994). The first QTL mapped in
Arabidopsis were also ones controlling flowering
(Kowalski et al., 1994; Clarke et al., 1995), followed
by many additional QTL studies (for review, see
Koornneef et al., 2004; Shindo et al., 2007). Mapping
in crosses and GWAS have shown that flowering time
variation can be explained by relatively few large-
effect QTL (Atwell et al., 2010; Brachi et al., 2010; Li
et al., 2010; Salomé et al., 2011b; Strange et al., 2011),
which is very different from maize (Buckler et al.,
2009).

FRI and the epistatically acting FLC gene are re-
sponsible for a large fraction of flowering time varia-
tion in Arabidopsis accessions when these are not
exposed to a winter-like vernalization treatment. FRI
promotes expression of the FLC transcription factor,
which directly represses genes with positive roles in
flowering (Li et al., 2008; Deng et al., 2011). Allelic
variation at FLC likely accounts for flowering time
differences in other Brassicaceae as well, including
Capsella bursa-pastoris and some, but not all, Brassica
species (Long et al., 2007; Razi et al., 2008; Slotte et al.,
2009; Zhao et al., 2010). A role for FRI in flowering time
variation in A. lyrata and Brassica napus has been
inferred from association studies (Kuittinen et al.,
2008; Wang et al., 2011).

Strikingly, there are many alleles at both FRI and
FLC (Michaels and Amasino, 1999; Johanson et al.,
2000; Le Corre et al., 2002; Gazzani et al., 2003; Lempe
et al., 2005; Shindo et al., 2005; Méndez-Vigo et al.,
2011). Because of the convenience of early flowering,
commonly used laboratory accessions have a loss-of-
function allele at one or both loci. However, while low-
activity FRI alleles typically have disrupted open
reading frames, FLC alleles are predominantly char-
acterized by noncoding structural variation. During
vernalization, FLC becomes epigenetically silenced,
and natural alleles differ in the duration of vernaliza-
tion needed for stably switching off FLC expression
(Shindo et al., 2006). In addition to its repressive effects
on flowering, high-activity alleles of FLC promote
germination in the cold, which in turn allows plants
to experience the longer cold period required for
flowering when FLC is active (Chiang et al., 2009).
The FRI homologs FRL1 and FRL2 along with the FLC
homologs FLM/MAF1 and MAF2 provide additional
routes to flowering time variation (Werner et al., 2005;
Schläppi, 2006; Caicedo et al., 2009; Rosloski et al.,
2010).

Flowering time control is one of the most intensively
investigated developmental processes in Arabidopsis,
and well over 100 genes are known to affect flowering,
with many having substantial pleiotropic effects on
plant growth (Srikanth and Schmid, 2011). Remark-
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ably, only one gene with very few nonflowering phe-
notypes, the central flowering activator FT, has been
shown to contribute extensively to flowering time
variation between Arabidopsis accessions (Schwartz
et al., 2009; Li et al., 2010; Huang et al., 2011; Salomé
et al., 2011b; Strange et al., 2011). QTL studies have
implicated FT as being the cause of flowering time
differences also in B. napus (Long et al., 2007).
Several other genes responsible for flowering time

variation in Arabidopsis have multiple functions dur-
ing plant development, including the photoreceptor
encoding genes CRYPTOCHROME2, PHYC, and
PHYD (Aukerman et al., 1997; El-Din El-Assal et al.,
2001; Balasubramanian et al., 2006; Méndez-Vigo et al.,
2011). In addition, there is functional allelic variation at
PHYA and PHYB. Both regulate flowering (Srikanth
and Schmid, 2011), although the effects of the natural
alleles on flowering have not been studied (Maloof
et al., 2001; Filiault et al., 2008). Two other pleiotropi-
cally acting, naturally variable flowering regulators
are FY (Adams et al., 2009) and HUA2. In addition to
affecting flowering time, a natural HUA2 change-of-
function allele has a dramatic effect on plant architec-
ture that had not been anticipated frommutant studies
(Alonso-Blanco et al., 1998a; Wang et al., 2007; Huang
et al., 2011; Strange et al., 2011). Finally, additional loci
responsible for flowering time regulation have been
identified by growing plants under variable conditions
(Weinig et al., 2002; Brachi et al., 2010; Li et al., 2010).

