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Supercoiled Minivector DNA resists shear forces associated
with gene therapy delivery

DJ Catanese Jr1,2,3, JM Fogg1,2,3, DE Schrock II1,4, BE Gilbert1 and L Zechiedrich1,2,3,4

Supercoiled DNAs varying from 281 to 5302 bp were subjected to shear forces generated by aerosolization or sonication. DNA
shearing strongly correlated with length. Typical sized plasmids (X3000 bp) degraded rapidly. DNAs 2000–3000 bp persisted
B10 min. Even in the absence of condensing agents, supercoiled DNA o1200 bp survived nebulization, and increased forces
of sonication were necessary to shear it. Circular vectors were considerably more resistant to shearing than linear vectors of the
same length. DNA supercoiling afforded additional protection. These results show the potential of shear-resistant Minivector
DNAs to overcome one of the major challenges associated with gene therapy delivery.
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INTRODUCTION

There are currently many challenges to gene therapy and most involve
hurdles with nucleic acid delivery. Although viruses are highly effective
and deliver high doses, they can trigger immunological and inflam-
matory responses and can potentially misregulate endogenous genes.
Such responses may result in disease or even death.1–4 Because of these
problems, effort has been expended toward the development of
effective non-viral vectors.5 Plasmid DNA vectors are relatively inex-
pensive, easy to make and store, and have tremendous design capacity.
A shortcoming of plasmids is their size (typically 44000 base
pairs (bp)), which makes them highly susceptible to shear-induced
degradation.6,7

Another important challenge of gene therapy is targeting the vector
to the diseased organ. The lungs are amenable to gene therapy because
they are accessible through the nose and mouth. Nebulization to create
an aerosol is routinely used to deliver drugs for the treatment of lung
diseases. Although toxicity is lessened when plasmid DNA is delivered
by aerosol compared with systemic delivery,8,9 plasmid DNA still
cannot be delivered by this method because of extensive degrada-
tion.10,11 DNA degradation during nebulization is thought to mainly
occur because of hydrodynamic shear,12 which is the force exerted on
the DNA by the rapid flow of the solvent.

DNA degradation by hydrodynamic shear was first studied over 50
years ago by forcing bacteriophage DNA through a hypodermic
needle.13 Although several studies since have attempted to determine
the mechanisms behind DNA shearing, it is still not fully understood
what causes the DNA to degrade.7 Many vehicle systems have been
developed to try to protect fragile plasmid vectors (or synthetic small
interfering RNA) from delivery-associated shear forces. The cationic
agents, polyethylenimine, polylysine, polyamines, and liposomes act to
condense and shield the DNA. They protect the DNA from shearing
by reducing the hydrodynamic diameter of the molecule.12,14

However, these vehicles are highly cytotoxic and pro-inflamma-
tory,15,16 and only partially alleviate DNA shearing.17,18

For the few cases in which the effect of DNA size has been studied,
shear force resistance is inversely correlated with DNA length;
13 000 bp plasmids were more resistant to shearing than 20 000 or
29 000 bp plasmids measured in a rotary disk shearing device6 and
9800 bp plasmids sheared three times more rapidly than 5000 bp
plasmids in a jet nebulizer.12 It is reasonable to extrapolate that shorter
DNA vectors should be less vulnerable to shearing, but this idea could
not be tested previously because it was not possible to generate shorter
circular DNA (o2000 bp) in sufficient quantities to do the experi-
ments. Because of the need for a bacterial origin of replication and a
selectable marker, thousands of bp are required for the propagation
of plasmids.5 Deleting such sequences, through site-specific recombi-
nation, results in DNA vectors that are less toxic and less likely to
be silenced than plasmids.19,20 Still thousands of bp in length,
however, these ‘Minicircles’ remain highly susceptible to shear-
induced degradation.

