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Abstract
Three-dimensional ultrasound can be an effective imaging modality for image-guided
interventions since it enables visualization of both the instruments and the tissue. For robotic
applications, its realtime frame rates create the potential for image-based instrument tracking and
servoing. These capabilities can enable improved instrument visualization, compensation for tissue
motion as well as surgical task automation. Continuum robots, whose shape comprises a smooth
curve along their length, are well suited for minimally invasive procedures. Existing techniques
for ultrasound tracking, however, are limited to straight, laparoscopic-type instruments and thus
are not applicable to continuum robot tracking. Toward the goal of developing tracking algorithms
for continuum robots, this paper presents a method for detecting a robot comprised of a single
constant curvature in a 3D ultrasound volume. Computational efficiency is achieved by
decomposing the six-dimensional circle estimation problem into two sequential three-dimensional
estimation problems. Simulation and experiment are used to evaluate the proposed method.

I. Introduction
Automated detection and tracking of robotic instruments is an important problem in
minimally invasive surgery. Procedures throughout the body (e.g., in the heart, brain and
kidneys) make substantial use of multiple imaging modalities to pre-operatively locate
surgical targets and to intra-operatively guide surgical tools. By automatically detecting and
tracking instruments in these images, it becomes possible to provide enhanced navigational
cues to the clinician in the form of image overlays or virtual fixtures. It also becomes
possible to employ image-based servoing to perform certain tasks of a procedure using
medical robotics.

Current medical imaging techniques include CT, PET, MRI, fluoroscopy and ultrasound,
etc, among which fluoroscopy and ultrasound are widely available realtime imaging
systems. While there has been recent progress in the realtime use of MRI [1], [2] to guide
robotic surgical procedures, such systems are currently not widely available. Concurrently,
however, realtime three-dimensional (3D) ultrasonography has become available for clinical
use and its availability is increasing owing to its advantages for interventional tasks [3], [4].
Compared with MRI or CT, ultrasound imaging has a number of advantages, including
affordability, portability, patient and clinician safety owing to its use of nonionizing
radiation and realtime 3D volumetric imaging of 20 frames per second. The main drawbacks
of ultrasonography in contrast to MR and CT imaging are a lower spatial resolution and
imaging artifacts.

With the increasing availability of realtime 3D ultrasound, a number of researchers have
begun to develop imaging algorithms for enhanced instrument navigation during
interventional procedures. For example, tracking algorithms have been developed for
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instruments consisting of a straight shaft for use in intracardiac surgery [5], [6], [7], liver
biopsies [8], prostate brachytherapy [9] and ex-vivo phantom experiments [10].

In addition to tracking handheld instruments, realtime 3D ultrasound also enables the
investigation of image-based servoing of minimally invasive surgical robots [11], [6]. In
general, only the straight tool shaft was present in the image in these studies. The tracking
algorithms were based predominantly on shaft shape and employed linear Principle
Component Analysis (PCA) [12], Hough transforms [10] or radon transform line detection
[6].

This body of work has assumed the use of laparoscopic-type instruments that consist of a
straight shaft. Many surgical robots, however, are continuum robots that curve along their
length. This includes robotic catheters [13], [14], robotic instrument sheaths [15], snake-like
robots [16] as well as concentric tube robots [17], [18]. While robot curvature is often
known in real time based on the kinematic model and sensors, algorithms for detecting and
tracking straight robots cannot be easily adapted to robots that curve along their length.

As an example, the schematic of Fig.1 depicts work by the authors in which a concentric
tube robot enters the heart through the vasculature under ultrasound guidance to perform
intracardiac repairs. The robot is comprised of a telescoping arrangement of tubes in which
each section is of approximately constant curvature [18]. While, currently, the robot is
controlled teleoperatively, a future goal is to perform some tasks using image-based
servoing under clinician supervision as indicated by the block diagram in the figure.

The contribution of this paper is to present a detection algorithm for robots of known
constant curvature. Detecting a single constant curvature is of practical value since, given
the limited field of view in ultrasound imaging, it is often only the distal curved section of
the robot that appears in the image. Furthermore, the detection algorithm proposed here
represents the first step toward our long-term goal of detecting and tracking robots of
varying curvature in real time.