TOWARD AN UNDERSTANDING OF THE FORCES
SHAPING GENETIC VARIATION

Apart from extending our knowledge of biological
mechanisms and pathways in Arabidopsis, a major
motivation for studying genetic variation is to under-
stand how a species adapts to different local environ-
ments, which traces adaptation leaves in the genome,
and how this leads to the formation of new species.
In this section, I describe how genome analyses have
provided insights into the history of the species, what
is being learned about epistatic interactions between
alleles from different genomes, and how evidence for
local adaptation is emerging.

Geographic Distribution of Population Diversity

Until a decade ago, the vast majority of the few
hundred Arabidopsis accessions available from the
stock centers came from western Europe. In the past
years, collections have been substantially expanded,
with more than 2,000 genotypically distinct accessions
having been described (Schmuths et al., 2006; Beck
et al., 2008; Picó et al., 2008; Montesinos et al., 2009;
Bomblies et al., 2010; Lewandowska-Sabat et al., 2010;
Platt et al., 2010; Cao et al., 2011; Méndez-Vigo et al.,
2011). With whole-genome data, the pattern of isola-
tion-by-distance that had been deduced from more
sparse data before came into even sharper focus. In

addition, it was found that geographic regions differ
greatly both with respect to the total number of poly-
morphisms distinguishing accessions within a region
from each other and from other regions and the rela-
tive frequency of variants that are shared with other
regions.

There is an overall gradient from west to east: The
greatest diversity is found at the western end of the
native range, in the Iberian Peninsula, including North
Africa, while the most uniform regions are in Central
Asia. This is consistent with the view that Arabidopsis
populations in the west are the oldest, with later
expansion into the eastern end of its native distribu-
tion, along with recently colonized regions, such as the
Alps, in the center of the range (Sharbel et al., 2000;
Nordborg et al., 2005; Schmid et al., 2005; Ostrowski
et al., 2006; Beck et al., 2008; Picó et al., 2008; Platt et al.,
2010; Cao et al., 2011). In addition, there is also al-
titudinal stratification within regions, with popula-
tions from high altitude being overall less diverse than
those from lower altitude (Montesinos et al., 2009;
Lewandowska-Sabat et al., 2010; Gomaa et al., 2011). It
has also been suggested that there is evidence for
migration from east to west, accompanying the spread
of agriculture (François et al., 2008); however, knowing
that the Iberian Peninsula is the most diverse region, it
is unclear what to make from this. The regional dif-
ferences have certainly important implications for the
design of GWAS, since LD extends further in less
diverse regions (Cao et al., 2011).

In continental Eurasia, identical multilocus geno-
types are almost exclusively found only in the same
local patches of Arabidopsis individuals (Picó et al.,
2008; Bomblies et al., 2010; Lewandowska-Sabat et al.,
2010; Platt et al., 2010). Exceptions are the British Isles
and North America. In both regions, one specific ge-
notype is found in many different places. For North
America, recent and widespread, but uneven, intro-
duction by European settlers has been suggested as the
most likely cause; this scenario is compatible with the
absence of genetic isolation by distance in North
America (Platt et al., 2010).

Epistatic Interactions between Genomes

Despite its selfing nature, and contrary to what early
analyses had suggested, stands of Arabidopsis plants
can include several different multilocus genotypes.
Moreover, outcrossing rates of Arabidopsis in nature
can be several percent, and heterozygous individuals
are thus not that rare (Stenøien et al., 2005; Bakker
et al., 2006; Jorgensen and Emerson, 2008; Bomblies
et al., 2010; Platt et al., 2010).

