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While recent years have witnessed dramatic advances in our capacity to identify and quantify an ever-increasing number of
plant metabolites, our understanding of how metabolism is spatially regulated is still far from complete. In an attempt to
partially address this question, we studied the storage metabolome of the barley (Hordeum vulgare) vacuole. For this purpose,
we used highly purified vacuoles isolated by silicon oil centrifugation and compared their metabolome with that found in the
mesophyll protoplast from which they were derived. Using a combination of gas chromatography-mass spectrometry and
Fourier transform-mass spectrometry, we were able to detect 59 (primary) metabolites for which we know the exact chemical
structure and a further 200 (secondary) metabolites for which we have strong predicted chemical formulae. Taken together,
these metabolites comprise amino acids, organic acids, sugars, sugar alcohols, shikimate pathway intermediates, vitamins,
phenylpropanoids, and flavonoids. Of the 259 putative metabolites, some 12 were found exclusively in the vacuole and 34 were
found exclusively in the protoplast, while 213 were common in both samples. When analyzed on a quantitative basis, however,
there is even more variance, with more than 60 of these compounds being present above the detection limit of our protocols.
The combined data were also analyzed with respect to the tonoplast proteome in an attempt to infer specificities of the
transporter proteins embedded in this membrane. Following comparison with recent observations made using nonaqueous
fractionation of Arabidopsis (Arabidopsis thaliana), we discuss these data in the context of current models of metabolic
compartmentation in plants.

Technological developments in the last decade
have rendered metabolomics, the comprehensive study
of small molecule metabolites, an important func-
tional genomic tool (Fiehn, 2002; Sumner et al., 2003;
Weckwerth, 2003; Farré et al., 2006; Matsuda et al.,
2009; Saito and Matsuda, 2010). It is currently widely
applied for a variety of purposes, ranging from sim-
ple diagnostic applications (Catchpole et al., 2005;
Tikunov et al., 2005; Baker et al., 2006; Scherling et al.,
2009) and gene functional annotation (Tohge et al.,
2005, 2007) to being an important component in
systems biology-oriented research (Fernie et al.,

2004; Saito and Matsuda, 2010). Metabolomics has
additionally found great utility in the characteriza-
tion of the metabolic response of plant cells to a range
of biotic and environmental stresses (Cook et al.,
2004; Hirai et al., 2004; Kaplan et al., 2004; Ishizaki
et al., 2005; Urbanczyk-Wochniak and Fernie, 2005;
Roessner et al., 2006; Yamaguchi-Shinozaki and
Shinozaki, 2006; Lehmann et al., 2009). However,
despite the many important breakthroughs facilitated
by this technology, we remain somewhat hampered
in our understanding by our inability to gain high-
resolution spatial data on metabolism (Stitt and
Fernie, 2003; Fernie, 2007; Lunn, 2007).

Generally, metabolism is treated in a tissue-specific
manner but cells within a tissue are treated as homog-
enous. Given that there are around 40 different cell
types in plants (Goldberg, 1988; Martin et al., 2001),
this is clearly an oversimplification. Recent technical
advances and the widespread adoption of the GUS
fusion protein expression approach (Sundaresan
et al., 1995) as well as the increasing availability of re-
sources such as Genevestigator and the BAR databases
(Zimmermann et al., 2004; Brady and Provart, 2009),
however, have made the identification of cell type
specificity of gene expression facile. These develop-
ments have been paralleled by the increasing use of so-
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called single cell techniques, allowing microdissection
of tissues into their constituent cell types (Schad et al.,
2005; Cai and Lashbrook, 2006; Obel et al., 2009). These
advances hold great promise for being able to better
untangle metabolism at the cell type level, and a
metabolite interface for the BAR gene expression atlas
has indeed recently been published (Matsuda et al.,
2009).

Going to even higher levels of resolution allows the
analysis of subcellular and even suborganellar aspects
of metabolism. Generally, the spatial distribution of
metabolites mirrors that of the proteins involved in
their metabolism. Given the large number of reports
concerning plant organellar proteomes (Igamberdiev
et al., 2001; Millar et al., 2001; Carter et al., 2004;
Kleffmann et al., 2004; Pendle et al., 2005; Reumann
et al., 2007) and the availability of the SUBA database
of protein localization (Heazlewood et al., 2007), it
should be relatively easy to predict the location and
operation of metabolic pathways. However, the facts
of organelle-specific isoforms and dual targeting of
proteins often result in the duplication of metabolic
reactions within different compartments of the cell
(Carrari et al., 2003; Millar et al., 2006). Furthermore,
several instances exist in which proteins are found
in locations other than where they were thought to
operate; for example, hexokinase proteins have been
found in the nucleus, while the Suc synthase has been
localized to the mitochondria (Subbaiah et al., 2006;
Cho et al., 2007). These observations thus render such
predictions of metabolite localization, on the basis of
protein localization alone, liable to error. Moreover, for
studies aimed at understanding the function of the
vacuole, which is largely metabolically inert, such an
association-based approach is likely to be highly dif-
ficult. At present, there are three different approaches
for the direct determination of subcellular metabolite
contents: the expression of genetically encodedmarker
proteins (Fehr et al., 2002), the nonaqueous fractiona-
tion technique (Gerhardt et al., 1983), and silicon oil
centrifugation of protoplasts (Igamberdiev et al., 2001).
The first of these requires the construction and expres-
sion of several variants of a marker protein for each
individual metabolite and thus is not tractable at the
metabolome level. The second approach has already
been coupled to plant cells and proved to be highly
informative in characterizing transgenic potato (Sola-
num tuberosum) plants exhibiting alterations in the Suc-
to-starch pathway (Farré et al., 2001, 2006). For the
third approach, several proteome studies of the vacu-
ole have been presented for Arabidopsis (Arabidopsis
thaliana; Carter et al., 2004; Shimaoka et al., 2004;
Jaquinod et al., 2007). Our study, however, is focused
on barley (Hordeum vulgare), since it is our experience
that the purity of vacuoles isolated from this species
exceeds that from any other species. To this end, we
isolated pure vacuoles from protoplasts derived from
barley leaves and compared the metabolome of these
organelles with that of the protoplast population
from which they were derived using a combination

of gas chromatography-mass spectrometry (GC-MS)
and liquid chromatography-Fourier transform-mass
spectrometry (LC-FT-MS). We were able to provide
information concerning 61 metabolites of confirmed
chemical structure and a further 135 putative metabo-
lites on the basis of their chemical formulae and assess
their partitioning between the vacuolar and extravac-
uolar parts of the cell. Finally, the data were compared
with literature values obtained by the nonaqueous
fractionation approach and in relation to tonoplast
transporters described in the literature (Martinoia
et al., 2000, 2007; Kaspar et al., 2010) as well as with
data recently published concerning the vacuolar ion-
ome (Smart et al., 2011).

