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Abstract

Previous research has compared methods of estimation for multilevel models fit to binary data but
there are reasons to believe that the results will not always generalize to the ordinal case. This
paper thus evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data
is justified and (b) which estimator to employ when instead fitting multilevel cumulative logit
models to ordinal data, Maximum Likelihood (ML) or Penalized Quasi-Likelihood (PQL). ML
and PQL are compared across variations in sample size, magnitude of variance components,
number of outcome categories, and distribution shape. Fitting a multilevel linear model to ordinal
outcomes is shown to be inferior in virtually all circumstances. PQL performance improves
markedly with the number of ordinal categories, regardless of distribution shape. In contrast to
binary data, PQL often performs as well as ML when used with ordinal data. Further, the
performance of PQL is typically superior to ML when the data includes a small to moderate
number of clusters (i.e., < 50 clusters).
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Psychologists, as well as researchers in allied fields of health, education, and social science,
are often in the position of collecting and analyzing nested (i.e., clustered) data. Two
frequently encountered types of nested data are hierarchically clustered observations, such
as individuals nested within groups, and longitudinal data, or repeated measures over time.
Both data structures share a common feature: dependence of observations within units (i.e.,
observations within clusters or repeated measures within persons). Because classical
statistical models like analysis of variance and linear regression assume independence,
alternative statistical models are required to analyze nested data appropriately.

In psychology, a common way to address dependence in nested data is to use a multilevel
model (sometimes referred to as a unit-specific model, or conditional model). A model is
specified to include cluster-level random effects to account for similarities within clusters
and the observations are assumed to be independent conditional on the random effects. A
random intercept captures level differences in the dependent variable across clusters (due to
unobserved cluster-level covariates), whereas a random slope implies that the effect of a
predictor varies over clusters (interacts with unobserved cluster-level covariates).
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27599-3270, or dbauer@email.unc.edu.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bauer and Sterba

Page 2

Alternative ways to model dependence in nested data exist, including population-average (or
marginal) models which are typically estimated by Generalized Estimating Equations (GEE;
Liang & Zeger, 1986). These models produce estimates of model coefficients for predictors
that are averaged over clusters, while allowing residuals to correlate within clusters.
Population-average models are robust to misspecification of the correlation structure of the
residuals, whereas unit-specific models can be sensitive to misspecification of the random
effects. However, unit-specific models are appealing to many psychologists (and others),
because they allow for inference about processes that operate at the level of the group (in
hierarchical data) or individual (in longitudinal data). Indeed, in a search of the
PsycARTICLES database, we found that unit-specific models were used more than fifteen
times more often than population-average models in psychology applications published over
the last five years.! To maximize relevance for psychologists, we thus focus on the unit-
specific multilevel model in this paper. Excellent introductions to multilevel modeling
include Raudenbush and Bryk (2002), Goldstein (2003), Snijders and Bosker (1999) and
Hox (2010).

Though the use of multilevel models to accommodate nesting has increased steadily in
psychology over the past several decades, many psychologists appear to have restricted their
attention to multilevel linear models. These models assume that observations within clusters
are continuous and normally distributed, conditional on observed covariates. But very often
psychologists measure outcomes on an ordinal scale, involving multiple discrete categories
with potentially uneven spacing between categories. For instance, participants might be
asked whether they “strongly disagree,” “disagree,” “neither disagree nor agree,” “agree,” or
“strongly agree” with a particular statement. Although there is growing recognition that the
application of linear models with such outcomes is inappropriate, it is still common to see
ordinal outcomes treated as continuous so that linear models can be applied (Agresti, Booth,
Hobert & Caffo, 2000; Liu & Agresti, 2005).

Researchers may be reluctant to fit an ordinal rather than linear multilevel model for several
reasons. First, researchers are generally more familiar with linear models and may be less
certain how to specify and interpret the results of models for ordinal outcomes. Second, to
our knowledge, no research has expressly examined the consequences of fitting a linear
multilevel model to ordinal outcomes. Third, it may not always be apparent what estimation
options exist for fitting multilevel models with ordinal outcomes, nor what the implications
of choosing one option versus another might be. Indeed, there is a general lack of
information on the best method of estimation for the ordinal case. Unlike the case of normal
outcomes, the likelihood for ordinal outcomes involves an integral that cannot be resolved
analytically, and several alternative estimation methods have been proposed to overcome
this difficulty. The strengths and weaknesses of these methods under real-world data
conditions are not well understood.

The goals of this paper are thus twofold. First, we seek to establish whether and when fitting
a linear multilevel model to ordinal data may constitute an acceptable data analysis strategy.
Second, we seek to evaluate the relative performance of two estimators for fitting multilevel
models to discrete outcomes, namely Penalized Quasi-Likelihood (PQL) and Maximum
Likelihood (ML) using adaptive quadrature. These two methods of estimation were chosen
for comparison because of their prevalence within applications and their availability within
commonly used software (PQL is a default estimator in many software programs, such as

IA full text search of articles published in the past five years indicated that 211 articles included the term “multilevel model,
“hierarchical linear model,” “mixed model,” or “random coefficient model” (all unit-specific models), whereas 14 articles included the
term “generalized estimation equations” or “GEE.” More general searches would be possible but this brief PsychARTICLES search
gives an indication of the proportion of unit-specific to population-average applications in psychology.

Psychol Methods. Author manuscript; available in PMC 2012 December 1.
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HLMS6, the GLIMMIX procedure in SAS, and is currently the only estimator available in
SPSS, and ML with adaptive quadrature is available in the GLIMMIX and NLMIXED SAS
procedures as well as Mplus, GLLAMM, and Supermix).

We begin by presenting the two alternative model specifications, the multilevel linear model
for continuous outcomes versus a multilevel model expressly formulated for ordinal
outcomes. We then discuss the topic of estimation and provide a brief review of previous
literature on fitting multilevel models to binary and ordinal data, focusing on gaps involving
estimation in the ordinal case. Based on the literature, we develop a series of hypotheses
which we test in a simulation study that compares two model specifications, linear versus
ordinal, under conditions that might commonly occur in psychological research. Futher, we
compare the estimates of ordinal multilevel models fit via PQL versus ML with adaptive
quadrature. The findings from our simulation translate directly into recommendations for
current practice.

Alternative Model Specifications

Multilevel Linear Model

We first review the specification of the multilevel linear model. For exposition, let us
suppose we are interested in modeling the effects of one individual-level (level-1) predictor
Xij and one cluster-level (level-2) predictor Wj, as well as a cross-level interaction,
designated X;jWj. To account for the dependence of observations within clusters, we will
include a random intercept term, designated ugj, and a random slope for the effect of Xij,
designated uyj, to allow for the possibility that this predictor varies across clusters. This
model is represented as:

Level 1: Yii=Boj+B1;Xij+ri

Level 2: Boj=yoo+yo1 Wtu;
Biji=vio+ynuWj+uy;
Combined: Y,:/:’}/o()+’)/()1 Wj+‘)/|()X,'j+’yl1 W,»X,-j+u0j+u1jX,j,~+rij (1)

All notation follows that of Raudenbush and Bryk (2002), with coefficients at level 1
indicated by g, fixed effects indicated by v, residuals at level 1 indicated by r, and random
effects at level 2 indicated by u. Both the random effects and the residuals are assumed to be

normally distributed, or
] Too
[ M()j ~N 0 ]’ 10
- o1

and
rij ~ N(0,0?) @)

An important characteristic of Equation (1) is that it is additive in the random effects and
residuals. In concert with the assumptions of normality in Equations (2) and (3), this
additive form implies that the conditional distribution of Yj; is continuous and normal.