Superior performance in heterozygous F1 hybrids is
known as heterosis or hybrid vigor. Heterosis in
Arabidopsis is generally not as dramatic as in other
species, but heterotic QTL for biomass and metabolites
have been identified by backcrossing RILs derived
from two inbred accessions to the founders (Syed and
Chen, 2005; Kusterer et al., 2007; Lisec et al., 2009;

Natural Variation in Arabidopsis

Plant Physiol. Vol. 158, 2012 13



Meyer et al., 2010). There is also extensive evidence for
nonadditive, or epistatic, effects on gene expression in
intra- and interspecific hybrids (Wang et al., 2006;
Zhang and Borevitz, 2009; Zhang et al., 2011). In both
stable allotetraploids and F1 hybrids of Arabidopsis3
arenosa, circadian gene expression programs are al-
tered, and a similar trend is apparent in F1 hybrids
between two Arabidopsis accessions that exhibit hy-
brid vigor. The heterotic effects are mediated by cen-
tral regulators of the circadian clock (Ni et al., 2009),
although the proximate causes that alter activity of
these regulators, and their relationship to the heterosis
QTL identified in the same cross before, remain un-
known.

Inferior performance of F1 hybrids is known as
hybrid weakness or incompatibility, with extreme
cases presenting as hybrid sterility or lethality. In
addition, a decline in fitness of later generations is
called hybrid breakdown or inbreeding depression
(Hochholdinger and Hoecker, 2007; Charlesworth and
Willis, 2009; Bomblies, 2010) A commonly observed
incompatibility phenomenon is cytoplasmic male ste-
rility (CMS), due to a mismatch between nuclear genes
that encode proteins active in mitochondria and the
mitochondrial genome (Fujii and Toriyama, 2008).
Despite well over 1,000 different interaccession crosses
having been examined (Bomblies et al., 2007), CMS has
not yet been reported in Arabidopsis, even though
weak CMS has been observed inA. lyrata (Leppälä and
Savolainen, 2011). The most common obvious defect in
F1 hybrids of Arabidopsis appears to be an autoim-
mune syndrome, hybrid necrosis, that is also known
from many other plants.

Hybrid necrosis can often be explained by one or
two epistatically interacting loci (Bomblies et al., 2007;
Bomblies and Weigel, 2007). At least one of the genes
causal for hybrid necrosis in Arabidopsis encodes an
immune receptor of the NB-LRR class (Bomblies et al.,
2007), consistent with the identification of immune
genes underlying hybrid necrosis in other species
(Krüger et al., 2002; Jeuken et al., 2009; Yamamoto
et al., 2010). The NB-LRR family is the most variable
gene family in plants, with genes often being found in
clusters that have a complex history of gene duplica-
tion, deletion, and gene conversion. NB-LRR genes are
engaged in recognition of diverse proteins (Nishimura
and Dangl, 2010), providing an intuitive explanation
for why hybrid necrosis is so common. In a broader
context, hybrid necrosis is a manifestation of the costs
of disease resistance (Tian et al., 2003).

In some instances, hybrid necrosis becomes only
expressed in the F2 generation (Alcázar et al., 2009).
In one such case, one of the causal genes encodes a
receptor kinase homolog, with evidence of positive
selection for disease resistance having increased the
frequency of this allele in Central Asia (Alcázar et al.,
2010). A receptor-kinase-like gene of a different class
is responsible for an incompatibility that primarily
causes growth defects. This specific case involves
an interaction between alleles at a single locus with

similar properties as many NB-LRR loci, namely being
composed of a highly variable tandem array of genes
(Smith et al., 2011). Notably, not every highly variable
gene family appears to cause problems in hybrids.
Cytochrome P450s, which are important for plant
insect defense and are produced by one of the most
highly variable gene families (Clark et al., 2007; Cao
et al., 2011), have so far not been tied to hybrid
weakness, perhaps because they are not designed to
interact with a diverse set of other proteins.