RESULTS

Isolation of the Barley Vacuole from Protoplast

To investigate vacuole metabolomics, barley vacu-
oles were purified from barley protoplast. Barley
mesophyll protoplasts were prepared using fresh bar-
ley leaves grown in a greenhouse for 8 d. Isolation and
purification of mesophyll protoplasts and vacuoles
were performed as described previously (Endler et al.,
2009). In order to get rid of the isolation solution,
an additional centrifugation step, as described in
“Materials and Methods,” was included. Protoplast
samples were prepared as three replicates (P1– P3)
and vacuole samples were prepared as six replicates
(V1–V6) to evaluate biological and experimental var-
iance. Purified vacuole fractions were assessed by
a-mannosidase enzymatic activity, which is known
as vacuole-specific enzyme (Boller and Kende, 1979),
and chlorophyll content for evaluation of the contam-
ination of chloroplast. Four independent sets of vacu-
ole preparations resulted in 70 6 29 milliunits mL21

(vacuole fractions) and 22 6 4 milliunits mL21 (proto-
plast fractions) of a-mannosidase enzymatic activity
and no (vacuole fractions) and 293 6 52 mg mL21

(protoplast fractions) of chlorophyll content, respec-
tively. The liquid samples were lyophilized and
extracted by 80% methanol for preliminary check by
GC-MS analyses. These preparations rendered high
reproducibility of metabolite data between experi-
ments. To obtain enough sample for split use in both
MS-based analyses, the fractions derived from a single
sample set were frozen overnight, and after defreez-
ing, 45 mL of the aqueous solution from each tube (50–
60 tubes per experiment) was recovered and pooled
(vacuole fraction, 77 milliunits mL21 of a-mannosidase
enzymatic activity, no chlorophyll content; protoplast
fraction, 23 milliunits mL21 and 272 mg mL21, respec-
tively). The pooled fractions were lyophilized and
used for the metabolomic analysis. The variance of dry
weight between replicates was 8.076 0.36 mg (vacuole
samples; n = 6) and 8.13 6 0.60 mg (protoplast; n = 3).
For the metabolomic studies, lyophilized samples
were extracted by 80% methanol for split use to both
MS-based analyses.
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Global Difference and Fraction-Specific Peaks

Metabolite profiles were analyzed by GC-time of
flight-MS for primary metabolites (Lisec et al., 2006)
and LC-MS for secondary metabolites (Tohge and
Fernie, 2010). The resultant data were combined into
a single data matrix for multivariate analyses. First, we
performed principal component analysis to visualize
the extent of metabolomic changes between protoplast
samples and vacuole samples (Supplemental Fig. S1A).
Since a clear separation between the protoplast sam-
ples and vacuole samples was observed in PC1
(74.9%), we subsequently performed a Venn diagram
analysis to illustrate the levels of commonality and
difference between samples (Supplemental Fig. S1A).
In total, 259 peaks were detected by GC-MS and LC-
MS. Twelve peaks detected by LC-MS were exclu-
sively detected in the vacuole samples (Supplemental
Table S1). On the other hand, 34 peaks were observed
as protoplast-specific peaks, meaning that 213 peaks
were detected in both fractions. Given that the subcel-
lular vacuole volume of barley leaves has been defined
to be 60.5% of the total cell volume (Winter et al., 1993),
we defined those compounds that were abundant at
percentages above 60% in vacuole as “vacuolar accu-
mulated.” Ninety-nine peaks were detected at high
relative abundance (more than 1.5-fold change [FC]) in
the vacuole samples, while 62 peaks were detected at
low relative abundance (less than 0.5 FC). It is impor-
tant to bear in mind here that vacuole-specific peaks
could, in principle, also be detected in protoplast sam-
ples. For those that were solely detected in the vac-
uole, it thus seems likely that their levels were under
the limit of detection in our protoplast samples. By
contrast, protoplast-specific peaks suggest that these
metabolites are not transported into the vacuole.

Metabolite Profiling of Primary Metabolites by GC-MS

As stated above, measurements of the relative levels
of primary metabolites were performed by GC-MS
(Lisec et al., 2006), and the absolute levels of 59 com-
pounds were estimated based on concentration curves
of authentic standard that were run side by side with
the samples (Table I). The results show that the vacuole
accumulates a large variety of different compounds:
sugars, sugar alcohols, organic acids, and amino acids.
A total of 22 amino acids and their related compounds
were determined in vacuolar and protoplast samples.
Three of them had higher vacuolar than protoplast
levels (more than 90% of compound in the vacuole,
more than 1.5 FC), seven were invariant (30%–90%,
0.5–1.5 FC), and seven displayed a lower vacuolar
level (less than 30%, less than 0.5 FC; Table I; Fig. 1).
Interestingly, His and Ala were highly more abundant
in the barley vacuole than in the protoplast, followed
by Trp (1.53 FC), Met (1.43 FC), and Ser (1.24 FC). The
relative amounts of Glu (less than 0.02 FC), Pro (0.09
FC), Gln (0.10 FC), and Asp (0.12 FC) were very low
inside the vacuole. The levels of other amino acids,

such as Orn, Tyr, Ile, tyramine, Val, Phe, pyro-Glu, and
Gly, were invariant. Additionally, we were also able to
determine g-aminobutyric acid amounts in both sam-
ples, but at higher levels in the protoplast samples
(Table I; Fig. 1).

Several of the organic acids measured had higher
vacuolar than protoplast levels (Table I). Higher levels
of the tricarboxylic acid (TCA) cycle intermediates
isocitrate, malate, succinate, and gluconate were ob-
served in vacuoles. The levels of aconitate, glycerate,
2-oxoglutarate, galacturonate, shikimate, maleate, glu-
tarate, pyruvate, benzoate, fumarate, aconitate, and
threonate, however, were lower in the vacuole samples
(Table I; Fig. 1).

We were additionally able to detect several sugars in
the vacuole samples (Table I; Fig. 1). Monosaccharides
such as Ara exhibited higher levels in vacuolar than
protoplast samples. Interestingly, the level of Suc was
less abundant in vacuole samples. Several other sugars,
namely Glc, Xyl, Fru, Gal, and maltose, were also
found at abundant levels within the vacuole.

Additional nitrogen-containing metabolites were
also detected in the vacuole samples, including pu-
trescine (Table I; Fig. 1). The purine derivative ade-
nine displayed higher levels in protoplast samples,
whereas putrescine and urea levels were invariant
between sample types. Among the other compounds
analyzed, it is interesting that the levels of intermedi-
ates involved in membrane biogenesis, such as C16:0
and C18:0 fatty acids, were lower in vacuole samples
(Table II).