Psychol Methods. Author manuscript; available in PMC 2012 December 1.
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The use of linear models such as Equation (1) with ordinal outcomes can be questioned on
several grounds (Long, 1997, p. 38-40). First, the linear model can generate impossible
predicted values, below the lowest category number or above the highest category number.
Second, the variability of the residuals becomes compressed as the predicted values move
toward the upper or lower limits of the observed values, resulting in heteroscedasticity.
Heteroscedasticity and non-normality of the residuals cast doubt on the validity of
significance tests. Third, we often view an ordinal scale as providing a coarse representation
for what is really a continuous underlying variable. If we believe that this unobserved
continuous variable is linearly related to our predictors, then our predictors will be
nonlinearly related to the observed ordinal variable. The linear model then provides a first
approximation of uncertain quality to this nonlinear function. The substitution of a linear
model for one that is actually nonlinear is especially problematic for nested data when
lower-level predictors vary both within and between clusters (have intraclass correlations
exceeding zero). In this situation, estimates for random slope variances and cross-level
interactions can be inflated or spurious (Bauer & Cai, 2009).

Multilevel Models for Ordinal Outcomes

In general, there are two ways to motivate models for ordinal outcomes. One motivation that
is popular in psychology and the social sciences, alluded to above, is to conceive of the
ordinal outcome as a coarsely categorized measured version of an underlying continuous
latent variable. For instance, although attitudes may be measured via ordered categories
“strongly disagree” to “strongly agree,” we can imagine that a continuous latent variable
underlies these responses. If the continuous variable had been measured directly, then the
multilevel linear model in Equation (1) would be appropriate. Thus, for the continuous

underlying variable, denoted Y7,

we can stipulate the model
Level 1: Y;j‘.:ﬁo_,-+ﬁl_,~X,~j+r,_-,
Level 2: [)’gj=700+’)/0] Wj+u0j

Bij=vwtynWitu;
Combined:  Yi=yoo+yo1 Wj+y10Xij+y1 WiXij+uoj+u1 jXij+r;

To link the underlying Y; with the observed ordinal response Yijj we must also posit a
threshold model. For Yj; scored in categories c=1, 2..., C, we can write the threshold model
as:

Yy=1if Y; <D
v=2if v < ¥;</®

_ if y* (C-1)
Yy=Cif Y} > v ©)

where v(©) is a threshold parameter and the thresholds are strictly increasing (i.e., v() <

v@ .. < (C-D)y. In words, Equation (5) indicates that when the underlying variable Y;;
increases past a given threshold we see a discrete jump in the observed ordinal response Yj;

(e.g., when Y,’; crosses the threshold v(), Yijj changes froma 1 to a 2).

Finally, to translate Equations (4) and (5) into a probability model for Yj; we must specify
the distributions of the random effects and residuals. The random effects at Level 2 are

Psychol Methods. Author manuscript; available in PMC 2012 December 1.
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conventionally assumed to be normal, just as in Equation (2). Different assumptions can be
made for the Level 1 residuals. Assuming rjj ~ N (0,1) leads to the multilevel probit model,
whereas assuming rij ~ logistic(0,72/3) leads to the multilevel cumulative logit model. In
both cases, the variance is fixed (at 1 for the probit specification and at z2/3 for the logit
specification) since the scale of the underlying latent variable is unobserved. Of the two
specifications, we focus on the multilevel cumulative logit model because it is
computationally simpler and because the estimates for the fixed effects have appealing
interpretations (i.e., the exponentiated coefficients are interpretable as odds ratios).

Alternatively, the very same models can be motivated from the framework of the
generalized linear model (McCullagh & Nelder,1989), a conceptualization favored within
biostatistics. Within this framework, we start by specifying the conditional distribution of
our outcome. In this case, the conditional distribution of the ordinal outcome Yjj is
multinomial with parameters describing the probabilities of the categorical responses. By
modeling these probabilities directly, we bypass the need to invoke a continuous latent
variable underlying the ordinal responses.

To further explicate this approach we can define cumulative coding variables to capture the
ordered-categorical nature of the observed responses. C — 1 coding variables are defined

such that Y,fj-“’zl if Y;j < ¢ (the cumulative coding variable for category C is omitted as it
would always be scored 1). The expected value of each cumulative coding variable is then
the cumulative probability that a response will be scored in category ¢ or below, denoted as

¢ =P(Yy < )=P(Y;{'=1),

The cumulative probabilities are predicted via the linear predictor, denoted #jj, which is
specified as a weighted linear combination of observed covariates/predictors and random
effects. For our example model, the linear predictor would be specified through the
equations

Level 1: 1ni=Po+B1Xij
Level 2: Boj=yoo+tyo Wtuo;
Bi=yiotynWitu;
Combined:  7;;=yo0+Y01 Wj+y10Xij+yn W;Xij+uoj+uy jX; (6)

where the random effects are assumed to be normally distributed as in Equation (2).

The model for the observed responses is then given as
(c) -1 c
Y=g [V — g 4y ™

where v(©) is again a threshold parameter that allows for increasing probabilities when
accumulating across categories and g~1(.) is the inverse link function, a function that maps
the continuous range of [v(©) — nij] into the bounded zero-to-one range of predicted values
(model-implied cumulative probabilities) for the cumulative coding variable (Hedeker &
Gibbons, 2006; Long, 1997). Any function with asymptotes of zero and one could be
considered as a candidate for g~1(.) but common choices are the Cumulative Density
Function (CDF) for the normal distribution, which produces the multilevel probit model, and
the inverse logistic function,
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() .
—1r.(0) (o exp('” — ;)
v —niil=0, =———————
gl 1i1=¢; Trexp(@ —np) ©

which produces the multilevel cumulative logit model.

Both motivations lead to equivalent models, with the selection of the link function in
Equation (7) playing the same role as the choice of residual distribution in Equation (4). The
two approaches thus differ only at the conceptual level. Regardless of which conception is
preferred, however, a few additional features of the model should be noted. First, the full set
of thresholds and overall model intercept are not jointly identified. One can set the first
threshold to zero and estimate the intercept, or set the intercept to zero and estimate all
thresholds. The former choice seems to be most common, and we will use that specification
in our simulations. Additionally, an assumption of the model, which can be checked
empirically, is that the coefficients in the linear predictor are invariant across categories (an
assumption referred to as proportional odds for the multilevel cumulative logit model). This
assumption can be relaxed, for instance by specifying a partial proportional odds model. For
additional details on this assumption and the partial proportional odds model, see Hedeker
and Gibbons (2006).