Most F2 incompatibilities were not discovered be-
cause of overt phenotypic effects but were deduced
from segregation distortion, that is, the absence of
certain genotypic combinations, in F2 or RIL popula-
tions (Lister and Dean, 1993; Mitchell-Olds, 1995;
Alonso-Blanco et al., 1998b; Loudet et al., 2002; Werner
et al., 2005; Törjék et al., 2006; Simon et al., 2008;
Balasubramanian et al., 2009; Salomé et al., 2011a). For
RILs, this can be due to inadvertent selection, e.g.
because late-germinating lines are eliminated, but
several cases are associated with lethality of specific
segregants. One example involves a pair of paralogs
that arose from a very recent ectopic duplication event
and that independently sustained inactivating muta-
tions in different lineages (Bikard et al., 2009). About
three-quarters of accessions carry inactive copies of
one or the other paralog, suggesting that increased
dosage is disfavored. A similar situation of recipro-
cally mutated paralogs explains an epistatic interac-
tion affecting shoot growth (Vlad et al., 2010). Both
cases differ from other examples of complex duplica-
tion and mutation events, where the paralogs have
become neofunctionalized and have now distinct ac-
tivities (Kliebenstein et al., 2001; Kroymann et al., 2003;
Huang et al., 2010a).

Experimental Ecology and Ecological Genomics

The worldwide distribution of Arabidopsis can be
well described by climatic range boundaries; these
indicate that laboratory conditions commonly used for
growth of Arabidopsis are at the extreme end of its
normal habitats, which are normally much cooler and
drier (Hoffmann, 2002). This has important implica-
tions for interpreting phenotypic differences observed
in the greenhouse. For example, strains with differen-
tial activity of the key flowering regulators FRI and
FLC, known to vary in many accessions, only differ
strongly in their flowering behavior outdoors when
germinated at specific times of the year, with a critical
period in early fall having a disproportionately large
effect on flowering time, namely, whether plants over-
winter (Wilczek et al., 2009). Such knowledge is es-
sential if one wants to predict responses to a changing
climate (Wilczek et al., 2010). Furthermore, by cultur-
ing plants in seminatural settings, in which either
variable light and temperature conditions are repro-
duced in climate chambers or plants are germinated in
the greenhouse, then transplanted outdoors, one can
detect QTL that are not found when plants are grown
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in a uniform environment. Whether either type of QTL
is more relevant is unclear and can only be addressed
by phenotyping truly naturally growing individuals.
Nevertheless, analysis in seminatural conditions pro-
vides insights into the genetic basis of traits considered
to be indicative of fitness, such as germination, sur-
vival, fruit and seed number, or competitiveness
(Weinig et al., 2002, 2003a, 2003b; Stinchcombe et al.,
2004; Donohue et al., 2005; Li et al., 2006; Brachi et al.,
2010; Huang et al., 2010b; Li et al., 2010; Fournier-Level
et al., 2011).
Different experimental approaches are beginning

to reveal local adaptation in Arabidopsis. When 74
accessions were monitored in the greenhouse under
different temperatures, it was found that accessions
from cold regions respond in their growth more
strongly to elevated temperatures than accessions
from warm regions, which are only moderately inhi-
bited by colder temperatures (Hoffmann et al., 2005).
Systematic correlation of phenotypes with environ-
mental gradients can indicate adaptation (Endler,
1977), and there are also latitudinal clines in light
sensitivity and altitudinal clines in flowering-related
traits (Maloof et al., 2001; Méndez-Vigo et al., 2011).
It has been similarly proposed that populations of
Arabidopsis near oceans or saline soils are more
likely to carry an allele at the HKT1 locus that in-
creases sodium accumulation in leaves (Baxter et al.,
2010). However, the accessions investigated were
unevenly sampled, information about soil salinity
at the places of origin was not available, and the
relationship between compromised activity of HKT1
and salt tolerance is complex (Mäser et al., 2002;
Berthomieu et al., 2003). Thus, the conclusions about
adaptation to salinity should be taken with the pro-
verbial grain of salt.
Reciprocal transplantation experiments have pro-