Metabolite Profiling of Secondary Metabolites by LC-MS

Next, ultra-performance liquid chromatography
(UPLC)-FT-MS analysis was performed for the deter-
mination of secondary metabolite contents in the dif-
ferent samples. Detected peaks were identified and
annotated by a combined usage of standard com-
pounds, database surveys on the basis of accurate
mass-to-charge ratio (m/z) values as analyzed by FT-
MS (Giavalisco et al., 2009; Horai et al., 2010), and
comparison between coelution analysis with well-
analyzed plant extracts such as Arabidopsis (Tohge
et al., 2005; Nakabayashi et al., 2010) and tomato
(Solanum lycopersicum) fruits (Moco et al., 2006; Iijima
et al., 2008). By UPLC-FT-MS analysis, 200 peaks were
detected in total. Twelve of these peaks were unde-
tected in the protoplast samples, whereas 34 peaks
were undetected in the vacuolar samples (Supplemen-
tal Table S1). Both Phe and Trp displayed similar
relative levels as analyzed by GC-MS. Of 12 vacuole-
specific peaks, four peaks were annotated as glyco-
flavone derivatives (Table II). The major flavonoid
isovitexin (Kaspar et al., 2010), which was identified by
standard compound confirmation, was also highly
detected in vacuolar samples. In addition, analysis of
the other six glycoflavone derivatives annotated
by UPLC-FT-MS revealed that all putative glycoflavone
derivatives were more highly abundant in the vacuo-
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Table I. Metabolite contents of barley protoplasts and vacuole samples

Values are presented as means 6 SD of determinations on six replicates of vacuole fractions and three protoplast fractions. Percentage of content
levels in vacuole was calculated by a-mannosidase activity. Given that the subcellular vacuole volume of barley leaves has been defined to be
60.5% of the total cell volume (Winter et al., 1993), we defined those compounds that were abundant at percentages above 60% in vacuole as
vacuolar accumulated.

Compound Name FC In Vacuole Protoplast Vacuole

% nmol L21 protoplast

Amino acids and derivatives
His .1.65 .100 5.6 6 1.7 21.9 6 9.8
Ala .1.65 .100 1,981.6 6 127.6 4,789.2 6 1,415.7
Trp 1.53 92.4 47.5 6 3.9 43.9 6 7.6
Met 1.43 86.7 22.4 6 2.6 19.4 6 2.1
Ser 1.24 75.2 4,190.2 6 392.4 3,150.2 6 1069.6
Orn 0.79 47.6 15.9 6 0.6 7.6 6 1.6
Tyr 0.78 47.4 1,612.4 6 46.5 765.0 6 92.7
Ile 0.78 46.9 1,848.5 6 111.8 867.5 6 150.4
Tyramine 0.65 39.4 12.8 6 1.4 5.0 6 0.8
Val 0.56 33.6 4,063.4 6 442.1 1,364.0 6 304.9
Phe 0.55 33.1 734.0 6 29.0 242.9 6 38.8
Pyro-Glu 0.51 30.6 1,583.2 6 160.2 484.6 6 63.5
Gly 0.43 26.2 1,949.2 6 258.2 509.8 6 131.9
Asn 0.35 21.4 980.2 6 176.1 209.4 6 103.4
Thr 0.33 20.2 4,169.7 6 233.1 842.4 6 99.1
Lys 0.31 18.9 1,028.3 6 54.6 193.9 6 42.7
b-Ala 0.31 18.6 143.6 6 10.0 26.6 6 2.4
Asp 0.12 7.5 1,358.7 6 882.7 102.5 6 17.9
Gln 0.10 5.8 990.8 6 97.8 57.1 6 9.5
Pro 0.09 5.2 62.2 6 11.3 3.3 6 0.8
g-Aminobutyric acid ,0.02 ,1 1,3381.1 6 784.5 101.4 6 7.9
Glu ,0.02 ,1 98.8 6 15.8 0.4 6 0.1

Organic acids
Isocitric acid .1.65 .100 114.0 6 1.9 1,080.0 6 900.3
Malic acid .1.65 .100 2,974.1 6 78.5 6,352.5 6 834.2
Succinic acid .1.65 .100 3,229.1 6 126.5 3,709.9 6 1,126.6
Gluconic acid 1.52 92.2 2,911.7 6 388.1 2,685.9 6 534.6
Citric acid 0.56 33.9 126.1 6 16.6 42.7 6 7.3
Threonic acid 0.46 27.8 20.5 6 2.4 5.7 6 1.3
Aconitic acid 0.44 26.6 9.5 6 1.6 2.5 6 0.6
Fumaric acid 0.40 23.9 179.4 6 35.4 42.9 6 12.2
Benzoic acid 0.39 23.6 61.5 6 14.2 14.5 6 4.9
Pyruvic acid 0.39 23.3 23.5 6 3.0 5.5 6 0.9
Glutaric acid 0.31 18.9 0.5 6 0.2 0.1 6 0.1
Maleic acid 0.23 14.0 65.4 6 17.3 9.1 6 2.4
Shikimic acid 0.21 12.9 2.2 6 0.3 0.3 6 0.1
GalUA 0.12 7.3 351.5 6 54.6 25.6 6 7.2
2-Oxoglutarate 0.11 6.9 3.3 6 1.1 0.2 6 0.1
Glyceric acid 0.04 2.7 544.7 6 58.8 14.8 6 1.6

Sugars
Ara 1.44 87.2 7.9 6 0.9 6.9 6 1.2
Glc 1.01 61.4 385.1 6 46.7 236.4 6 41.2
Xyl 0.94 57.0 6.4 6 0.8 3.6 6 0.6
Fru 0.84 51.0 28.3 6 3.4 14.4 6 2.7
Gal 0.65 39.1 4.7 6 1.7 1.9 6 0.9
Maltose 0.50 30.5 13.9 6 1.8 4.2 6 0.6
Gentiobiose 0.43 26.2 11.9 6 2.9 3.1 6 0.5
Fuc 0.42 25.5 15.9 6 2.2 4.0 6 0.8
Man 0.39 23.3 1.4 6 0.3 0.3 6 0.0
Isomaltose 0.38 23.1 3.9 6 0.4 0.9 6 0.2
Rib 0.37 22.3 6.0 6 0.9 1.3 6 0.2
Suc 0.13 7.8 54.9 6 6.2 4.3 6 0.7

Fatty acids
18:00 0.57 34.7 316.9 6 81.4 110.1 6 43.0
16:00 0.53 32.0 305.3 6 82.7 97.6 6 40.6

(Table continues on following page.)
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lar than the protoplast samples. Sterol derivatives
represent one of the most important (and abundant)
classes of secondary metabolite in barley (Bush et al.,
1971; Hübke et al., 2005). In total, nine peaks were
annotated as sterol derivatives, including both sitos-
terol and cholesterol derivatives (Table II). These pu-
tative sterol derivatives (Bush et al., 1971; Konig and
Seifert, 1998), however, were not detected in vacuolar
samples. In addition, seven putative hydroperoxyoc-
tadecadienoic acid (HODE)-related peaks (Hübke
et al., 2005) were also only detected in protoplast
samples. Indeed, sterol derivatives and HODE were

not even detected in the vacuolar samples in their
glycosidic forms.

Integration of Metabolomic Data Sets with a Subcellarly

Targeted Coexpression Analysis

In an attempt to predict the underlying cytosolic-
vacuolar transport system, we next evaluated tono-
plast proteins predicted to have a transport function
within the context of the data collected here. This
integration analysis was performed by comparing
the data obtained here with published data. For this

Table I. (Continued from previous page.)