Alternative Estimation Methods

To provide a context for comparison of estimation methods, first consider a general
expression for the likelihood function for cluster j:

LY )= (Y jlu;,0)h(u,0)du; )

where 0 is the vector of parameters to be estimated (fixed effects and variance components),
Yj is the vector of all observations on Yj; within cluster j, and ujis the vector of random
effects. The density function for the conditional distribution of Y; is denoted f (-) and the
density function for the random effects is denoted h(-), both of which implicitly depend on
the parameters of the model. Integrating the likelihood over the distribution of the random
effects returns the marginal likelihood for Yj, that is, the likelihood of Y;j averaging over all
possible values of the random effects. This averaging is necessary because the random
effects are unobserved. The overall sample likelihood is the product of the cluster-wise
likelihoods, and we seek to maximize this likelihood to obtain the parameter estimates that
are most consistent with our data (i.e., parameter estimates that maximize the likelihood of
observing the data we in fact observed).

In the linear multilevel model, both f () and h(-) are assumed to be normal and in this case
the integral within the likelihood resolves analytically; the marginal likelihood for Yj is the
multivariate normal density function (Demidenko, 2004, pp. 48-61). No such simplification
arises when f(-) is multinomial and h() is normal, as is the case for ordinal multilevel
models. Obtaining the marginal probability of Yj would, in theory, require integrating over
the distribution of the random effects at each iteration of the likelihood-maximization
procedure, but this task is analytically intractable. One approach to circumvent this problem
is to implement a quasi-likelihood estimator (linearizing the integrand at each iteration) and
another is to evaluate the integral via a numerical approximation.

Psychol Methods. Author manuscript; available in PMC 2012 December 1.
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The idea behind quasi-likelihood estimators (PQL and MQL) is to take the nonlinear model
from Equation (7) and apply a linear approximation at each iteration. This linear model is
then fit via normal-theory ML using observation weights to counteract heteroscedasticity
and non-normality of the residuals. This is an iterative process with the linear approximation
improving at each step. More specifically, the linear approximation typically employed is a
first-order Taylor series expansion of the nonlinear function g=1(v(¢) — nij) - Algebraic
manipulation of the linearized model is then used to create a “working variate” Zj; which is
an additive combination of the linear predictor v(®) nij and a residual e;j (see online
appendix for more details). The working variate is constructed somewhat differently in
MQL and PQL,; it is constructed exclusively using fixed effects in the former but using both
fixed effects and empirical Bayes estimates of the random effects in the latter (see Goldstein,
2003, pp. 112-114; Raudenbush & Bryk, 2002, pp. 456-459). The residual is the original
level-1 residual term scaled by a weight ejj = rjj/ wj; derived from the linearization procedure
to render the residual distribution approximately normal, i.e., €j; ~ N(0,1/wj;). The resultant
model for the “working variate”, Zjj = (0@ - nij)+eij, approximately satisfies assumptions of
the multilevel linear model, and can be used to construct an approximate (or quasi-)
likelihood.

An alternative way to address the analytical intractability of the integral in Equation (9) is to
leave the integrand intact but approximate the integral numerically. Included within this
approach is ML using Gauss-Hermite quadrature, adaptive quadrature, Laplace algorithms,
and simulation methods. Likewise, Bayesian estimation using Markov Chain Monte Carlo
with non-informative (or diffuse) priors can be viewed as an approximation to ML that
implements simulation methods to avoid integration. Here we focus specifically on ML with
adaptive quadrature. With this method, the integral is approximated via a weighted sum of
discrete points. The locations of these points of support (quadrature points) and their
respective weights are iteratively updated (or adapted) for each cluster j, which has the effect
of re-centering and re-scaling the points in a unit-specific manner (Rabe-Hesketh, Skrondal
& Pickles, 2002). At each iteration the adapted quadrature points are solved for as functions
of the mean or mode and standard deviation of the posterior distribution for cluster j.
Integral approximation improves as the number of points of support per dimension of
integration increase, at the expense of computational time. Computational time also
increases exponentially with the dimensions of integration, which in Equation (9)
corresponds to the number of random effects. The nature of the discrete distribution
employed differs across approaches (e.g. rectangular vs. trapezoidal vs. Guass-Hermite)
where, for example, rectangular adaptive quadrature considers a discrete distribution of
adjoining rectangles.

Prior Research

Fitting a Multilevel Linear Model by Normal-Theory ML

The practice of fitting linear models to ordinal outcomes using normal-theory methods of
estimation remains common (Agresti, Booth, Hobert & Caffo, 2000; Liu & Agresti, 2005).
To date, however, no research has been conducted to evaluate the performance of multilevel
linear models with ordinal outcomes from which to argue against this practice. A large
number of studies have, however, evaluated the use of linear regression or normal-theory
Structural Equation Modeling (SEM) with ordinal data (see Winship & Mare, 1984, and
Bollen, 1989, pp. 415-448 for review). These studies are relevant here because the
multilevel linear model can be considered a generalization of linear regression and a
submodel of SEM (Bauer, 2003; Curran, 2003; Mehta & Neale, 2005). Overall, this research
indicates that, for ordinal outcomes, the effect estimates obtained from linear models are
often attenuated, but that there are circumstances under which the bias is small enough to be
tolerable. These circumstances are when there are many categories (better resembling an

Psychol Methods. Author manuscript; available in PMC 2012 December 1.
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interval-scaled outcome) and the category distributions are not excessively non-normal.
Extrapolating from this literature, we expect multilevel linear models to perform most
poorly with binary outcomes or ordinal outcomes with few categories and best with ordinal
outcomes with many categories (approaching a continuum) and roughly normal distributions
(Goldstein, 2003, p. 104).

Fitting a Multilevel Cumulative Logit model by Quasi-Likelihood

Simulation research with PQL and MQL to date has focused almost exclusively on binary
rather than ordinal outcomes. This research has consistently shown that PQL performs better
than MQL (Breslow & Clayton, 1993, Breslow & Lin, 1995; Goldstein & Rasbash, 1996;
Rodriguez & Goldman, 1995, 2001). In either case, however, the quality of the estimates
depends on the adequacy of the Taylor series approximation and the extent to which the
distribution of the working variate residuals is approximately normal (McCulloch, 1997).
When these approximations are poor, the estimates are attenuated, particularly for variance
components. In general, PQL performs best when there are many observations per cluster
(Bellamy et al., 2005; Ten Have & Localio, 1999; Skrondal & Rabe-Hesketh, 2004, pp.
194-197), for it is then that the provisional estimates of the random effects become most
precise, yielding a better working variate. The performance of PQL deteriorates when the
working variate residuals are markedly non-normal, as is usually the case when the outcome
is binary (Breslow & Clayton, 1993; Skrondal & Rabe-Hesketh, 2004, pp. 194-197). The
degree of bias increases with the magnitude of the random effect variances (Breslow & Lin,
1995; McCulloch, 1997; Rodriguez & Goldman, 2001)."