A potential way to make smaller DNA vectors is to ligate linear
DNAs in vitro. Depending on sequence, shortening DNA makes it
increasingly difficult to bend into a circle because of inherent
rigidity.21–23 Thus, obtaining reasonable quantities of circles less
than 1000 bp is difficult; microgram quantities were previously the
best achievable yields.24 Manipulating DNA supercoiling through
topoisomerase mutations and using site-specific recombination in
Escherichia coli, we generate Minivectors as small as B250 bp in
milligram quantities.25,26 Nearly devoid of bacterial sequences, Mini-
vectors can be used to express short hairpin RNA (shRNA), micro-
RNA (miRNA) or genes in various cell types, including cells that are
refractory to plasmid transfection.26 In this paper, we use Minivectors
to determine the role of DNA length, circularity, and supercoiling on
shear force resistance. We find that extrapolation from the previous
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data would not have predicted the behavior of very small, supercoiled
circles when subjected to shear forces.

RESULTS

Shearing as a function of DNA length
There are multiple ways to generate hydrodynamic shear: passage
through a narrow gauge needle, circulation through high-performance
liquid chromatography tubing, nebulization, and sonication.27 We
used nebulization because it is both highly reproducible and clinically
relevant. In a Collison-like jet nebulizer,28 it is far easier to collect
samples from the reservoir, and DNA degradation was identical when
sampled from the aerosol or the reservoir (Supplementary Figure 1).
For the experiments described below, therefore, we sampled from the
reservoir.

Supercoiled DNAs varying from 281 to 5302 bp (Table 1) were
subjected to nebulization and their survival was analyzed by gel
electrophoresis (Figure 1). The extent of DNA shearing was quantified
by measuring the disappearance of intact DNA vector over time. The
ability to withstand shear forces in the nebulizer was, in general,
inversely correlated with DNA length. Supercoiled DNA vectors
42600 bp, the size range of DNA vectors used previously for delivery,
fragmented completely and rapidly and displayed pseudo-exponential
decay (Figure 1b). The sigmoid shape of the decay curves for super-
coiled DNA vectors between 1580 and 2232 bp showed an initial
resistance to shearing followed by degradation (Figure 1b), a very
different behavior from that of the larger vectors. In common, all
DNA vectors sheared into fragments that ranged from 200 to 1000 bp
(Figure 1a). Supercoiled Minivectors p 1243 bp slightly concentrated
with time in the nebulizer because of evaporation (Figure 1b). To
address whether changing DNA concentrations could affect shear force
survival, solutions of 1873 bp plasmid ranging from 1 to 10mg ml�1

were nebulized. The decay kinetics were identical at all concentrations
(data not shown).

To facilitate comparisons among the differently sized DNA vectors,
we introduce a term, Survival50, which is the time at which 50% of
intact vectors remain. Nebulization Survival50 as a function of DNA
vector length is shown (Figure 1c). Comparing the data in this way
revealed important and unexpected results. First, Survival50 did not
depend monotonically on DNA length, but instead exhibited a thresh-
old-like behavior as defined by the asymptote. Below this threshold,
which may reflect a critical hydrodynamic diameter, DNA vectors did
not appreciably shear. Second, Minivectors survived better than
plasmids of the same length.

There are several differences between plasmids and Minivectors.
Plasmids contain origins of replication and genes encoding antibiotic
resistance; Minivectors contain attR.25 In addition, different bacterial
strains are used for the propagation of plasmids and Minivectors.25,26

As a consequence, Minivectors have increased supercoiling
(sB�0.09 compared with sB�0.075 for plasmids29), which should
further decrease their hydrodynamic diameter, and this may explain
their increased protection from shear forces. To address the potential
effect of increased supercoiling, we propagated a plasmid or a
Minivector of the same length in LZ54,30 the bacterial strain used to
generate Minivectors. The 1711 bp plasmid, pDJC1, propagated in
LZ54 persisted as long as the 1714 bp Minivector (Figure 1c, compare
open circle with closed circle, arrow). Plasmid pQR499 (1873 bp)
isolated from LZ54 also persisted longer than when it had been
propagated in DH5a (Figure 1c, arrow). Increased supercoiling,
therefore, and not differences in sequence between plasmids and
Minivectors, accounted for the increased shear resistance.