Compound Name FC In Vacuole Protoplast Vacuole

Others
Mannitol 0.48 29.0 106.8 6 21.4 30.9 6 6.5
Phosphoric acid 0.48 28.8 1,687.5 6 283.4 485.8 6 170.4
Sorbitol/galactitol 0.44 26.9 1,698.3 6 443.6 456.2 6 174.9
Maltitol 0.44 26.9 1.4 6 0.5 0.4 6 0.2
Putrescine 0.18 11.0 20.5 6 3.1 2.3 6 0.5
Myoinositol 0.08 4.7 466.7 6 18.3 21.8 6 2.8
Glycerol-3-phosphate 0.04 2.2 35.6 6 2.7 0.8 6 0.1

Figure 1. Ratio of metabolite abundance in vacuole to protoplast represented on metabolic pathways. The metabolic level in the
vacuole fraction was calculated against the level in the protoplast fraction. Values used for both sample typeswere normalized by
a-mannosidase activity. The intensity of differential abundance is illustrated by a false-color scale as described in the key. GABA,
g-Aminobutyric acid.
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purpose, we evaluated 88 proteins reported to be
tonoplast proteins of barley (Endler et al., 2006).
As an initial step, we bioinformatically evaluated
the possibility that individuals within either set of
proteins represented transporter proteins. In order to
interpret these combined data sets, an integrative
analysis was performed utilizing coexpression analy-
sis of publicly available microarray data. In order

to convert GenBank identifiers to those of the Affyme-
trix probe, an amino acid BLAST search was per-
formed using PLEXdb BLAST (http://www.plexdb.
org/modules/tools/plexdb_blast.php). In this pro-
cess, the 88 proteins were converted to 128 probe sets
(since the numbers are not identical, comments on
cross-hybridization are given in the list in Supplemen-
tal Table S1).

Table II. Comparison of the content of secondary metabolites detected and annotated by UPLC-FT-MS between protoplasts and purified vacuole
fractions

Retention Time m/z Formula
Molecular

Weight
FC In Vacuole

Peak

Annotation

min %

Rt5.12 609.1455 C27H30O16 610.1534 .1.65 High in V Putative flavonoid glycoside
Rt9.62 631.2768 C33H38N4O6 586.2791 .1.65 High in V Putative tetrapyrrole related
Rt9.77 631.2768 C33H38N4O6 586.2791 .1.65 High in V Putative tetrapyrrole related
Rt5.12 655.1513 C28H32O18 656.1589 .1.65 High in V Putative flavonoid glycoside
Rt7.22 665.2819 C32H44O12 620.2833 .1.65 High in V Putative phenylpropanoid
Rt4.59 759.2351 C32H42O18 714.2371 .1.65 High in V Putative phenylpropanoid
Rt6.71 799.2083 C38H40O19 800.2164 .1.65 High in V Putative flavonoid glycoside
Rt6.27 815.2038 C38H40O20 816.2113 .1.65 High in V Putative flavonoid glycoside
Rt7.36 431.0979 C21H20O10 432.1057 .1.65 High in V Flavonoid:apigenin-6-C-glucoside
Rt4.07 693.2353 C40H38O11 694.2434 .1.65 High in V Putative flavonoid glycoside
Rt7.52 475.1814 C21H32O12 476.1894 .1.65 High in V Putative phenyl diglycoside
Rt6.78 875.2251 C40H44O22 876.2324 .1.65 High in V Putative flavonoid glycoside
Rt8.43 455.1916 C21H30O8 410.1941 .1.65 High in V Putative sesquiterpene glycoside
Rt7.97 475.2113 C29H32O6 476.2199 .1.65 High in V Putative sesquiterpene glycoside
Rt3.96 407.1719 C21H28O8 408.1784 .1.65 High in V Putative sesquiterpene glycoside
Rt6.19 523.1659 C21H32O15 524.1741 .1.65 High in V Putative iridoide
Rt11.14 637.3587 C33H52O9 592.3611 .1.65 High in V Putative triterpene derivatives related
Rt11.88 649.3587 C34H52O9 604.3611 .1.65 High in V Putative triterpene derivatives related
Rt6.63 523.1658 C21H32O15 524.1741 .1.65 High in V Putative iridoide
Rt7.48 631.2237 C27H38O14 586.2262 .1.65 High in V Putative iridoide
Rt5.31 459.1501 C20H28O12 460.1581 .1.65 High in V Putative phenylpropanoid
Rt5.78 507.2073 C21H34O11 462.2101 .1.65 High in V Putative iridoide
Rt7.05 845.2144 C39H42O21 846.2219 .1.65 High in V Putative flavonoid glycoside
Rt6.55 222.0402 C10H9NO5 223.0481 .1.65 High in V Putative Trp derivative
Rt7.77 485.1658 C21H28O10 440.1683 .1.65 High in V Putative sesquiterpene glycoside
Rt7.10 609.1454 C27H30O16 610.1534 .1.65 High in V Putative flavonoid glycoside
Rt6.95 769.1975 C37H38O18 770.2058 1.59 95.6 Putative flavonoid glycoside
Rt5.88 669.1665 C29H34O18 670.1745 1.54 92.6 Putative flavonoid glycoside
Rt3.96 249.0875 C11H12N2O2 204.0899 1.24 74.7 Trp
Rt6.36 307.1394 C12H22O6 262.1416 1.04 62.7 Putative fatty acid glycoside
Rt2.97 210.0767 C9H11NO2 165.0790 0.59 35.8 Phe
Rt5.66 593.1504 C27H30O15 594.1585 0.59 35.8 Sapnarin, flavonoid
Rt3.59 259.1293 C10H18N2O3 214.1317 ,0.02 ,1.0 Putative dethiobiotin related
Rt2.69 283.0678 C10H12N4O6 284.0757 ,0.02 No in V Putative xanthosine
Rt13.50 293.2116 C18H30O3 294.2195 ,0.02 No in V Cyclopentaneoctanoic acid related
Rt13.74 293.2116 C18H30O3 294.2195 ,0.02 No in V Cyclopentaneoctanoic acid related
Rt13.81 293.2116 C18H30O3 294.2195 ,0.02 No in V Cyclopentaneoctanoic acid related
Rt12.97 311.2222 C18H32O4 312.2301 ,0.02 No in V HODE related
Rt13.48 311.2222 C18H32O4 312.2301 ,0.02 No in V HODE related
Rt11.30 327.2171 C18H32O5 328.2250 ,0.02 No in V HODE related
Rt11.64 327.2171 C18H32O5 328.2250 ,0.02 No in V HODE related
Rt11.94 327.2171 C18H32O5 328.2250 ,0.02 No in V HODE related
Rt10.86 327.2172 C18H32O5 328.2250 ,0.02 No in V HODE related
Rt12.18 329.2328 C18H34O5 330.2406 ,0.02 No in V HODE related
Rt15.37 477.3215 C28H46O6 478.3294 ,0.02 No in V Sterol glycoside
Rt15.53 491.3372 C29H48O6 492.3451 ,0.02 No in V Sterol glycoside
Rt12.81 619.4210 C35H58O6 574.4233 ,0.02 High in V Putative flavonoid glycoside
Rt13.09 619.4211 C35H58O6 574.4233 ,0.02 High in V Putative tetrapyrrole related
Rt12.81 621.4371 C36H62O8 622.4445 ,0.02 High in V Putative tetrapyrrole related
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To classify gene expression clusters, we performed
coexpression analyses with the 128 probe sets using
PlaNet for Barley (Mutwil et al., 2011; http://aranet.
mpimp-golm.mpg.de/barnet) to facilitate this process
(Fig. 2). The framework of the coexpression network
was constructed by the connections between vacuolar
probe sets using the PlaNet database. Coexpressed
network genes encoding tonoplast proteins were
separated into 13 subgroups (Fig. 2; Supplemental