The remainder of the paper is laid out as follows. Prior work related to tracking techniques
in robotic surgery and ultrasound-based instrument tracking are reviewed in the next section.
Section III presents the proposed algorithm for automatic detection of constant-curvature
robots in 3D ultrasound images. In Sections IV and V, the proposed approach is evaluated
using simulation and proof-of-concept experiments. Conclusions appear in the final section.

II. Related work
Multiple sensing modalities are available for tracking surgical instruments, such as optical
tracking (OPT), electromagnetic tracking (EMT), image-based tracking [6], ultrasonic
sensor tracking (UST) [19], mechanical tracking [20], [21], as well as some hybrid systems
integrating two or more modalities [22], [23]. A recent summary of tracking technologies
appears in [24].

Novotny et al [6] have classified the previous work for MIS instrument tracking into two
categories, imageless external tracking systems and image-based tracking. Imageless
external tracking systems generally only track the instrument modeled as a rigid body and
neglect any flexing that occurs during tool manipulation inside the body. In addition,
imageless tracking systems are not amenable to instrument servoing without employing
additional sensing to obtain the relative spatial relationship between the robot tool and the
tissue target.
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Since image-based tracking systems can track both the target tissue and manipulator from
the image simultaneously, they are well suited for automatic guidance of the surgical
manipulator to targeted locations on the tissue. Most of the work in this category has
focused on tracking needles, catheters or surgical grippers in 2D ultrasound images [25], and
recently on tracking the shaft of instruments [10], [12], [6], [8] using 3D ultrasound.

Previous instrument detection techniques using 2D ultrasound images cannot be directly
applied to the 3D curved robot detection problem. Furthermore, compared with 3D
instrument shaft detection, concentric tube robot detection is different due to both the
curvature of the robot and also due to practical limitations. In particular, it requires more
parameters to fully represent the geometry of the curved tubular structure. In addition, it is
difficult to employ fiducial markers, such as those proposed in [5], to a telescoping
arrangement of tubes [18]. To the best of our knowledge, this paper is the first to address the
curved robot detection problem using 3D ultrasound images.

Algorithms that have been previously employed for instrument detection from images
include the Hough transform [26], the Radon transform [6] and the RANSAC (RANdom
SAmple Consensus) algorithm [27]. These are all robust methods for detecting objects
described by parameterized models, even in the presence of outliers. There are also variants
of the standard Hough transform, such as the generalized Hough transform and the
randomized Hough transform [28], among others.

Briefly, the principle of the Hough transform is to map the pixels in image space to
parameter space, and then vote for the most likely parameter values by accumulating the
evidence in an array, which is termed the accumulator array [29]. At least six parameters
(equation (1)) are required to describe a curved robot in 3D space; even if it is simplified as
a constant curvature tubular structure. A 6D accumulator array over the parameter space
requires a large amount of memory and it is extremely computational intensive to identify
the global maxima in 6D space due to the presence of local maxima.

To reduce the complexity of the optimization problem to be solved, we employ 3D
volumetric preprocessing followed by a novel two-stage detection technique that reduces the
original six-parameter problem into a sequence of two three-parameter problems: Since the
constant-curvature arc lies in a plane, we first estimate a three-dimensional normal vector
from the origin to the plane. We then project the points onto the plane to estimate the center
of the arc and its radius in planar coordinates. This approach is extremely efficient in
comparison to the 6D accumulator array formulation and is also flexible in its
implementation.

III. Detection Algorithm
A gray-level ultrasonic volume image, V, is defined as an M × N × P matrix, where v(i, j, k)
represents the intensity of the voxel at the ith row, jth column, and kth slice, which
corresponds to the Cartesian coordinates of the ultrasound transducer system, as shown in
Fig. 2. Here, x represents increasing azimuth, y represents increasing elevation and z
indicates increasing distance from the transducer.

As shown in Fig. 2, a circle in Cartesian coordinates of a gray-level ultrasonic volume can
be parameterized with six variables, p = [x0, y0, z0, θ, ϕ, R], where X0 = (x0, y0, z0) defines
the center of the circle, (θ, ϕ) are the angular parameters describing the unit normal

 to the circular plane, and R is the radius of the circle. A
model for a circle c that employs parameters p can be written as the set of points X = (x, y, z)
that lie on the intersection of a sphere and a plane as given by,
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(1)

where β ∈ [0, π], γ ∈ [0, 2π].