The advantages of reducing vector size were even more pronounced
when Survival90, the time at which 90% of vectors remained, was

Table 1 DNA vectors used in this study

Length (bp) DNA vector Encodesa Nebulization Survival50 (min) Sonication Survival50 (min) Reference or source

281 mv281 — 430 ND 25

336 mv336 — ND 96.13±2.95 This study

383 mv-H1-GFPshRNA shRNA to eGFP 430 ND 26

562 Dimer of mv281 — 430 ND 25

672 Dimer of mv336 — 430 21.86±3.68 This study

985 mv-H1-miR31 Human miR-31 430 ND This study

999 mv999 — ND 5.98±1.46 25

1109 mv-KB4TAL-GLuc Gaussia luciferase 430 ND This study, Nanolight Technology

1243 mv-KB4TAL-mCherry mCherry 430 3.73±0.55 This study53

1580 mv-CMV-GLuc Gaussia luciferase 32.3±3.1 1.77±0.69 This study, Nanolight Technology

1711 pDJC1 — 21.6±3.2

28.2±3.4b

ND This study

1714 mv-CMV-mCherry mCherry 27.5±2.3 ND This study53

1873 pQR499 — 22.0±1.1

24.4±1.3b

0.85±0.10 54

2067 pINV2067 — 19.1±0.2 ND Invitrogen supercoiled DNA ladder

2232 pAO — 16.6±3.5 ND 55

2679 mv-CMV-Luc2 Firefly luciferase 9.6±1.5 ND This study, Promega

2686 pUC18 — 10.8±1.4 ND Novagen Inc.

3000 pBLUESCRIPT — 6.1±0.1 ND Stratagene

3459 pJB3.5i attB, attP 3.4±0.9 ND 56

3869 pMC339-BbvCI attB, attP 4.0±0.5 0.17±0.04 25

5302 pCR2.1-norE norE 1.5±0.1 ND This study

Abbreviations: eGFP, enhanced green fluorescent protein; miR, microRNA; ND, not determined; shRNA, short hairpin RNA.
aAll Minivectors contain attR;25 all plasmids encode bla.
bPropagated in LZ54.
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considered (Figure 1c, inset). Below 3000 bp, there was a very steep
inverse correlation between DNA length and Survival90 values. For
DNA vectors o2000 bp, Survival90 values were longer than 10 min, as
a result of the initial resistance to shearing and as seen by the
sigmoidal decay. Considering various percentages of DNA vector
survival might be useful for calculating the relative benefits and
risks of using a particular DNA vector length (Supplementary Table 1).

Effect of DNA circularity and supercoiling on shear force resistance
To better understand the contribution of DNA supercoiling to shear
force resistance, we compared linear, nicked and relaxed forms of the
vectors (Figure 2). Half of the negatively supercoiled 1873 bp plasmid,
pQR499, survived 22 min, longer than either the relaxed, open-
circular (17.5 min) or nicked (17.2 min) forms of the vector. The
nearly identical Survival50 values of the nicked and relaxed plasmids
revealed, somewhat unexpectedly, that a single-strand break does not
significantly weaken this vector during nebulization. Circularity
had a bigger impact on Survival50 than supercoiling did; half of the
linear form of the 1873 bp DNA was sheared in B4 min. The fragility

of linear DNA during nebulization was the same whether the ends
were blunt, had 2-base 3¢-overhangs or had 4-base 5¢-overhangs (data
not shown); therefore, the nature of the ends did not affect DNA
shearing.

Because shorter vectors completely survived nebulization, we used
sonication to determine how supercoiling affected their shearing. Like
nebulization, sonication also generates highly reproducible shear
forces, but these forces can be much greater and can be generated
for longer periods of time. The difference in the shear force magnitude
is exemplified by the differences in Survival50 values between the
supercoiled 3869 bp plasmid (sonication Survival50¼0.17 min and
nebulization Survival50¼4 min) and the 1873 bp plasmid (sonication
Survival50¼0.85 min and nebulization Survival50¼22 min). Despite
the difference in shear force magnitude, the two methods for shearing
yielded the same general result—a strong correlation of DNA vector
length and shearing (Figure 3). For example, the 3869 bp plasmid
was sheared 4500 times more rapidly (Survival50¼0.17 min) than a
vector approximately one-tenth that length, the 336 bp Minivector
(Survival50¼96 min).