Fig. S2), which were constructed by 70 vacuolar probe
sets and 112 genes (Supplemental Table S2). The dense
cluster group (middle group in Fig. 2) is well corre-
lated with aromatic amino acid-related genes such as
Phe ammonia lyase and generally expressed in pho-
tosynthetic tissues (PlaNet barley expression profiling;
http://aranet.mpimp-golm.mpg.de/barnet). By con-
trast, a second dense cluster (top right group in Fig. 2)
showed a cluster of vacuolar ATP synthase proteins

Figure 2. Frameworks of the coexpression network of barley vacuolar probe sets. The quality-checked coexpression network for
barley was obtained from the PlaNet server (http://aranet.mpimp-golm.mpg.de/download/). Genes (probe sets) are depicted as
nodes, while significant coexpression similarity between any two probe sets is represented by an edge. Probe sets corresponding
to tonoplast-located proteins (depicted by blue nodes) were used as queries for searching the coexpression networks
(Supplemental Table S2). The analysis extracted all probe sets connected to at least two vacuolar probe sets (i.e. strongly
associated with vacuolar processes). Annotation of the probe sets and PageMan analysis of ontology terms can be found in
Supplemental Table S2. ARLA, ADP-ribosylation factor; CBL, calcineurin B; CXE, carboxyesterase; DOX, lipoxygenase; EIG,
elicitor-inducible protein; GST, glutathione S-transferase; PAP, purple acid phosphatase; PHS, propyzamide-hypersensitive
protein; RNS, RNase; SNAP, solubleN-ethylmaleimide-sensitive factor attachment protein; SQD, sulfoquinovosyldiacylglycerol
glycosyltransferase; UK, unknown protein; USP, universal stress protein; V-ATPase, vacuolar ATP synthase; VSR, vacuolar
targeting receptor.
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and TCA cycle-related genes, such as 2-oxoglutarate
dehydrogenase and succinate dehydrogenase.

As a next step, we evaluated the barley coexpressed
genes in each cluster group independently to facilitate
the prediction of related metabolic pathways. In order
to analyze these networks in more detail, some sub-
clusters were focused using the PlaNet database. A
gene of interest was queried to search a specific
subcluster classified by PlaNet based on the frame-
work described in Figure 2. We were able to identify
three examples (Fig. 3). First, we focused on a sub-
cluster (orange in Fig. 2) between groups, because
this is a hub cluster to connect to the vacuolar ATP
synthase cluster to calmodulin clusters (Fig. 2). Figure
3A shows a correlation network of a gene encoding
a chloride channel protein (Contig6783_at) and un-
known proteins (Contig3508_at and Contig3508_s_at).
This network revealed a network connection to stress-
inducible secondary metabolites such as flavonoid, be-
cause chalcone synthase (Contig7356_at andContig7358_at),
chalcone isomerase (Contig9047_at and Contig9048_
at), 4-coumaroyl-CoA ligase (Contig4677_at), P450
(HVSCEb0006P14r2_at and HVSCEb0006O20r2_at),
and flavonoid glycosyltransferase (Contig11602_at) were
observed in this cluster. In this network, analysis showed
the candidates for transporter genes that are putatively
related to secondary metabolism, such as multidrug-
resistant-type transporter (HVSMEn0015M0015Mo1r2_
s_at) and H+-dependent transporter (Contig26311_at).
Other examples indicate a subcluster that showed a small
dense network with many genes encoding storage pro-
teins (Fig. 3B). The network in Figure 3B was correlated
with many storage protein genes. In this network, many
genes encoding storage proteins and related proteins,
such as a-b-g-hordein, hordoindoline, prolamine, avenin,
and a trypsin inhibitor, were observed. These proteins
were predicted to be transporters for storage protein, as
mentioned above, andwere highly expressed during seed
development and correlated with the genes hordein and
avenin. The tonoplast-located proteins aspartic protease
(Contig3144_at) and Cl2 channel protein (Contig7078_at)
were strongly connected to the storage protein cluster.
Again, we next performed gene expression tree analysis
using only the small cluster that was characterized
by “contains similarity to a tetracycline resistance
efflux protein” (Contig13913_at) and putative protein
phosphatase (Contig9964_at). The network showed a
correlation network with mugineic acid biosynthesis,
such as deoxymugineic acid synthase (Contig3519_
at and HVSMEa0014J15r2_x_at) and oxidoreductase
(Contig6722_at, Contig9968_at, Contig9968_at, Contig10877_
at,Contig11890_at, andHV_CEa0006E02r2_s_at; Fig. 3C).
In addition, this network also showed strong connec-
tion with many genes encoding transport-related pro-
tein, such as ATP-binding cassette (ABC) transporter
(Contig2625_at and Contig7226_at) and glutathione
S-transferase (Contig4137_at, Contig9632_at, HA03B19u_
s_at, and HVSMEa0014H14r2_s_at), because mugineic
acid is a phytosiderophore and a ligand compound that is
a metal chelator in graminaceous plants.

DISCUSSION

The process of homeostasis requires that the levels
of certain metabolite pools be maintained at near-
constant levels. One mechanism to achieve this is the
sequestration of metabolites into a relatively metabol-
ically inert environment such as the vacuole. Our
current knowledge of the vacuole comes largely from
studies of isolated vacuoles as well as cell biological
studies of exocytosis, endocytosis, and autophagy
(Phan et al., 2008; Liu et al., 2009). These approaches
have revealed a wide range of metabolites including
sugars, organic acids, amino acids as well as chloro-
phyll catabolites, glutathione conjugates, bile acids,
and sulfate conjugates (Martinoia et al., 2000; Farré
et al., 2001); however, until recently, this was rather
fragmentary. The application of the nonaqueous frac-
tionation method in potato tubers when coupled to
GC-MS analysis represented a first attempt to address
this more systematically (Farré et al., 2001). This has
been further refined by improvements in the resolu-
tion of the nonaqueous technique due to the ability
to assess ever-smaller sample volumes in addition
to the additional use of FT-ion cyclotron resonance
(ICR)-MS, which has a far greater mass accuracy and
thus potential for compound prediction. This combined
approachwas recently applied to Arabidopsis (Krueger
et al., 2011) and produced an unprecedented amount of
information concerning spatial resolution. Here, we
utilized both GC-MS and FT-ICR-MS but instead ap-
plied them to silicon oil-centrifuged vacuoles from
protoplast preparations of barley. Following this ap-
proach, we were able to detect some 259 metabolites
and to define that some 12 of them were preferentially
localized to the vacuole, 34 were preferentially local-
ized outside of the vacuole, and 52 were distributed
equally in the cell.