Though it is well-known that PQL can often produce badly biased estimates when applied to
binary data (Breslow & Lin, 1995; Rodriguez & Goldman, 1995; 2001; Raudenbush, Yang
& Yosef, 2000), it is presently unknown whether this bias will extend to multilevel models
for ordinal outcomes. The assumption seems to be that the poor performance of PQL will
indeed generalize (Agresti, et al., 2000; Liu & Agresti, 2005), leading some to make blanket
recommendations that quasi-likelihood estimators should not be used in practice
(McCulloch, Searle, & Neuhaus, 2008, p. 198). This conclusion may, however, be
premature. For instance, Saei and MacGilchrist (1998) detected only slight bias for a PQL-
like estimator when the outcome variable had four categories and was observed for three
individuals in each of 30 clusters. Beyond the specific instance considered by Saei and
McGilchrist (1998), we believe that the bias incurred by using PQL will diminish
progressively with the number of categories of the ordinal outcome (due to the increase in
information with more ordered categories). To our knowledge, this hypothesis has not
previously appeared in the literature on PQL, nor has the quality of PQL estimates been
compared over increasing numbers of categories.

Fitting the Multilevel Cumulative Logit Model by ML with Adaptive Quadrature

ML estimation for the multilevel cumulative logit model is theoretically preferable to quasi-
likelihood estimation because it produces asymptotically unbiased estimates. Moreover, a
number of simulation studies have shown that ML using quadrature (or other integral
approximation approaches) outperforms quasi-likelihood estimators such as PQL when used
to estimate multilevel logistic models with binary outcomes (Rodriguez & Goldman, 1995;
Raudenbush, Yang & Yosef, 2000). As one would expect given its desirable asymptotic
properties, ML with numerical integration performs best when there is a large number of
clusters.

iiTo improve performance, Goldstein & Rabash (1996) proposed the PQL2 estimator, which uses a second-order Taylor series
expansion to provide a more precise linear approximation. Rodriguez & Goldman (2001) found that PQL2 is less biased than PQL, but
less efficient and somewhat less likely to converge.

Psychol Methods. Author manuscript; available in PMC 2012 December 1.
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There are, however, still compelling reasons to compare the ML and PQL estimators for the
cumulative logit model. First, although ML is an asymptotically unbiased estimator, it
suffers from small sample bias (Demidenko, 2004, p. 58; Raudenbush & Bryk, 2002, p. 53).
When the number of clusters is small, ML produces negatively biased variance estimates for
the random effects. Additionally, this small-sample bias increases with the number of fixed
effects. For ordinal outcomes, the fixed effects include C — 1 threshold parameters, so a
higher number of categories may actually increase the bias of ML estimates. Second,
Bellamy (2005) showed analytically and empirically that when there is a small number of
large clusters, as often occurs in group-randomized trials, the efficiency of PQL estimates
can equal or exceed the efficiency of ML estimates. Third, as discussed above, PQL may
compare more favorably to ML when the data are ordinal rather than binary, as the
availability of more categories may offset PQL's particularly strong need for large clusters.

Research Hypotheses

From the literature reviewed above, we now summarize the research hypotheses that
motivated our simulation study.

1. Alinear modeling approach may perform adequately when the number of
categories for the outcome is large (e.g., 5+) and when the distribution of category
responses is roughly normal in shape, but will prove inadequate if either of these
conditions is lacking.

2. ML via adaptive quadrature will be unbiased and most efficient when there is a
large number of clusters, but these properties may not hold when there are fewer
clusters. In particular, variance estimates may be negatively biased when the
number of clusters is small and the number of fixed effects (including thresholds,
increasing with number of categories) is large.

3. PQL estimates will be attenuated, especially when the variances of the random
effects are large and when the cluster sizes are small. More bias will be observed
for variance components than fixed effects.

4. PQL will perform considerably better for ordinal outcomes as the number of
categories increases. With sufficiently many categories, PQL may have negligible
bias and comparable or better efficiency than ML even when cluster sizes are small.

Of these hypotheses, no prior research has been conducted directly on Hypothesis 1, which
is based on research conducted with related models (linear regression and SEM).
Hypotheses 2 and 3 follow directly from research on binary outcomes. We believe
Hypothesis 4 to be novel, notwithstanding the limited study of Saei and MacGilchrist
(1998), and it is this hypothesis that is most important to our investigation.

Simulation Study

Design and Methods

To test our hypotheses, we simulated ordinal data with 2, 3, 5 or 7 categories, and we varied
the number of clusters (J=25, 50, 100 or 200), the cluster sizes (nj =5, 10, or 20), the
magnitude of the random effects, and the distribution of category responses. Our population-
generating model was a multilevel cumulative logit model, with parameter values chosen to
match those of Raudenbush, Yang, and Yosef (2000) and Yosef (2001), which were based
on values derived by Rodriguez and Goldman (1995) from a multilevel analysis of health
care in Guatemala. Whereas Rodriguez and Goldman (1995) considered three-level data
with random intercepts, Raudenbush, Yang and Yosef (2000) modified the generating model
to be two levels and included a random slope for the level-1 covariate. We in turn modified
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1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bauer and Sterba

Page 10

Raudenbush, Yang and Yosef's (2000) generating model to also include a cross-level
interaction. The structure of the population generating model was of the form specified in
Equations (4) and (5) or, equivalently, Equations (6) and (7).

The fixed effects in the population model were ygo = 0, y91 = 1, 10 = 1, y11 = 1. Following
Raudenbush, Yang and Yosef (2000) and Yosef (2001), the two predictors were generated to
be independent and normally distributed as Xjj ~ N(.1,1) and W; ~ N(-.7,1)."" In one
condition, the variances of the random effects were zgg = 1.63, 719 = .20, 711 = .25, as in
Raudenbush, Yang and Yosef (2000). We also included smaller and larger random effects
by specifying zop = .5, 719 = .03, 711 = .08 and 7gg =8.15, 719 = .50, 711 = 1.25, respectively.
Using the method described by Snijders and Bosker (1999, p. 224) these values imply
residual pseudo-Intraclass Correlations (ICCs) of . 13, .33, and .72, holding X; at the mean.
For hierarchically clustered data, an ICC of .33 is fairly large, whereas an ICC of .13 is more
typical. For long-term longitudinal data (e.g., annual or biennial), an ICC of .33 might be
considered moderate, whereas the larger ICC of .72 would be observed more often for
closely spaced repeated measures (e.g., experience sampling data). Since typical effect sizes
vary across data structures, we shall simply refer to these conditions in relative terms as

“small”, “medium” and “large.”