As one of the key steps for curved robot tracking, the algorithm of this section addresses the
problem of constant-curvature arc detection, i.e., identifying p from V, based on the partial
arc imaged in the limited field-of-view ultrasound image. The following subsections address
the three parts of the estimation process. First, image preprocessing is used to remove the
effect of imaging artifacts. Subsequently, the estimation of p is performed in two parts. First,
the non-unit-length normal vector to the plane of the arc is estimated. The final subsection
describes the planar estimation of the center and radius of the arc.

A. Preprocessing
Given our goal of curved robot tracking based on volumetric frame streaming from the 3D
ultrasound imaging device, all steps in the detection algorithm should be automated and
adaptive to inhomogenity between frames. Image preprocessing is an extremely important
step given that ultrasound images are relatively noisy and since instruments produce
substantial imaging artifacts. To address these issues, we introduce a five-step pipeline for
segmenting a curved robot in any image with sufficient contrast between the robot and
background. Clinical examples exhibiting sufficient contrast include instruments inside
fluid-filled body lumens or embedded in tissue, e.g., needles. Each step is described below
and also is depicted in Figure 3.

1) Automatic thresholding—Manual global thresholding is only feasible when the
intensity contrast profile is static for all volumetric frames.

2) Median filtering—After the initial step of thresholding, we typically employ a 3D
median filter to remove the speckle noise and small isolated islands contained in the
thresholded image, which are not desirable for the subsequent target detection. Fig. 3(c)
shows the effect after median filtering, where each output voxel contains the median value
in the 3 × 3 × 3 windowing neighborhood around the corresponding pixel in the input 3D
array.

3) Connected component filter—In this step, the curved robot is assigned a label to
differentiate it from its surroundings. A connected component filter performs this task to
assign a unique label to all connected voxels. For this volumetric segmentation, a 6-
connected neighborhood is used in three-dimensional growing and the largest connected
component from the resulted multi-label image is taken as the curved robot, as shown in Fig.
3(d).

4) Morphological erosion—Imaging artifacts cause the apparent cross section of the
tube to be substantially larger than the actual diameter and to be noncircular. An erosion
filter is applied to trim the robot-labeled portion of the image using a 3D ball-shape structure
element with a radius of 2 voxels producing output such as is shown in Fig. 3(e).
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5) Skeletonization—The final step of the preprocessing pipeline utilizes a skeletonization
algorithm to reduce the 3D labeled structure from the previous step to a curve while
preserving its topology [30]. There are many algorithms available for curve-skeleton or
centerline construction. Considering computational efficiency, we adopt a parameter-
controlled skeletonization based on the distance transform, DTv:

(2)

where dist is the distance from the current voxel v(x, y, z) to any voxel (i, j, k) on the set of
boundary voxels.

By comparing the distance transform, DTv and the mean of DTv, we can determine if a voxel
belongs to the skeleton where the density of the skeleton is controlled by a Thinning
Parameter (TP),

(3)

The result of the preprocessing is a skeleton of the robot tube as shown in Fig. 3 and the
corresponding skeleton voxels in Cartesian coordinates are represented by

(4)

Circle detection is now implemented on the skeletonized image by decoupling the six-
parameter estimation problem into two three-parameter problems. As described below, the
normal vector  to the plane containing the circle is first estimated. Then, all points
determined to lie in the estimated plane are projected into it for estimation of the radius and
center of the planar circle. Finally, the 2D center coordinates are transformed back to obtain
the spatial center {x0, y0, z0}.

B. Plane Detection
Despite preprocessing, the skeleton voxels contain outliers that do not describe the
instrument arc. Thus, a robust algorithm is needed to estimate the plane of the arc from the
skeleton point cloud. A RANSAC algorithm is adopted for this purpose since it can provide
good parameter estimates despite a large number of outliers [27]. Furthermore, RANSAC
has recently been successfully applied to the localization of straight instrument shafts in 3D
ultrasound [27]. The input of our RANSAC plane detector is a set of points, Xs,
corresponding to the skeleton points derived from image preprocessing. The outputs of the
algorithm are the normal vector to the plane of the arc, , and the subset of X – s that are
considered inliers to the detected plane.

Since the RANSAC algorithm is well described in the literature [27] , only a brief
description is provided here. The algorithm starts by randomly selecting three points from Xs
to calculate the plane parameters. Next, the remaining points in Xs are evaluated for
membership in the calculated plane according to a distance threshold. These steps are
repeated a fixed number of times to determine the best model fit among all sets of calculated
parameters.