Primary metabolites generally displayed the parti-
tion that would be anticipated with organic acids and
sugars as well as a few amino acids clearly being
stored here. Of particular note are the high accumu-
lations of isocitrate, citrate, and aconitate as well as Glc
and Fru. That said, there were some clear exceptions
to that statement, with the organic acids fumarate and
2-oxoglutarate being essentially absent in the vacuole,
as were Suc and shikimate. Barley was additionally
characterized by the accumulation of His, Ala, Trp,
Met, and Ser in the vacuole; however, many of the
other amino acids preferentially accumulate outside
the vacuole. The pattern of organic acid partitioning
suggests that 2-oxoglutarate and fumarate do not
represent storage compounds in barley. In the case of
2-oxoglutarate, this is perhaps unsurprising given the
crucial role of this metabolite in nitrate assimilation
and the TCA cycle (Araújo et al., 2008, 2011). The fact
that fumarate appears not to be a storage metabolite
clearly contrasts with the situation in Arabidopsis,
where, like malate, it appears to play a crucial role as a
carbon store (Fahnenstich et al., 2007; Zell et al., 2010).
The difference between these species may well be
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Figure 3. Subclusters of coexpression network analysis to predict the functions of tonoplast-located proteins. Subclusters of the
frameworks of the coexpression network in Figure 2 indicated flavonoid- and phenylpropanoid-related biosynthesis (A), storage
protein (B), and mugineic acid biosynthesis (C). Genes (probe sets) are depicted as nodes, while significant coexpression
similarity between any two probe sets is represented by an edge. Probe sets corresponding to tonoplast-located proteins
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explained by the presence of a cytosolic fumarase
(Pracharoenwattana et al., 2010) and the fact that
fumarate is an important transport form of carbon in
Arabidopsis (Chia et al., 2000). The relative levels of
sugars is consistent with a very high vacuolar inver-
tase activity in barley, as has been described for other
species including potato, maize (Zea mays), carrot
(Daucus carota), and tobacco (Nicotiana tabacum; Büssis
et al., 1997; Tang et al., 1999; Trouverie et al., 2004;
Junker et al., 2006). Furthermore, it is consistent with
the presence of a large number of sugar-conjugated
secondary metabolites in this compartment.

Perhaps surprisingly, a large number of the second-
ary metabolites we detected were not found to be
preferentially accumulated in the vacuole; however,
there are some clear exceptions to this. Among the 49
peaks that were annotated, a chemical formula by
accurate m/z value, 26 of the secondary metabolites
were detected to be at higher abundance in the vacu-
ole. Characterization of the chemical composition of
secondary metabolites in barley has not been exten-
sively reported, although there are some publica-
tions concerning flavonoids (Norbaek et al., 2000;
Kaspar et al., 2010), sterol derivatives (Bush et al.,
1971; Konig and Seifert, 1998), and HODE (Hamberg
and Hamberg, 1996; Hübke et al., 2005). In our metab-
olite profiling by FT-MS with accurate m/z value for
chemical formula prediction, we confirmed a formula
for these compounds. All peaks we listed in Table II
except Phe and Trp were not observed in Arabidopsis
or tomato tissues, but similar peaks such as glycofla-
vone glycosides were detected in monocot plants such
as rice (Oryza sativa) and maize (Besson et al., 1985;
Snook et al., 1995). In our measurement of barley
secondary metabolites, 12 putative flavonoids, seven
putative HODE-related compounds, three cyclopenta-
neoctanoic acid-related compounds, and nine putative
sterol derivatives were annotated. The compounds in
each class displayed similar behavior; for example, all
flavonoids were higher in vacuole, whereas HODE-
related compounds and sterol-related compounds
were not detected in vacuole samples. The sterol-
related compounds are likely located at the tonoplast
membrane (Yoshida and Uemura, 1986). In addition,
the cycloartenol synthase protein (AAT38887 homo-
log, Contig11705_at; Supplemental Table S2), which is
involved in sterol biosynthesis, was previously iden-
tified as a “membrane fusion and remodeling protein”
(Endler et al., 2006).

In the case of dicot plants such as Arabidopsis
leaves, flavonol-O-glycoside, anthocyanin, and gluco-
sinolates have been identified as major secondary

metabolites (Tohge et al., 2005; Maruyama-Nakashita
et al., 2006; Hirai et al., 2007; Matsuda et al., 2009),
whereas other dicots such as Solanaceae species, in-
cluding tomato and tobacco, accumulate glycoalka-
loids, quinate derivatives, and acylated sugars (Moco
et al., 2006; Butelli et al., 2008; Iijima et al., 2008; Adato
et al., 2009). On the other hand, in leaves of monocot
plant species such as rice, maize, and barley, flavonol-
O-glycoside and flavonol-C-glycoside (glycoflavone)
are reported (Norbaek et al., 2000; Kaspar et al., 2010).
Typical flavonoids such as flavonol and anthocyanin
are transported to the vacuole after their conversion to
glycosides and in some cases acylates, either in ex-
change for protons or by direct energization by ABC
transporters. In Arabidopsis research, multidrug and
toxic compound extrusion-type transporter (Debeaujon
et al., 2001; Marinova et al., 2007) and the soluble
glutathione S-transferase proteins (Kitamura et al.,
2004, 2010) are characterized as key players of flavo-
noid transport into the vacuole. In maize, genetic
evidence was provided that ABC transporters are
implicated in anthocyanin transport (Goodman et al.,
2004). Based on this assumption, an integration anal-
ysis was performed utilizing coexpression analysis of
publicly available microarray data. Generally, coex-
pression analysis does not work well for transport-
related proteins, since the expression of genes encoding
transport-related proteins such as ABC transporters is
generally low, and they are not usually stress respon-
sive (Klein et al., 2006). Despite this, gene coexpression
analysis using data obtained for different develop-
mental stages has previously revealed that TT12 (a
multidrug and toxic compound extrusion transporter
for seed pigment proanthocyanidin in Arabidopsis)
was well correlated with enzymatic genes of proan-
thocyanidin metabolism, such as BAN leucocyanidin
leucopelargonidin (At1g61720) and laccase-like poly-
phenol oxidase (AtLAC15; At5g48100; Tohge and
Fernie, 2010). In the other example of transporters for
glucosinolate that accumulated in the vacuole of
Brassica species, BAT5 (At4g12030), which is required
for the biosynthesis of Met-derived glucosinolates,
was well correlated in the coexpression network anal-
ysis (Hirai et al., 2007; Gigolashvili et al., 2009). Our
trial of coexpression network analysis gave us many
hints that may aid in understanding of the vacuolar
transport system for flavonoid, storage proteins, and
mugineic acid. The case of flavonoid acts as a positive
control, given that this accumulation in the vacuole
was experimentally annotated in several plant species
(Song et al., 2010). Intriguingly, it also suggested a
transport system for phytosiderophores, and it would