Figure 1 DNA survival during nebulization as a function of DNA length. (a) Representative gels of DNA vectors subjected to nebulization as sampled from

the reservoir. (b) Graphical representation of DNA shearing as a function of length (averaged for at least three separate experiments). The curves represent

the fit to a sigmoidal function (Supplementary Table 1). Minivectors p1243 bp were not fitted because after 30 min the intact DNA did not decrease.

Nebulization survival times were determined for each DNA vector. (c) The time at which 50% of the vector survived (Survival50). Each Survival50 value is the

mean from at least three separate experiments. Error bars represent the standard deviation. The arrows denote Survival50 of the two plasmids, pDJC1 and

pQR499, that were propagated in LZ54. Minivectors are represented by open circles and plasmids are shown as closed circles. The inset shows Survival90

values, which is the time at which 90% of vectors remained.

DNA shearing
DJ Catanese Jr et al

96

Gene Therapy



It was impossible to distinguish Survival50 by sonication for the
circular forms of the 1873 bp plasmid, which were all about a minute,
but the value for the linear form was only 0.2 min. Although the DNA
vectors could be subjected to sonication much longer than they could
to nebulization, sonicating DNA for more than 90 min is impractical.
Therefore, to determine how DNA supercoiling affected shear force
survival required a balance between a Minivector large enough for
differences to be detected and small enough for those differences to be
separated. A 999 bp Minivector fit these criteria. Like the 1873 bp
plasmid sheared by nebulization, this Minivector sheared according to
its topology; linear sheared with a sonication Survival50¼0.8 min,
nicked¼3.8 min, relaxed¼4.6 min and supercoiled¼6 min.

With regard to shear force resistance, circularity is the most
important property of a DNA vector for protection. This protection
is B4- to 6-fold when comparing the nicked/relaxed and linear forms
of each vector (Figure 2). Supercoiling provides additional protection
from shear forces. The supercoiled 999 and 1873 bp DNA vectors
persisted 58 and 28% longer, respectively, than their nicked counter-
parts (Figure 2).

DISCUSSION

Model for DNA shearing
Early studies of DNA shearing showed that the hydrodynamic shear
force exerted on a DNA molecule increases with the square of
the hydrodynamic diameter (the length-dependent diameter of the
DNA molecule in the fluid stream).12,31 Our data are consistent with
this relationship. Circularity, decreasing length and increasing super-
coiling, properties that we find to protect DNA vectors from shearing,
should all reduce hydrodynamic diameter. Intuitively, the hydrody-
namic diameter of a circular DNA vector should be approximately half
the length of the linear form,7 and this idea is supported by experi-
mental data.32 Our findings that the 1873 bp linear DNA sheared as
rapidly as the 3869 bp supercoiled plasmid and that the linear 999 bp
DNA sheared comparably to a plasmid roughly twice its length is
consistent with this concept. In addition, our observation that super-
coiling affords additional protection is supported by the increased
survival of supercoiled DNA vectors compared with the nicked or
relaxed forms of the same length.

Because smaller DNA vectors experience less force, they survive
longer, but what finally makes them break? If single-stranded breaks
were generated, we would expect to see a transient appearance of
nicked intermediate as supercoiled DNA is sheared. Nicked DNA,
however, was not observed during shearing of the supercoiled vectors,
indicating that shearing generates primarily double-stranded breaks.
The absence of any full-length linear degradation products indicates
that following the initial double-strand break, additional breaks occur
in rapid succession, consistent with the extremely rapid conversion of
linear vectors to smaller fragments.