C. Circular parameter estimation
Once the plane normal direction and inliers are estimated, the inliers can be projected onto a
plane perpendicular to  for estimation of the resulting planar circle parameters. Many
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robust planar circle estimation techniques can be employed here including the Hough
transform or RANSAC. We adopt the algorithm proposed in [31] to estimate the circle
center and radius. The algorithm minimizes the “approximate mean square distance” metric
[31] from data points to a curve defined by implicit equations by solving a generalized
eigenvector problem. This approach is fast in comparison with a geometric fit and can
provide accurate results even when only a small arc of the circle appears in the image.

IV. Simulation
While our detection algorithm is based on circle parameter estimation, it is often the case
that only an arc of the circle is present in the image volume. This occurs not only because of
the limited field of view of the ultrasound probe, but also due to the piecewise constant
curvature shape of the robot. (Recall Fig. 1.) It can be expected that the estimated
parameters of the circle will be less accurate as the central angle of the imaged arc decreases
and as image noise increases.

Simulation was employed to evaluate the effect of central angle and image noise on the
detection algorithm. This allows us to characterize best-case performance before considering
the effects of ultrasound imaging artifacts. Synthetic volumetric images were generated

using the following variation of (1) in which  represents the null space of

 are an orthogonal vector pair and α is the central angle parameter of a
circular sector.

(5)

Volumetric data sets were produced by first using sampled values of α ∈ [αmin, αmax] in (5)
to obtain a set of Cartesian points. Zero mean Gaussian noise with variance σ2 was added to
the sampled points and the point coordinates were then rounded to the Cartesian coordinates
of the imaging volume. Finally, the intensity of these coordinates was set to the maximum
value in the image space.

Three metrics were defined to evaluate the detection algorithm. These are the radius
estimation error, ∈R, the normal vector misalignment, , and the center estimation error, ∈0,
as defined below.

(6)

(7)

(8)

Here, estimated parameters are labeled by , | · | takes the absolute value, and || · || represents
the norm of a vector.
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As an example, a ground truth circle was defined by its center, X0 = [10, 10, 10], normal
vector, , and radius R = 10. Figure 4 shows the estimation result for a
specific image volume corresponding to a quarter circle and noise standard deviation of σ =
0.5. The error metrics for the depicted case are ∈R(90°, 0.5) = 0.26, 
degrees, and ∈0(90°, 0.5) = 0.83.

The error metrics were evaluated for eight central angle values and nine values of Gaussian
noise standard deviation. The standard deviation of the simplified Gaussian noise was taken
to be a fraction of R/10. The results appear in Table I. The lower left corner of the table
corresponds to the best estimation conditions of a large central angle and a small noise
standard deviation while the upper right corner represents short arcs and high noise. It can

be observed that the error metrics become large for α = 45° and . Therefore, in
practical applications, we should attempt to ensure that the central angle of the visible
portion of the curved instrument in the 3D ultrasound image is at least 45° and σ should be
less than 3.3% of the radius.

V. Experiments
Experiments were performed in a water tank as shown in Fig. 5. Three dimensional
ultrasound images were acquired using a Philips SONOS 7500 (www.philips.com) with an
X4 probe. The probe was mounted as shown in a linear stage while a piecewise constant
curvature rod was submerged and mounted on a rotary stage. By adjusting the linear and
rotary stages, the position and orientation of the instrument with respect to the probe can be
controlled. The bottom of the tank was lined with a rubber pad to reduce reverberation.

The curved instrument rod was fabricated from a photopolymer by 3D printing to ensure
accurate control of curvature. As shown, its distal region had a radius of curvature of R1 =
30 mm and a central angle of α = 180°. Its proximal length was straight (R2 = ∞). The rod
diameter was 2 mm.

Standard settings of the imaging parameters were used during image generation, including
50% overall gain, 50% compression rate, frequency fusion mode 2, high density scan line
spacing, 9 cm image depth, and zero dB power level.

The 3D ultrasound image volumes can either be recorded to a CD or streamed to a computer
for further processing. The streaming module was implemented in C++ and the detection
algorithm was coded in MATLAB (MathWorks, Natick, MA).