Figure 3. (Continued.)
(depicted by blue nodes; Supplemental Figure S3) were used as queries for searching the coexpression networks (Supplemental
Table S2). Annotation of the probe sets and PageMan analysis of ontology terms can be found in Supplemental Table S2. CAD,
Cinnamoyl-alcohol dehydrogenase; GST, glutathione S-transferase; MDR, multidrug-resistant-type transporter; NAM, no apical
meristem; NUDT, nudix hydrolase homolog; PHS, propyzamide-hypersensitive protein; PPIK, phosphatidylinositol 3- and
4-kinase; SKIP, SKP-interacting partner; UGT, UDP-glycosyltransferase; VIP, vanabin-interacting protein.
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seem likely that such a system plays a role in metal
chelators under metal stress and nutrient-deficient
conditions. As we showed in Figures 2 and 3, some
metabolites that need to be transported into the vac-
uole revealed correlation in gene expression between
those genes involved in their biosynthesis and those
involved in their transport system. In this study, we
used barley as an example of the power of combining
data frommetabolite profiling, subcellular proteomics,
and in silico coexpression analysis in order to better
understand the storage metabolome. Using this ap-
proach, we were able to characterize the storage
metabolome of this species in spite of the fact that
the genome sequence of barley is not yet available.
In summary, the results presented here provide the

basis for a more comprehensive understanding of the
vacuolar systems of transport and metabolism. While
the partitioning of a number of these metabolites is in
keeping with what would be anticipated, we addi-
tionally provide information on a number of other
metabolites. That said, comparison between the barley
vacuole data presented here and that found in Arabi-
dopsis suggests that while many factors are con-
served between species, there are subtle differences
also. While it is possible that some of these differ-
ences are due to the different approaches used be-
tween the two studies, it would appear likely that the
vacuolar metabolome, like the cellular metabolome
(Fiehn, 2007; Krueger et al., 2011), is context depen-
dent. With this in mind, it will be highly interesting in
future studies to compare the storage metabolomes of
a broad range of tissues types and its dynamic re-
sponse to cellular circumstances, including exposure
to salt stress, drought, and conditions that induce
senescence.

MATERIALS AND METHODS

Plant Materials and Harvest

Barley (Hordeum vulgare var Baraka) was grown in vermiculite (Vermica) in

a controlled-environment chamber (16 h of light/8 h of dark, 300 mE m–2 s–1,

227�C, 60% relative humidity) and watered with Luwasa hydroculture nutri-

ent solution (Interhydro). The primary leaves were harvested between 8 and

9 AM as described by Rentsch and Martinoia (1991) and Endler et al. (2006).

Protoplast and Vacuole Isolation for Metabolomics

Barley protoplasts and vacuoles for metabolomics were isolated by a slight

modification of the procedure described by Rentsch and Martinoia (1991).

Briefly, for protoplast isolation, after digestion of the leaves, protoplasts were

collected by centrifugation at 1,200g for 10 min on a cushion constituted of

digestion medium (500 mM sorbitol, 1 mM CaCl2, and 10 mM MES-KOH, pH 6)

containing 30% Percoll (v/v). The supernatant was removed, the protoplasts

were mixed with the Percoll cushion, and additional osmotically dissolved

Percoll (digestion medium solved in Percoll) was added to give a final Percoll

concentration of about 40%. For the metabolomics of the protoplasts, the

protoplast solution was overlaid with medium C (500 mM sorbitol, 20%

Percoll, pH 6, 1 mM CaCl2, and 10 mM MES-KOH, pH 5.6) and medium D (500

mM betaine, 1 mM CaCl2, and 10 mM MES-KOH, pH 5.6). The volume used

depended on the quantity of protoplasts isolated. After centrifugation for 10

min at 1,200g, the protoplasts were recovered from the upper interphase. For

the metabolomic studies of protoplasts, 200 mL of a silicon oil mixture (AR200:

AR20, 8:2) was placed at the bottom of polyethylene microcentrifugation tubes

(400-mL capacity). Two milliliters of protoplasts was mixed with 2 mL of

medium D, and 200 mL of this mix was placed on the top of the silicon oil

mixture. Protoplasts were sedimented by a 2 3 20-s centrifugation at 10,000g.

The polyethylene tubes (50 per experiment) were frozen overnight. The

bottoms of the frozen tubes were cut with a razor blade and collected. One

milliliter of water was added and vortexed, and the aqueous fraction containing

a tiny amount of silicon oil but no tube tips was transferred in a fresh tube. The

mixture was centrifuged at 4,000g for 10 min. The water phase was removed,

lyophilized, and used for the metabolomic analysis.

For the vacuole isolation, protoplasts were purified using a similar gradi-

ent but replacing medium C by C# (400 mM sorbitol, 20% Percoll, pH 7.2, 30

mM KCl, 20 mM HEPES-KOH, pH 7.2, 0.1% bovine serum albumin, and 0.2 mM

dithiothreitol) and medium D by D# (400 mM betaine, 30 mM KCl, 20 mM

HEPES-KOH, pH 7.2, and 0.2 mM dithiothreitol). Vacuoles were released from

protoplasts by forcing the protoplasts through a syringe and purified by

flotation as described by Rentsch and Martinoia (1991). This procedure

occurred at 4�C. In order to get rid of the isolation medium, 30 mL of vacuoles

was added to 70 mL of a medium containing 22% Percoll, pH 7.2, 400 mM

sorbitol, 30 mM KCl, 20 mM HEPES-KOH, pH 7.2, 0.1% bovine serum albumin,

and 0.2 mM dithiothreitol. The samples were overlaid with 200 mL of silicone

oil AR200 and 60 mL of water. After mixing for 6 min, the vacuoles were

floated by centrifugation at 10,000g for 20 s. Tubes were frozen overnight, and

after defreezing, 45 mL of the aqueous solution from each tube (50–60 per

experiment) was recovered and pooled. The pooled fraction was lyophilized

and used for the metabolomic analysis.

Extraction for Metabolite Analysis

Lyophilized sample was homogenized using a ball mill precooled with

liquid nitrogen and extracted in 1,400 mL of methanol, and 60 mL of internal

standard (0.2 mg ribitol mL–1 water) was subsequently added as a quantifi-

cation standard. Samples were homogenized by the Retsch Muhle mixer mill

for 2 min at 25 L s–1. One thousand two hundred microliters of supernatant

after centrifugation at 14,000 rpm for 10 min was transferred to a glass vial.

After mixing with 750 mL of CHCl3, 1,500 mL of water was added and vortexed

for 15 s. After centrifugation for 15 min at 4,000 rpm, supernatant was taken

(50 and 100 mL for GC-MS analysis and 1,000 mL for LC-MS analysis) from the

upper polar phase into fresh Eppendorf tubes (also 2 mL). Sample dried by the

SpeedVac for at least 2 h without heating was used for metabolite analysis.