The thresholds of the model were varied in number and placement to determine the number
of categories and shape of the category distribution for the outcome. For the binary data,
thresholds were selected to yield both balanced (P(Y = 1) = .50) and unbalanced (P(Y = 1)
=.75) marginal distributions. Note that for binary data, manipulating the shape of the
distribution necessarily also entails manipulating category sparseness. In contrast, for
ordinal data, we considered three different marginal distribution shapes, bell-shaped,
skewed, and polarized, while holding sparseness constant by simply shifting which
categories had high versus low probabilities. For the bell-shaped distributions the middle
categories had the highest probabilities, whereas for the skewed distributions the
probabilities increased from low to high categories, and for the polarized distribution the
highest probabilities were placed on the end-points. The resulting distributions are shown in
Figure 1."Y As stated in Hypothesis 1, the bell-shaped distribution, approximating a normal
distribution, was expected to be favorable for the linear model, although in practice skewed
distributions are common when examining risk behaviors and polarized distributions are
common with attitude data (e.g., attitudes towards abortion). The PQL and ML estimators of
the multilevel cumulative logit model were not expected to be particularly sensitive to this
manipulation.

SAS version 9.1 was used for data generation, some analyses, and the compilation of results.
The IML procedure was used to generate 500 sets of sample data (replications) for each of
the 264 cells of the study. The linear multilevel model was fit to the data with the MIXED
procedure using the normal-theory REML estimator (maximum 500 iterations). The
multilevel cumulative logit models were fit either by PQL using the GLIMMIX procedure
(with Residual Subject-specific Pseudo-Likelihood, RSPL, maximum 200 iterations), or by
ML with numerical integration using adaptive Gauss-Hermite quadrature with 15 quadrature
points in Mplus version 5 (with Expectation-Maximization algorithm, maximum 200

lRaudenbush, Yang and Yosef (2000) mistakenly indicated that the variances of their predictors were .07 for Xjj and .23 for Wj;
however, Yosef (2001, p. 70) correctly indicated a variance of 1 for both. When data are generated using the lower variances of .07
and .23, both ML by adaptive quadrature and the 6th-order Laplace estimator produce estimates with larger RMSEs than PQL,
opposite from the results reported in Raudenbush, Yang & Yosef (2000). This difference is likely due to the interplay between
predictor scale and effect size (i.e., a random slope variance of .25 for a predictor with variance .07 corresponds approximately to a
slope variance of 3.7 for a predictor with variance 1).

Vinformation on category thresholds and the method used to determine these to produce the target marginal distributions can be
obtained from the first author upon request.
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iterations).V,V! The NLMIXED and GLIMMIX procedures also provide ML estimation by
adaptive quadrature, but computational times were shorter with Mplus. The MIXED
(REML) and GLIMMIX (PQL) procedures implement boundary constraints on variance
estimates to prevent them from going below zero (no such constraint is necessary when
using ML with quadrature).

Complicating comparisons of the three model fitting approaches, results obtained from the
linear and cumulative logit models are not on the same scale. To resolve this problem, linear
model estimates were transformed to match the scale of the logistic model estimates. Fixed

effects and standard errors were multiplied by the factor s= /z2/352 (where &2 is the
estimated Level 1 residual variance from the linear model, and 72/3 is the variance of the
logistic distribution) and variances and covariance parameter estimates were multiplied by
s2. A similar rescaling strategy has been recommended by Chinn (2000) to facilitate meta-
analysis when some studies use logistic versus linear regression (see also Bauer, 2009).

Performance Measures

We examined both the bias and efficiency of the estimates. Bias indicates whether a
parameter tends to be over- or underestimated, and is computed as the difference between
the mean of the estimates (across samples) and the true value, or

B=E(6,) - 0 (10)

where 6 is the parameter of interest, &, is the estimate of & for replication r, and E(6;) is the
mean estimate across replications. A good estimator should have bias values near zero,
indicating that the sample estimates average out to equal the population value. Bias of
5-10% is often considered tolerable (e.g., Kaplan, 1989). Likewise, to evaluate efficiency,
one can examine the variance of the estimates,

V:E[@_E@))z] (11)

A good estimator will have less variance than other estimators, indicating more precision
and, typically, higher power for inferential tests.

Bias and variance should be considered simultaneously when judging an estimator. For
instance, an unbiased estimator with high variance is not very useful, since the estimate
obtained in any single sample is likely to be quite far from the population value. Another
estimator may be more biased, but have low variance, so that any given estimate is usually
not too far from the population value. An index which combines both bias and variance is
the Mean Squared Error (MSE), which is computed as the average squared difference
between the estimate and the true parameter value across samples

VThe Mplus implementation of adaptive quadrature iteratively updates quadrature points based on the mean (rather than mode) and
variance of the cluster-specific posterior distribution.

VIA number of consistency checks were performed to evaluate the adequacy of the ML estimates obtained with these settings. First,
nearly identical estimates were obtained using 15 versus 100 quadrature points, or using trapezoidal versus Gauss-Hermite quadrature.
Second, results did not differ meaningfully between Mplus and either SAS NLMIXED or SAS GLIMMIX using adaptive quadrature
(version 9.2). Finally, the results obtained with adaptive quadrature were also consistent with those obtained via the sixth-order
Laplace ML estimator in HLM 6.0.
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MSE=E [@\’ B 9)2] (12)

It can be shown that MSE = B2+v, thus MSE takes into account both bias and efficiency
(Kendall and Stuart, 1969, Section 17.30). A low MSE is desirable, as it indicates that any
given sample estimate is likely to be close to the population value.

We first consider the estimates of the fixed effects, then the dispersion estimates for the
random effects. To streamline presentation, some results are provided in an online appendix.
In particular, bias in threshold estimates is presented in the online appendix as thresholds are
rarely of substantive interest (and are not estimated with the linear model specification). The
pattern of bias in threshold estimates obtained from PQL and ML was (predictably) the
mirror image of the pattern described below for the other fixed effects.V!"

Fixed Effect Estimates—Our first concern was with identifying factors relating to bias in
the estimators. Accordingly, a preliminary ANOVA model was fit for each fixed effect,
treating model fitting approach as a within-subjects factor and all other factors as between-
subjects, and using Helmert contrasts to (1) compare the linear model estimates to the
estimates obtained from the logistic (cumulative logit) model fit, and (2) differentiate
between the two logistic model estimators, PQL and ML. The three fixed effect estimates of
primary interest were the main effect of the lower-level predictor X, the main effect of the
upper-level predictor Wj, and the cross-level interaction of X;;W;. Binary conditions were
excluded from the ANOVAs (since the binary distribution shapes differed from the ordinal
distribution shapes), but summary plots and tables nevertheless include these conditions.
Given space constraints, we provide only brief summaries of the ANOVAs, focusing on the
contrasts between estimators. Effect sizes were computed using the generalized eta-squared

(77(2;) statistic (Olejnik and Algina, 2003; Bakeman, 2005). ng values computed for mixed
designs are comparable to partial 72 values for fully between-subject designs. Our

interpretation focuses on contrast effects with n(z; values of .01 or higher, shown in Table 1.