Three types of experiments were performed to evaluate the proposed detection algorithm.
First, the preprocessing pipeline was tested by comparing it with manual segmentation.
Next, the parameter estimation method was tested by generating a linear probe motion with
respect to the instrument rod and evaluating the error in the estimated instrument path.
Finally, ex vivo validation was performed by submerging a porcine heart in the water tank
and placing the curved portion of the instrument inside the right atrium. Each set of
experiments is described below.

A. Preprocessing algorithm
To evaluate the preprocessing pipeline of curved instrument segmentation, we performed a
comparison of ten automatically labeled instruments with those that were labeled manually.
The volumetric overlap metric (Dice metric, defined as twice the intersection of two
volumes over the combined set) was used to evaluate the comparison,
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(9)

where A and B are the instrument volumes labeled automatically and manually, respectively,
and |·| computes the number of voxels. The results of the ten comparisons are plotted in
Figure 6. With an average Dice value greater than 0.91, the proposed preprocessing
algorithm is capable of sufficiently accurate segmentation to enable robust parameter
estimation using the techniques described in the following sections.

B. Parameter Estimation
In this experiment, the instrument rod was fixed in position and the probe was translated
with respect to it back and forth in the x direction using the linear stage shown in Fig. 5. Ten
independent experiments were conducted to examine the trajectory estimation performance.
The probe mounted on the translational stage was moved in a step size of 0.5 mm for each
volume sample. The resolution of the translation stage is 0.01 mm. Registration was
performed by aligning the base frames of the translation stage and ultrasound transducer,
and calculating the translation offset by sampling the paired points.

A typical detection example is shown in Fig. 7 and the estimated path of the circle's center is
plotted in Fig. 8. The average values of the error metrics for this path were ∈R = 2.3 ± 1.5
mm,  degrees, and ∈0 = 2.1 ± 1.1 mm.

C. Ex vivo imaging
It is more difficult to visualize instruments inserted inside the body rather than in a water
tank. To determine if the proposed algorithm is applicable to a clinical situation, a porcine
heart was submerged in the water tank and the curved instrument was inserted inside the left
atrium. Since tissue and instruments have substantially different acoustic impedance values,
it is possible to tune the acquisition parameters of the ultrasound system for each. In
particular, by reducing the power level, the acoustic reflections from the tissue are
substantially reduced while those of the instrument remain sufficient for imaging. This effect
is demonstrated in Fig. 9. The estimated instrument curve is also shown.

VI. Conclusions and future work
This paper investigates the problem of automatic curved robot detection from realtime 3D
ultrasound images, and represents our first step toward achieving realtime tracking and
image-based servoing of continuum robots. Our proposed algorithm includes a
preprocessing pipeline for automatically extracting the curved robot from ultrasound
volumetric images. It then applies a novel two-stage approach to decompose the six
parameter curve estimation problem into a sequence of two three-parameter problems.
Efficacy of the algorithm was demonstrated through simulation and experiment.

The current algorithm is limited to detection of a single segment of constant curvature at the
distal end of the robot. While this is directly applicable to many clinical situations given the
limited field of view of 3D ultrasound systems, our goal is to extend the approach to
multiple connected segments of constant curvature. Since both the RANSAC plane detector
and subsequent circular parameter estimator are parallelizable algorithms, we plan to
develop a real-time tracking method using GPU (Graphical Processing Unit) computing and
by taking advantage of the known kinematic trajectory as prior information in the estimation
process.
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Fig. 1.
Schematic block diagram of proposed 3D ultrasound image servoing of a concentric tube
robot inside the heart.
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Fig. 2.
Ultrasound coordinate system and arc parameters.
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Fig. 3.
Preprocessing pipeline for volumetric images using Maximum Intensity Projection (MIP)
for visualization. (a) raw image, (b) thresholding, (c) island removal, (d) connected
component region growing, (e) morphological erosion and (f) parameter controlled
skeletonization.
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Fig. 4.
Circle estimation example using simulated data for a 90° arc and σ = 0.5. The estimated
normal and complete circle are shown.
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Fig. 5.
Water tank experimental design. (a) Photograph, (b) Curved instrument parameters.
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Fig. 6.
Plot of Dice (volumetric overlap) metric comparing preprocessing algorithm and manual
labeling for ten ultrasound images.
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Fig. 7.
Parameter estimation example. (a) Ultrasound image as acquired. (b) Detection algorithm
output including skeleton data set, estimated circle and center.
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Fig. 8.
Actual and estimated instrument path corresponding to probe motion along its x axis. Units
are in mm.
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Fig. 9.
Images of the instrument inserted inside a porcine heart. (a) Tissue optimized image. (b)
Instrument optimized image. The instrument appears as indicated by the arrow. (c)
Estimated circle.