Derivatization and Analysis of Primary Metabolites

Using GC-MS

Metabolite extraction for GC-MS was performed by a method modified

from that described by Roessner-Tunali et al. (2003). The extraction, deriva-

tization, standard addition, and sample injection were exactly as described

previously (Lisec et al., 2006). Both chromatograms and mass spectra were

evaluated using either TAGFINDER (Luedemann et al., 2008) or the MAS-

SLAB program (ThermoQuest), and the resulting data were prepared and

presented as described (Roessner et al., 2001).

UPLC-FT-MS of Secondary Metabolites

UPLC separation of secondary metabolites was performed according to a

previously published protocol (Giavalisco et al., 2009) using a Waters Acquity

UPLC system. The UPLC apparatus was equipped with an HSS T3 C18

reverse-phase column (1003 2.1 mm i.d., 1.8-mm particle size; Waters), which

was operated at a temperature of 40�C. The mobile phases consisted of 0.1%

formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent

B). The flow rate of the mobile phase was 400 mL min–1, and 2 mL of sample

was loaded per injection. The following gradient profile was applied: after a

1-min isocratic run at 99% A, a linear 12-min gradient was applied to 65% A;

this was immediately followed by a 1.5-min gradient to 30% A before a 1-min

gradient to 1% A; then, a 1.5-min isocratic period at 1% A followed, before

switching back to 99% A to reequilibrate the column for 2.5 min, before the

next sample could be injected. The UPLC device was connected to the FT-ICR

apparatus via a TriVersa NanoMate (Advion). The UPLC flow rate at 400 mL

min–1 was split 1:1,000 with a T-valve (Advion). One-tenth of 1% (400 nL min–1)

was directly loaded to the FT-ICR-MS device, while 99.9% was discarded. The

sample was infused into the mass spectrometer via a nanospray chip (type A;
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Advion) by applying a voltage of 1.8 kV in the positive and 1.9 kV in the

negative ionization mode. Spray sensing was used between 1 and 17 min of

the UPLC gradient. The mass spectra were acquired using the LTQ FT-ICR-

Ultra mass spectrometer (Thermo-Fisher). The spectra were recorded using

full-scan mode, covering a mass range from m/z 100 to 1,500. Resolution was

set to 50,000, and maximum loading time for the ICR cell was set to 500 ms.

The transfer capillary temperature was set to 200�C, and the MS spectra were

recorded from 0 to 19 min of the UPLC gradient. Molecular masses, retention

times, and associated peak intensities were extracted from the raw files using

the RefinerMS software (version 5.3; GeneData). Peak prediction and anno-

tation in the data matrix by LC-MS was conducted by databases (for review,

see Tohge and Fernie, 2009) such as MASSBANK (Horai et al., 2010) and

KNApSAcK (Shinbo et al., 2006), based on accurate m/z analyzed by FT-MS.

Coexpression Analysis via Proteome Data

The coexpression network analysis of wheat (Triticum aestivum) was

performed by PlaNet (Mutwil et al., 2011) using Supplemental Table S2.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1.Global comparison of all detected compounds by

GC-MS and LC-MS in protoplast and vacuole.

Supplemental Figure S2. Probe identifiers of genes shown in the frame-

work of the coexpression network in Figure 2.

Supplemental Figure S3. Probe identifiers of genes shown in the frame-

work of the coexpression network in Figure 3.

Supplemental Table S1. Secondary metabolite-related peaks detected by

UPLC-FT-MS

Supplemental Table S2. The barley vacuole proteins used for coexpression

analysis.
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Araújo WL, Nunes-Nesi A, Trenkamp S, Bunik VI, Fernie AR (2008)

Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the

enzyme is limiting for respiration and confirms its importance in

nitrogen assimilation. Plant Physiol 148: 1782–1796

Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR,

Beale MH (2006) A metabolomic study of substantial equivalence of

field-grown genetically modified wheat. Plant Biotechnol J 4: 381–392

Besson E, Dellamonica G, Chopin J, Markham KR, Kim M, Koh HS,

Fukami H (1985) C-Glycosylflavones from Oryza sativa. Phytochemis-

try 24: 1061–1064

Boller T, Kende H (1979) Hydrolytic enzymes in the central vacuole of

plant cells. Plant Physiol 63: 1123–1132

Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for

hypothesis generation in plant biology. Plant Cell 21: 1034–1051

Bush PB, Grunwald C, Davis DL (1971) Changes in sterol composition

during greening of etiolated barley shoots. Plant Physiol 47: 745–749

Büssis D, Heineke D, Sonnewald U, Willmitzer L, Raschke K, Heldt HW

(1997) Solute accumulation and decreased photosynthesis in leaves of

potato plants expressing yeast-derived invertase either in the apoplast,

vacuole or cytosol. Planta 202: 126–136

Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG,

Hall RD, Bovy AG, Luo J, et al (2008) Enrichment of tomato fruit with

health-promoting anthocyanins by expression of select transcription

factors. Nat Biotechnol 26: 1301–1308

Cai SQ, Lashbrook CC (2006) Laser capture microdissection of plant cells

from tape-transferred paraffin sections promotes recovery of structur-

ally intact RNA for global gene profiling. Plant J 48: 628–637

Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie

AR (2003) Reduced expression of aconitase results in an enhanced rate

of photosynthesis and marked shifts in carbon partitioning in illumi-

nated leaves of wild species tomato. Plant Physiol 133: 1322–1335

Carter C, Pan SQ, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The

vegetative vacuole proteome of Arabidopsis thaliana reveals predicted

and unexpected proteins. Plant Cell 16: 3285–3303

Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J,

Hardy N, Smith A, King RD, Kell DB, et al (2005) Hierarchical

metabolomics demonstrates substantial compositional similarity be-

tween genetically modified and conventional potato crops. Proc Natl

Acad Sci USA 102: 14458–14462

Chia DW, Yoder TJ, Reiter WD, Gibson SI (2000) Fumaric acid: an

overlooked form of fixed carbon in Arabidopsis and other plant species.

Planta 211: 743–751

Cho YH, Yoo SD, Sheen J (2007) Glucose signaling through nuclear

hexokinase1 complex in Arabidopsis. Plant Signal Behav 2: 123–124

Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for

the CBF cold response pathway in configuring the low-temperature

metabolome of Arabidopsis. Proc Natl Acad Sci USA 101: 15243–15248
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Giavalisco P, Köhl K, Hummel J, Seiwert B, Willmitzer L (2009) 13C

isotope-labeled metabolomes allowing for improved compound anno-

tation and relative quantification in liquid chromatography-mass

spectrometry-based metabolomic research. Anal Chem 81: 6546–6551

Gigolashvili T, Yatusevich R, Rollwitz I, Humphry M, Gershenzon J,

Tohge et al.

1480 Plant Physiol. Vol. 157, 2011
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