The largest effect sizes were obtained for the main effect of the first Helmert contrast,
comparing the estimates obtained from the linear versus cumulative logit model
specifications. As hypothesized, two interaction effects involving the first contrast were
identified for all three fixed effects: the number of categories and the distribution shape.
Table 1 shows that effect sizes were larger for the effects of X and XW than W, but the
pattern of differences in the estimates was similar (see online appendix). As depicted in
Figure 2, averaging over the three fixed effects, the bias of the linear REML estimator was
quite severe with binary data, especially when the distribution was unbalanced. The degree
of bias for this estimator diminished as the number of categories increased, and was least
pronounced with the bell-shaped distribution. The bias of the linear REML estimator
approached tolerable levels (<10%) only with seven categories and a bell-shaped
distribution. In comparison, both estimators of the multilevel cumulative logit model

ViiThreshold bias was anticipated to be opposite in sign to the bias of other fixed effects given the sign difference of thresholds and
fixed effects in the function g_1 i —7jj) . Bias would be in the same direction had we used an alternative parameterization of the
multilevel cumulative logit model that includes a unique intercept for each cumulative coding variable but no threshold parameters,

=1,..(c) ©_, (0 . . . . -
eg.8 (15 Dwith ;=Yoo tY01 Wityi0Xi+y1 W;Xij+uoj+u1;Xij, The intercepts obtained with this alternative

- . . —_— - - o (c (c)
parameterization and the thresholds obtained with the parameterization used in our study differ only in sign, i.e., —1 (v"’):(yo‘o ).
Given this relationship, threshold bias results are consistent with the bias results observed for other fixed effects.
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produced less biased estimates that demonstrated little sensitivity to the shape of the
distribution.

The second Helmert contrast, comparing the PQL and ML estimates of the multilevel
cumulative logit model resulted in the second largest effect sizes. As hypothesized, the top
three factors influencing differences in PQL versus ML estimates of all three fixed effects
were the magnitude of the variance components, number of categories, and cluster size.
Figure 3 presents the average bias of the three fixed effects as a function of these three
factors (results were similar across fixed effects; see online appendix). In general, PQL
produced negatively biased estimates whereas ML produced positively biased estimates. As
expected, PQL performed particularly poorly with binary outcomes, especially when the
variances of the random effects were large and the cluster sizes were small. With five to
seven categories, however, PQL performed reasonably well even when the random effect
variances were moderate. With very large random effects, PQL only performed well when
cluster sizes were also large. In absolute terms, the bias for ML was consistently lower than
PQL. Somewhat unexpectedly, ML estimates were more biased with binary outcomes than
with ordinal outcomes.

To gain a fuller understanding of the differences between the PQL and ML estimators of the
multilevel cumulative logit model, we plotted the MSE, sampling variance and bias of the
estimates in Figure 4 as a function of all design factors except distribution shape. In the
figure, the overall height of each vertical line indicates the MSE. The MSE is partitioned
between squared bias and sampling variance by the symbol marker (dot or diamond). The
distance between zero and the marker is the squared bias, whereas the distance between the
marker and the top of the line is the sampling variance. Note that the scale differs between
panels to account for the naturally large effect of number of clusters on the sampling
variance, and the increase in sampling variance associated with larger random effects. There
is also a break in the scale for the upper right panel due to exceptionally high sampling
variance observed for ML with binary outcomes and few, small clusters.

Figure 4 clarifies that, in most conditions, the primary contributor to the MSE was the
sampling variance, which tended to be lower for PQL than ML. An advantage was observed
for ML only when there were many clusters and the random effects were medium or large,
especially when there were also few categories and low cluster sizes. In all other conditions,
PQL displayed comparable or lower MSE, despite generally higher bias, due to lower
sampling variance. Both bias and sampling variance decreased with more categories,
considerably lowering MSE.

Finally, we also considered the quality of inferences afforded by PQL versus ML for the
fixed effects. Bias in the standard error estimates was computed for each condition as the
difference between the average estimated standard error for an effect and that effect's
empirical standard deviation across replications. Figure 5 presents the average SE for the
fixed effects in the same format as Figure 3 (results were again similar across fixed effects;
see online appendix). SE bias was generally minimal for both estimators except for ML with
binary outcomes and small cluster size. Given the low level of SE bias, the quality of
inferences is determined almost exclusively by point estimate bias. Indeed, confidence
interval coverage rates (tabled in the online appendix) show that ML generally maintains the
nominal coverage rate whereas PQL has lower than nominal coverage rates under conditions
when PQL produces biased fixed effects.

Estimates of Dispersion for the Random Effects—An initial examination of the

variance estimates for the random effects revealed very skewed distributions, sometimes
with extreme values. We thus chose to evaluate estimator performance with respect to the
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standard deviations of the random effects (i.e., /oo and +/z17), rather than their variances.
Stratifying by the magnitude of the random effects, preliminary ANOVA models were fit to

determine the primary sources of differences in /zy, and /7, between the three estimators.
The same two Helmert contrasts were used as described in the previous section. Effect sizes
are reported in Table 2.

In all the ANOVA results for the dispersion estimates, larger random effect sizes resulted in
more pronounced estimator differences and more pronounced factor effects on estimator
differences. The largest effect sizes were again associated with overall differences in

estimates produced by the linear model versus cumulative logit models. For /7y,
interactions with the first contrast were detected for the number of categories of the outcome

and, to a much smaller degree, cluster size. For /7, ,, no interactions with the first contrast
consistently approached nf; values of .01.

Results for the second contrast indicated that PQL and ML estimates of dispersion also
diverged with the magnitude of the random effects. The number of categories had an
increasing effect on estimator differences with the magnitude of the random effects, as did
cluster size. The number of clusters also had a small effect on estimator differences.

To clarify these results, Tables 3-6 display the mean and standard deviation of the dispersion

estimates /7y, and /7 respectively, as a function of characteristics of the outcome variable
and estimator. For both the random intercept (Table 3) and slope (Table 4), the estimates
obtained from the linear model show the most bias, but they improve markedly as the
number of categories increases. Like the linear model estimator, PQL performance improves
markedly as the number of categories increases, whereas the estimates obtained from ML
are generally less biased (but more variable) when there are fewer categories. Indeed, the
ML estimates actually become negatively biased as the number of categories increases, a
trend that is consistent with the known negative bias of ML dispersion estimates as a
function of the number of fixed effects (with more categories requiring the addition of more
thresholds).

Similarly, Tables 5 and 6 present the mean and standard deviation of the dispersion

estimates /7, and /7, respectively, as a function of sample size. Both the linear model
and PQL showed decreased levels of negative bias as the cluster sizes increased. For the
linear model, the effect of cluster size was most evident with the random slope. For the
random intercept, ML typically produced negatively biased dispersion estimates, attenuating
as the number of clusters increased. In contrast, the bias of the PQL estimates increased
slightly with the number of clusters. For the random slope, ML performed well when the
population random effect was medium or large, but showed some positive bias when the
population random effect was small, particularly at the smallest sample sizes. As anticipated,
PQL was again negatively biased, and generally benefited from larger cluster sizes. PQL
estimates generally exhibited less sampling variability than ML estimates, with ML
estimates being particularly unstable for the combination of large random effects, few
clusters, and small cluster sizes.