duced evidence for local adaptation in A. lyrata
(Leinonen et al., 2009, 2011). Somewhat surprisingly,
this approach, a gold standard in ecology (Turesson,
1922a), has so far only been sparingly applied in
Arabidopsis. This has recently been remedied, with
an impressive study in which hundreds of accessions
were grown at several different places in the native
range of the species (Fournier-Level et al., 2011). Al-
leles associated with superior fitness at each site were
most likely to be found in accessions originating near
that site. GWAS identified several candidates for sur-
vival and fruit number, although only one, the photo-
receptor gene PHYB, which affects light response, can
be easily connected to local adaptation based on prior
knowledge. Additional evidence for local adaptation
comes from GWAS for climate variables at the place
of origin combined with fitness tests at a single site
(Hancock et al., 2011). Both of these studies were
carried out predominantly with accessions from the
western European and Scandinavian part of the native
range, and it will be interesting to repeat these exper-
iments with a broader spectrum of accessions and test
locales.

OUTLOOK

Our knowledge of natural variation in Arabidopsis
has advanced tremendously in the past decade, with
an impressive set of genetic and genomic approaches
and resources that are now available (Fig. 6). In the
near future, the simultaneous application of different
strategies will lead to genetic variation increasingly
informing basic plant biology. Combined analyses of
global transcript and metabolite levels and biomass
across accessions and RIL populations is supporting
the reconstruction of functional networks (Wentzell
et al., 2007; Lisec et al., 2008; Rowe et al., 2008; Sulpice
et al., 2009, 2010). Integration of QTL data with such
information has shown that in addition to biosynthetic
and metabolic enzymes, upstream transcription fac-
tors of the MYB class contribute to diversity in
glucosinolate content (Sønderby et al., 2007) and that
the clock gene ELF3 has a role in shade avoidance
(Jiménez-Gómez et al., 2010). Another instructive ex-
ample of how natural variation can help to discover a
new regulatory pathway comes from the study of
xylem expansion (Sibout et al., 2008). The authors
noted that the xylem expansion loci colocalized with
flowering time QTL, which led them to hypothesize
that the onset of flowering causes xylem expansion in
both the shoot and the root. They subsequently con-
firmed such a model by transiently inducing the
activity of a central floral regulator. There is similarly
great promise in GWAS with the same material to
identify cases of pleiotropic action of natural sequence
variants.

I have also highlighted the many opportunities
Arabidopsis offers for the study of interactions be-
tween divergent genomes, whichmay both promote or
reduce outcrossing, and thereby affect the partitioning

Figure 6. Relationship between approaches to the study of genetic
variation.
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of genetic diversity into different lineages (and ulti-
mately into different species). So far, the parents for the
investigated crosses have largely been chosen ran-
domly.With increasing information about the genome-
wide and population-specific distribution of sequence
polymorphisms, more judicious and systematic choices
of genotype combinations should accelerate the pace
with which we can obtain insights into the fascinating
questions of hybrid performance.

Another important direction will be to phenotype
naturally growing plants in situ over several years
(Montesinos et al., 2009). Genotyping of very large
numbers of wild plants has become very affordable
with next-generation sequencing methods, which will
facilitate linking genotype and phenotype even on an
individual basis (Baird et al., 2008; Elshire et al., 2011).
An example for such strategies is a study that moni-
tored over 4 years the load of five different viruses that
had been known before to infect wild Brassicaceae
(Pagán et al., 2010). Such experiments are required to
test claims about fitness trade-offs between disease
resistance and growth (Tian et al., 2003; Todesco et al.,
2010). Finally, selection experiments are a tool that
should not be underestimated for their potential to
provide insights into favorable allele combinations
(Ungerer et al., 2003; Ungerer and Rieseberg, 2003;
Scarcelli and Kover, 2009; Fakheran et al., 2010).
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Savolainen O (2009) Local adaptation in European populations of

Arabidopsis lyrata (Brassicaceae). Am J Bot 96: 1129–1137

Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M,

Weigel D (2005) Diversity of flowering responses in wild Arabidopsis

thaliana strains. PLoS Genet 1: 109–118
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