The pronounced lag observed before the smaller DNA vectors
degraded indicates that the shear forces in the nebulizer must not
initially be harsh enough to break these smaller vectors, and that the
continuous re-circulation of the DNA vectors may stretch or contort
them into a conformation that is then more susceptible to shearing.
There are two proposed competing effects of DNA supercoiling on
shear survival: torsional strain, which might make the molecule more
susceptible to shearing, and DNA compaction, which should make the
molecule more resistant to shearing.7 Although our data clearly show
that the beneficial effect of compaction is the dominant effect,
torsional stress-induced deformation of DNA33–35 may contribute to
the eventual shearing of the vectors, thereby counteracting the
protective effect of supercoiling-mediated DNA compaction. As the

Figure 2 Effect of DNA topology on DNA survival. (a) How topology of plasmid DNA (1873bp) influences its survival during nebulization. The fraction of

DNA vector of each topology over time (averaged from at least three experiments) is shown. The curves are shown fitted to a sigmodial function. (b) How

topology of Minivectors (999 bp) influences its survival during sonication. The fraction of DNA was quantified the same as in (a).

Figure 3 DNA survival during sonication as a function of DNA length.

Because more force was necessary to degrade the smaller Minivectors,

sonication was employed. Sonication survival times were determined for

each DNA vector in the same manner as for nebulization in Figure 1. The

plot shows the time at which 50% of each vector survived (Survival50)

versus its length. Each Survival50 value is the mean from at least three

separate experiments. Error bars represent the standard deviation.
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reservoir volume decreases, the rate of recirculation increases
(Supplementary Figure 2), consequently the frequency of exposure
to shear forces increases, and there may be less time for DNA to
recover from shear force-induced contortion. The stretched, contorted
and weakened DNA is then sheared more readily. This model predicts
that DNA base pair steps that are more likely to contort would be the
weak points of the molecule that shear. It is possible that the
nebulization protocol during treatment of a patient could be altered
to decrease this frequency of recycling, perhaps as simply as by
maintaining a constant reservoir volume.

Therapeutic consequences of DNA shearing
The most obvious detriment of DNA shearing is a reduction in the
amount of intact vector remaining for therapy. Larger DNA vectors
completely degrade into small fragments over the course of nebuliza-
tion. These fragments are presumably unable to elicit a therapeutic
effect as the transgene or shRNA together with the promoter are
destroyed. It might be tempting to increase the DNA dose to
compensate for this loss. Doing so, however, could have negative
consequences. First, increasing the amount of DNA vector would also
require a commensurate increase in the amount of toxic delivery
vehicle. Second, delivery of increased degraded DNA fragments could
induce DNA repair and recombination pathways or trigger apoptosis.
Third, cells could randomly ligate the fragmented DNA. Although
there is the potential of the ligations forming large episomal con-
catemers that could persist to cause stable long-term transgene
expression,36 there is also the possibility that the randomly ligated
DNA fragments could join together to generate new, potentially toxic
sequences. One way to avoid these problems would be to halt
nebulization earlier. For example, DNA vectors o2000 bp, for which
Survival90 values were greater than 10 min, could be halted after
10 min. Shortening nebulization treatments would not be necessary
for the smaller Minivectors (o1000 bp) because very little shearing
occurs, even after 30 min.

DNA vector delivery to the lungs
Identifying DNA vector lengths that survive shear forces has important
implications for gene therapy delivery no matter what the delivery
route; however, the use of a Collison-like jet nebulizer makes our data
particularly germane for the consideration of DNA delivery to the
lungs. The lungs are readily accessible by intratracheal, intranasal and
aerosol delivery methods, and any of these routes is amenable to DNA
vector delivery. Aerosol delivery, in particular, is non-invasive, delivers
directly to the affected tissue and may help prevent off-target com-
plications. In addition, aerosol delivery allows DNA to be delivered to
the lungs in much higher quantities than systemic administration.37

A number of promising gene therapy targets have been identified
for the treatment of pulmonary diseases. Dozens of clinical trials are
ongoing that target, for example, cystic fibrosis (http://www.wiley.
com/legacy/wileychi/genmed/clinical/). Disappointingly, however,
these existing therapies have so far been unsuccessful.38 Asthma as a
disease target has high potential for therapeutic RNA interference,
including shRNA39 and miRNA,40 but the bottleneck for success for
treatment of asthma is the same as for other diseases—delivery of the
nucleic acid therapy. The observation that Minivectors can overcome
some of the most difficult obstacles associated with delivery renews
enthusiasm for gene therapy for the lungs.