To contextualize these differences between the PQL and ML estimators, Figures 6 and 7

present (squared) bias, variance, and MSE for the \/% and +/7;, estimates in the same
format as Figure 4. The results generally parallel the results presented previously for the
fixed effects. Although the PQL random effect dispersion estimates are more biased, their
sampling variance is also often smaller. PQL thus produces lower MSE values than ML in
many conditions. A consistent and appreciable MSE advantage for ML is observed only
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when there are many clusters (e.g., 100 or 200) and medium to large random effects.
Further, this advantage diminishes as the cluster size and/or number of categories increases.

Discussion

Summary

An initial question we sought to address was, “When can the results of a multilevel linear
model fit to an ordinal outcome be trusted?” Our results suggest the answer, “Rarely.” Only
when the marginal distribution of the category responses was roughly normal and the
number of categories was seven did the negative bias of the linear model decrease to the
acceptable level of approximately 10% for the fixed effects. The dispersion estimates of the
random effects were similarly negatively biased. In almost all cells of the design, the linear
model estimates were inferior to the cumulative logit model estimates (from either PQL or
ML). In contrast, neither PQL nor ML estimators of the multilevel cumulative logit model
demonstrated much sensitivity to the category distribution. In sum, these results argue
against the practice of fitting multilevel linear models to ordinal outcomes.V!"!

The second major aim of this study was to evaluate the relative performance of two
estimators of the multilevel cumulative logit model, PQL versus ML with adaptive
quadrature. In general, our results suggest that PQL has been somewhat unfairly maligned.
While we did indeed find that PQL estimates of fixed effects, and especially dispersion
parameters, were negatively biased in many conditions, PQL nevertheless often
outperformed ML in terms of MSE. In other words, the degree of excess bias associated
with using PQL was often within tolerable levels and compensated for by lower sampling
variability (similar to what Bellamy et al., 2005, found for binary outcomes). As shown in
other studies, PQL performed best when the random effects were small and the cluster sizes
were large. In addition, a new result of our study is that the performance of PQL greatly
improves with the number of categories for the outcome. The ML estimator also behaved as
expected. Consistent with asymptotic theory, ML was least biased and most efficient for
data with 100 or 200 clusters. With 25 or 50 clusters, however, ML estimates were more
variable and often had higher MSE than PQL estimates.

A final finding worth noting is that all of the estimators generally perform better for ordinal
than binary data. Furthermore, there is a sharp reduction in MSE associated with increasing
the number of categories available for analysis, particularly in moving from two levels to
three or more. These results indicate that ordinal scales are generally preferable to binary
and underscore previous pleas for researchers to abandon the practice of dichotomizing
ordinal scales (Sankey and Weissfeld, 1998; Stromberg, 1996).

Limitations and Directions for Future Research

As with all simulation studies, the conclusions we draw from our results must be limited by
the range of conditions we evaluated. We discuss these limitations here as potentially
fruitful directions for future research. First, we studied only one model for ordinal outcomes,
the cumulative logit model. We did not evaluate model performance with alternative link
functions, such as the probit. Also, as mentioned previously, the cumulative logit model
imposes an assumption of invariant slopes across categories (i.e., proportional odds), which
is not always tenable in practice. A generalized logit or partial proportional odds model
might then be preferable. For the interested reader, Hedeker and Gibbons (2006, p. 191-194,

Villindeed, the linear model estimates were generally unacceptable despite the fact that data were generated under something of a best-
case scenario. Because Xij was simulated with an ICC of zero, misspecification of the nonlinear relation between Yjjand Xijj could not
spuriously inflate estimates for the random slope variance or cross-level interaction (Bauer & Cai, 2009). That is, the linear model
would likely have performed even more poorly had Xij been simulated with an appreciable 1CC.
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202-211) provide a useful discussion of the proportional odds assumption, how to check this
assumption empirically, and models that relax this assumption.

Second, we manipulated the shape of the ordinal outcome distributions while holding
category sparseness constant. Although we regard it as a strength of our design that shape
and sparseness were not confounded for ordinal outcomes, these two factors are inextricably
confounded for binary outcomes. Our binary outcome results should be interpreted in light
of this fact. Additionally, because we did not manipulate the sparseness of the ordinal
outcomes, our results do not speak to the possible effects of sparseness on model estimates.

Third, our study was limited to multilevel models with random effects. A worthy topic of
future research to compare the results of models fit by PQL or ML to the results obtained
using GEE. Although unit-specific and population-average model estimates differ in scale
and interpretation, marginalized estimates obtained from PQL or ML are comparable to the
estimates obtained from GEE (Liang & Zeger, 1986).

Fourth, there are different approaches to implementing ML with numerical integration
beyond adaptive quadrature (e.g. Laplace algorithms), different versions of adaptive
quadrature (e.g. quadrature points iteratively updated based on mode versus mean of
posterior), and different modifications of PQL in use (e.g. PQL2; Goldstein & Rabash,
1996). The generalization of these results across these other estimation algorithms cannot be
fully guaranteed.

Recommendations

Notwithstanding the limitations noted above, we believe that our results can be used to
better inform the analysis of ordinal outcomes in nested data. As noted, our results clearly
indicate that use of a linear model with ordinal outcomes should be avoided. In selecting the
multilevel cumulative logit model as more appropriate for ordinal outcomes, the central
question is then which estimator is to be preferred, PQL or ML with adaptive quadrature?

The answer to this question depends not only on the bias and sampling variability of the
estimates, but also on other factors. For instance, one issue that must be considered when
choosing between PQL and ML is whether one wishes to evaluate the relative fit of
competing models. Because PQL uses a quasi-likelihood, rather than a true likelihood, it
does not produce a deviance statistic that can be used for model selection (e.g., by likelihood
ratio test or penalized information criteria). This is a significant limitation of PQL that is not
shared by ML. If comparing between competing models is a key goal of the analysis then
ML may be preferred to PQL on these grounds alone. Another factor that might influence
estimator selection is computational efficiency. PQL is much faster, particularly when the
number of random effects (dimensions of integration) is large. Finally, a third factor related
to estimator selection is model complexity. Some models may only be feasible with one
estimator or the other. For instance, PQL readily admits the incorporation of serial
correlation structures for the level-1 residuals.