Ren et al. Page 19

Rep U S. Author manuscript; available in PMC 2012 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ren et al. Page 20

TA
B

LE
 I

C
irc

le
 e

st
im

at
io

n 
er

ro
r m

et
ric

s a
s f

un
ct

io
ns

 o
f i

nc
lu

de
d 

an
gl

e,
 α

, a
nd

 G
au

ss
ia

n 
no

is
e 

st
an

da
rd

 d
ev

ia
tio

n,
 σ

.

σ (×
R 10
)

0.
11

0.
22

0.
33

0.
44

0.
55

0.
66

0.
77

0.
88

1.
0

α(
de

g)
ε

45
°

ε R
0.

26
0.

09
3.

07
5.

59
1.

82
0.

34
0.

38
2.

62
11

.1
5

ε o
0.

85
3.

17
7.

52
10

.1
4

2.
46

8.
02

4.
60

2.
86

18
.1

6

∊ n→
4.

62
18

.6
2

35
.6

2
40

.2
3

10
.4

0
49

.8
9

28
.5

7
12

.6
8

59
.4

5

90
°

ε R
0.

00
0.

02
0.

22
0.

07
0.

17
0.

54
0.

36
0.

42
1.

18

ε o
0.

24
0.

09
1.

50
0.

53
1.

06
0.

67
0.

66
0.

47
3.

64

∊ n→
1.

41
0.

48
9.

20
3.

12
6.

72
1.

24
3.

68
3.

06
20

.3
9

13
5°

ε R
0.

03
0.

00
0.

08
0.

05
0.

05
0.

11
0.

15
0.

04
0.

31

ε o
0.

04
0.

10
0.

16
0.

31
0.

19
0.

23
0.

65
0.

36
0.

65

∊ n→
0.

08
0.

77
1.

08
2.

52
1.

41
1.

71
4.

42
3.

08
3.

52

18
0°

ε R
0.

01
0.

03
0.

01
0.

03
0.

04
0.

06
0.

09
0.

07
0.

05

ε o
0.

04
0.

08
0.

02
0.

19
0.

12
0.

11
0.

13
0.

84
0.

13

∊ n→
0.

22
0.

56
0.

06
1.

68
0.

78
1.

16
1.

76
7.

46
2.

44

22
5°

ε R
0.

00
0.

00
0.

01
0.

03
0.

04
0.

03
0.

01
0.

05
0.

07

ε o
0.

01
0.

01
0.

03
0.

04
0.

04
0.

05
0.

03
0.

11
0.

17

∊ n→
0.

05
0.

26
0.

19
0.

38
0.

77
0.

68
0.

49
1.

46
2.

59

27
0°

ε R
0.

00
0.

01
0.

01
0.

00
0.

01
0.

00
0.

01
0.

02
0.

04

ε o
0.

01
0.

03
0.

01
0.

04
0.

05
0.

06
0.

10
0.

08
0.

13

∊ n→
0.

08
0.

46
0.

05
0.

29
0.

78
0.

37
1.

50
0.

88
2.

14

31
5°

ε R
0.

00
0.

00
0.

00
0.

01
0.

02
0.

02
0.

03
0.

07
0.

05

ε o
0.

01
0.

01
0.

00
0.

03
0.

05
0.

04
0.

06
0.

06
0.

07

Rep U S. Author manuscript; available in PMC 2012 September 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ren et al. Page 21

σ (×
R 10
)

0.
11

0.
22

0.
33

0.
44

0.
55

0.
66

0.
77

0.
88

1.
0

α(
de

g)
ε ∊ n→

0.
02

0.
03

0.
57

0.
47

1.
37

0.
44

0.
48

0.
19

2.
78

36
0°

ε R
0.

00
0.

01
0.

01
0.

02
0.

01
0.

00
0.

01
0.

01
0.

00

ε o
0.

00
0.

01
0.

02
0.

03
0.

02
0.

05
0.

01
0.

09
0.

05

∊ n→
0.

02
0.

10
0.

76
0.

58
0.

74
0.

48
1.

51
0.

40
0.

17

Rep U S. Author manuscript; available in PMC 2012 September 25.