Additional therapeutic benefits of small, supercoiled DNA vectors
In a previous study from our group, Minivectors of 383 bp, encoding
an shRNA against a pathogenic protein in lymphoma, survived intact

in human serum for 448 h, whereas synthetic small interfering RNA
and plasmids were degraded within a couple of hours.26 Certain DNA
sequences, such as polyA signals and antibiotic resistance genes that
are commonly found in DNA vectors, are particularly susceptible to
attack by nucleases.41 Some of the biostability of Minivectors in the
serum may be a consequence of such sequences being absent from the
Minivectors.

Extra DNA on traditional plasmids contain bacterial sequences that
induce immunotoxic responses, primarily because of immune
responses to CpG motifs42 that are approximately four times more
prevalent in bacterial than mammalian DNA.43 In addition to toxicity,
bacterial sequences also induce transcriptional silencing of episomal
transgenes.44 ‘Minicircles’ that lack bacterial sequences exhibit sig-
nificantly increased transgene expression.20,44,45

In addition to increased shear force survival, reducing the length of
DNA vectors also improves cell transfection.26,46,47 Minivectors of a
few hundred bp transfect cells that are refractory to transfection with
conventional plasmids.26 The smaller size of Minivectors means more
copies per unit mass. This fact, coupled with the very high transfection
efficiency,26 suggests that a lower DNA vector dose and, consequently,
less toxic transfection vehicle may be used.

Our data show that survival of shear forces associated with
nebulization requires DNA vectors to be circular and shorter than
2000 bp. Although it may seem that therapeutically useful Minivectors
may express only shorter sequences, such as shRNA, miRNA and small
genes, in fact we have not lost the ability to express larger genes. Larger
genes can be split into multiple smaller segments that when expressed
will reconstitute in vivo to form a functional protein. The concept of
splitting genes has been studied for many decades, and one of the first
reports involved splitting the gene encoding b-galactosidase.48 Other
examples of genes that have been split and reconstituted in vivo
include the genes encoding ubiquitin,49 PurN,50 adenylate kinase51

and the yellow fluorescent protein, Venus.52 Because they are nearly
devoid of bacterial sequences, almost all of the Minivector is available
to encode a useful sequence. Even at 2000 bp, Minivectors can encode
a promoter and B1500 bp of gene sequence (either an intact small
gene or gene fragment), significantly increasing the arsenal of useful
therapeutic sequences.

To our knowledge, no previous study has investigated such a broad
range of DNA sizes and topologies as reported here. These data will be
useful for identifying the factors most important for resisting shear
forces involved in gene therapy delivery. Knowing how to mitigate
DNA vector degradation will facilitate the development of new, more
efficacious gene therapy vectors. In addition, the use of the nebulizer
makes our data particularly germane to clinical applications. The
ability of Minivectors to resist shear forces associated with gene
therapy delivery renews hope of treating human diseases using DNA
vectors.

MATERIALS AND METHODS
Chemicals, reagents and equipment
Acrylamide was from EMD Chemicals (Gibbstown, NJ, USA), agarose from

ISC BioExpress (Kaysville, UT, USA) and SYBR Gold from Invitrogen

(Hercules, CA, USA). Restriction enzymes were from New England Biolabs

(Ipswich, MA, USA). All other chemicals were from Fisher Scientific (Waltham,

MA, USA). Plasmid Maxi kit was from Qiagen (Valencia, CA, USA) and

Amicon Ultra centrifugal filters were from Millipore (Billerica, MA, USA). The

Aerotech II jet nebulizer was from CSI-US Inc. (Bedford, MA, USA) and the

Aridyne 2000 compressor was from Allied Healthcare Products (St Louis, MO,

USA). The 1/8 in probe sonicator (Model 60 Sonic Dismembrator) was from

Fisher Scientific. PC Image and Total Lab software were from Fotodyne
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(Hartland, WI, USA) and Total Lab (Durham, NC, USA), respectively.