Beyond these factors, our simulation results suggest that the preferred choice between PQL
and ML depends on the characteristics of the data. If data are obtained on 100 or more
clusters, cluster sizes are small, dispersion across clusters is anticipated to be moderate to
large, and the outcome variable has only two or three categories, then ML is the best choice.
Under virtually all other conditions, however, PQL is a viable, often superior alternative. In
particular, if data are available on 50 clusters or less, PQL will generally have lower MSE --
even with just two- or three-category outcomes. The bias of the PQL estimates is also
tolerable when either cluster sizes are large or outcomes have five or more categories.
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Table 7 translates our results for PQL and ML into a table of working recommendations for
fitting multilevel cumulative logit models (primarily based on MSE but also considering
bias). These are gross recommendations and we encourage researchers to consider the more
detailed results of our simulation before making a final selection. Situations under which
ML with adaptive quadrature or PQL perform similarly (and thus either could be chosen) are
denoted with the table entry “PQL, ML-AQ.” Situations under which PQL is preferable are
denoted “PQL” and situations where ML-AQ is clearly preferable are denoted “ML-AQ.”
Note that the cell of Table 7 corresponding to few clusters, small cluster size, binary
outcomes, and large random effects is empty because the performance of both estimators
was unacceptable (PQL showed excessive bias, whereas ML showed excessive sampling
variability). For this situation, researchers will need to look outside of the two estimators
studied here (e.g., MCMC might perform better through the implementation of mildly
informative priors that prevent estimates from becoming excessively large).

To see how Table 7 might be used in practice, we will consider two common situations.
First, many samples of hierarchical data consist of a relatively small number of groups but a
fairly large number of individuals in each group. For instance, a study might sample thirty
students from each of thirty schools. In this instance, the variance components are likely to
be on the smaller side, and PQL can be expected to perform as well or better than ML
regardless of the number of categories of the outcome. Second, many experience sampling
studies include a modest number of participants, say 25-50, but many repeated measures per
person. Experience suggests that variance components are often sizeable in such studies. If
our outcome is binary, we might choose ML due to the higher bias of PQL (despite similar
MSE). Alternatively, if our outcome is a 5-level ordinal variable then PQL becomes a more
attractive option: the bias of PQL will then be within tolerable levels and PQL will have
lower MSE than ML. One additional factor that might tip the balance in favor of PQL is that
PQL easily incorporates serial correlation structures for the residuals at level 1, and serial
correlation is often present with experience sampling data.

In conclusion, although further research on the estimation of multilevel models with ordinal
data is warranted, it is our hope that the results of the present study can help analysts to
make better-informed choices when fitting multilevel models to ordinal outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Marginal category distributions used in the simulation study (averaged over predictors and
random effects). Notes. Within 3-, 5-, and 7-category outcome conditions, marginal
frequencies are held constant but permuted across categories to manipulate the distribution
shape (bell-shaped, skewed, or polarized) without changing sparseness. Within 2-category
outcome conditions, it is impossible to hold marginal frequencies constant while

manipulating shape (balanced or unbalanced).
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Figure 2.

Average bias for the three fixed effect estimates (excluding thresholds) across estimator,
number of outcome categories, and distribution shape. Notes. The normal-theory REML
(Restricted Maximum Likelihood) estimator was used when fitting the linear multilevel
model. The estimators of PQL (Penalized Quasi-Likelihood) or ML (with adaptive
quadrature) were used when fitting the multilevel cumulative logit (logistic) model. Points
for two-category conditions are not connected to points for 3-7 category conditions because
their distribution shapes do not correspond. Results show that bias is large and sensitive to
distribution shape when using the linear model but not when using the cumulative logit
model (either estimator). Results are collapsed over the number of clusters, cluster size, and
the magnitude of the random effects.
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Figure 3.

Average bias for the three fixed effect estimates (excluding thresholds) across logistic
estimators, number of outcome categories and cluster size. Notes. Logistic estimators were
either PQL (Penalized Quasi-Likelihood) or ML (Maximum Likelihood) with adaptive
quadrature. Results show that PQL produces somewhat negatively biased fixed effect
estimates, particularly when random effects have large variances, whereas the estimates
obtained from logistic ML show small, positive bias. In both cases, bias decreases with the
number of categories of the outcome. Results are collapsed over number of clusters and
distribution shape and do not include linear multilevel model conditions.
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Medium Random Effects, 25-50 Clusters

*PQL O ML
MSE
03 Cateqory 3 Category 5 Category 7 Category
02
m‘
0.0
51020 510 20 510 20 5 102
Cluster Size Cluster Size Cluster Size Cluster Size

Medium Random Effects, 100-200 Clusters

*PQL QML
MSE
06  Catagory 3 Category 5 Category 7 Category
004
002
000 H»U»u
51020 510 20 510 20 510 20
Cluster Size Cluster Sze Cluster Size Clster Size

Page 23

Large Random Effects, 25-50 Clusters
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Mean-Squared Error (MSE) for the fixed effects (excluding thresholds) across number of
outcome categories, number of clusters, and cluster size. Notes. MSE is indicated by the
height of the vertical lines, and it is broken into components representing squared bias
(portion of the line below the symbol) and sampling variance (portion of the line above the
symbol). The scale differs across panels and is discontinuous in the upper right panel. MSE
is averaged across the three fixed effects.Results are plotted for multilevel cumulative logit
models; PQL denotes Penalized Quasi-Likelihood and ML denotes Maximum Likelihood
with adaptive quadrature. This plot does include linear multilevel model conditions.
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Figure 5.

Average bias for the standard errors (SE) of the three fixed effect estimates (excluding
thresholds) across number of outcome categories and cluster size. Notes. Results are plotted
for multilevel cumulative logit models; PQL denotes Penalized Quasi-Likelihood and ML
denotes Maximum Likelihood with adaptive quadrature. This plot does include linear

multilevel model conditions.
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Medium Random Effects, 25-50 Clusters
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Large Random Effects, 25-50 Clusters
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Mean-Squared Error (MSE) for the standard deviation of the random intercept, across
number of outcome categories, number of clusters, and cluster size. Notes. The scale differs
across panels and is discontinuous in the upper right panel. See Figure 4 notes for definition

of quantities in this plot.
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Medium Random Effects, 25—-50 Clusters
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Large Random Effects, 25-50 Clusters
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Mean-Squared Error (MSE) for the standard deviation of the random slope, across number
of outcome categories, number of clusters, and cluster size. Notes. The scale differs across
panels and is discontinuous in the upper right panel. See Figure 4 notes for definition of

guantities in this plot.
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Table 1

Top ng effect sizes for contrasts of fixed effect estimates across model specifications/estimators

Fixed Effect Estimates

Design Factor Xij(710) Wi (o) XiWj (710

Contrast 1: Linear versus Logistic Model

Main Effect 0.37 0.11 0.44
x Number of Categories 0.02 0.01 0.03
x Distribution Shape 0.02 <0.01 0.03
Contrast 2: PQL versus MLLogistic Model
Main Effect 0.06 0.03 0.07
x Size of Random Effects 0.02 0.01 0.02
x Number of Categories 0.01 <0.01 0.01
x Cluster Size 0.01 <0.01 0.01

Note. “x™ indicates an interaction of the designated between-subjects factor of the simulation design with the within-subjects contrast for method of
estimation.
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