KaleidaGraph (version 4.1) was from Synergy Software (Reading, PA, USA).

DNA generation and manipulation
DNA vectors used in this study are listed in Table 1. Throughout the text, we

refer to these by their length. Following the convention of using ‘p’ in front of

plasmid names, we designate Minivectors with ‘mv’. Parent plasmids used to

generate Minivectors are designated ‘pMV’. pMV-KB4TAL-GLuc and pMV-

CMV-GLuc were gifts from Dr Stephen Gottschalk (Baylor College of Medi-

cine, Houston, TX, USA) and pMV-CMV-Luc2 was a gift from Dr David

Spencer (Baylor College of Medicine). pMV-H1-miR31, pMV-KB4TAL-

mCherry and pMV-CMV-mCherry were gifts from Dr Martin M Matzuk

and Dr Zhifeng Yu (Baylor College of Medicine). pQR499 was a gift from

Dr John Ward (University College London, London, UK). pDJC1 was con-

structed by digesting pQR499 with TfiI and AflIII. The recessed ends of the

digested pQR499 were filled in with T4 DNA polymerase and subsequently

ligated with T4 DNA ligase. Plasmids were generated in Escherichia coli DH5a
cells, isolated using a Plasmid Maxi kit as per the manufacturer’s instructions, and

subsequently desalted and concentrated using Amicon Ultra centrifugal filters.

Minivectors were obtained as follows. Minivector parent plasmids were

transformed into E. coli strain LZ54.30 Large-scale l Int-mediated recombina-

tion and Minivector isolation was performed as described.25,26 To generate

nicked DNA vector, nicking endonuclease Nt.BbvCI was used following the

manufacturer’s protocols. To obtain relaxed DNA, nicked DNA was religated

using T4 DNA ligase. Linearization was performed with either BspHI, EcoRV,

PvuI or ScaI, depending on which overhang end was desired, as per the

manufacturer’s protocols. Nicked, relaxed and linear DNAs were extracted with

phenol:chloroform:isoamyl alcohol (25:24:1), extracted with chloroform, and

precipitated with ethanol. Each DNA topology was resuspended in TE buffer

(10 mM Tris-HCl, 1 mM EDTA, pH 8) and verified using gel electrophoresis

before nebulization or sonication.

DNA shearing
For nebulization, 10 ml of DNA at 1mg ml�1 in TE buffer was added to an

Aerotech II jet nebulizer. Air was delivered to the nebulizer at a rate of

10 l min�1 and gauge pressure of 50 p.s.i. by an Aridyne 2000 compressor.

For the studies of the effects of DNA length on nebulization survival, 15ml

aliquots were removed from the nebulizer reservoir before and at intervals

throughout nebulization up to 30 min, at which point the DNA solution was

depleted. Because of the dramatic changes that occurred early, aliquots were

taken at 1 min intervals initially and at 2 min intervals after 10 min.

For sonication, 1 ml of DNA at 1mg ml�1 in TE buffer in a 1.7 ml eppendorf

tube was incubated on ice during sonication with a 1/8 in probe sonicator at

setting 5, which has an output of 3–7 W (root mean square). For consistency,

the probe was inserted halfway down into the solution and the sides of the tube

were avoided. 15ml aliquots were removed before sonication and at the time

points indicated.

All DNA shearing experiments were performed a minimum of three separate

times. DNA was analyzed by electrophoresis on 1% agarose gels for 41000 bp

or 2% agarose gels or 5% acrylamide (29:1 acrylamide:bis-acrylamide) gels for

o1000 bp in 40 mM Tris-acetate and 2 mM EDTA. All gels were submitted to

125 V for 2 h, stained with SYBR Gold for 20 min and visualized using PC

Image. Total Lab was utilized to quantify the remaining intact DNA. Data were

analyzed and fitted using KaleidaGraph.
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