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Theory of Mind (ToM) is the ability to attribute thoughts, intentions and beliefs to others. This involves component processes,
including cognitive perspective taking (cognitive ToM) and understanding emotions (affective ToM). This study assessed the
distinction and overlap of neural processes involved in these respective components, and also investigated their development
between adolescence and adulthood. While data suggest that ToM develops between adolescence and adulthood, these popu-
lations have not been compared on cognitive and affective ToM domains. Using fMRI with 15 adolescent (aged 11–16 years) and
15 adult (aged 24–40 years) males, we assessed neural responses during cartoon vignettes requiring cognitive ToM, affective
ToM or physical causality comprehension (control). An additional aim was to explore relationships between fMRI data and
self-reported empathy. Both cognitive and affective ToM conditions were associated with neural responses in the classic ToM
network across both groups, although only affective ToM recruited medial/ventromedial PFC (mPFC/vmPFC). Adolescents add-
itionally activated vmPFC more than did adults during affective ToM. The specificity of the mPFC/vmPFC response during
affective ToM supports evidence from lesion studies suggesting that vmPFC may integrate affective information during ToM.
Furthermore, the differential neural response in vmPFC between adult and adolescent groups indicates developmental changes
in affective ToM processing.
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INTRODUCTION
Theory of Mind (ToM) refers to the ability to attribute

mental states to self and others, including knowledge, beliefs

and intentions (Premack and Woodruff, 1978). Other re-

searchers have also included understanding feelings within

the definition of ToM (Shamay-Tsoory et al., 2005). It is

likely that ToM is a multidimensional process, requiring

the integration of a number of components (Amodio and

Frith, 2006). One recent model (Shamay-Tsoory et al., 2010;

Figure 1) distinguishes cognitive from affective sub-

processes of ToM. Cognitive ToM refers to the ability to

make inferences about beliefs and motivations, while affect-

ive ToM refers to the ability to infer what a person is feeling.

According to this model, cognitive ToM is a prerequisite for

affective ToM, which also requires intact empathy processing

(an ability to share and understand the emotional states of

others; Singer et al., 2009). Successful affective ToM process-

ing, therefore, requires the integration of cognitive ToM and

empathy. The first aim of the current study was to investi-

gate the neural bases of cognitive and affective ToM using

fMRI. Given recent evidence of continued development of

the neural bases of ToM between adolescence and adulthood

(Blakemore, 2008), a second aim was to explore the nature of

this development in more detail by including an adolescent

comparison group and an affective ToM condition.

fMRI studies exploring the neural bases of ToM have

identified a network of regions that are commonly

co-activated when participants are asked to think about

their own or others’ mental states, including posterior su-

perior temporal sulcus at the temporoparietal junction

(pSTS/TPJ), temporal poles, precuneus and medial prefront-

al cortex (mPFC) (Frith, 2007). However, these studies have

not explored the distinction between cognitive and affective

ToM. A series of lesion studies by Shamay-Tsoory and col-

leagues (Shamay-Tsoory et al., 2005, 2006; Shamay-Tsoory

and Aharon-Peretz, 2007) has shown that patients with le-

sions to ventromedial PFC (vmPFC) show impairment on

ToM tasks involving an affective component (e.g. under-

standing the affective state behind an ironic remark), but
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do not show impairment on similar ToM tasks without an

affective component (e.g. understanding the motivation

behind an ironic remark in a non-affective context). Due

to the fact that the lesions studied were not anatomically

discrete, the reported damage in the vmPFC group extended

well into both the medial and orbital PFC. Nevertheless,

Shamay-Tsoory and Aharon-Peretz (2007) note that the

region of greatest damage in this sample was the ventral

portion of the medial PFC. These findings support the

view that vmPFC may be required for affective but not cog-

nitive ToM. This is a plausible hypothesis given that this

region is well placed to integrate cognitive and affective in-

formation due to its extensive connections with regions

involved in affective processing including the amygdala, tem-

poral pole and anterior insula (Shamay-Tsoory et al., 2006).

Basic emotional (or affective) processing such as emotion

perception and recognition is not an explicit component of

the Shamay-Tsoory model, but we would argue that it is

necessary (although not sufficient) for empathy processes

which contribute to successful affective ToM (Figure 1).

Evidence from fMRI regarding the role of the vmPFC in

affective ToM is currently mixed. Using drawings depicting

emotional vs neutral social scenarios, Krämer et al. (2009)

found activation in vmPFC [Tal: �3 38 �9]. Simply viewing

social scenarios (two people) relative to a single person acti-

vated the typical ToM network (including a more dorsal

region of mPFC), but did not activate vmPFC. However,

this study did not explicitly require participants to mentalize;

nor did it directly compare cognitive and affective ToM. In

another study Völlm and colleagues compared the neural

response during cartoons requiring cognitive ToM (under-

standing intentions) vs cartoons requiring empathy (Völlm

et al., 2006). A conjunction analysis showed that both tasks

activated the ToM network. The empathy condition acti-

vated mPFC (BA 10) to a greater extent than did the cogni-

tive ToM condition; however, the peak of this activation fell

in the dorsal portion of BA 10 [Tal: 9 53 14], and as such

cannot truly be considered to be vmPFC.

The current study aimed to test several predictions arising

from the model of cognitive and affective ToM put forward

by Shamay-Tsoory et al. (2010). The use of fMRI with

healthy participants allowed several predictions to be tested

that are inaccessible to lesion methods. For example, the

model predicts that cognitive and affective ToM should ac-

tivate similar structures, but that affective ToM should add-

itionally recruit regions hypothesized to integrate cognitive

and affective information (including empathy processing) in

order to predict outcomes (such as mPFC and vmPFC;

Amodio and Frith, 2006; Shamay-Tsoory et al., 2007), as

well as those subserving empathic responding [such as

insula (Singer et al., 2009) and amygdala (Völlm et al.,

2006)]. Testing these predictions in a sample of healthy par-

ticipants was the first aim of the present study.

The second aim was to explore the development of cog-

nitive and affective ToM between adolescence and adult-

hood. There is some behavioural evidence that the

development of cognitive ToM precedes that of affective

ToM. For example, while children can pass second-order

false belief tasks (understanding what person A understands

about what person B thinks) from the age of 6 or 7 years

(Perner and Wimmer, 1985), the ability to represent what

person A understands about what person B feels (for ex-

ample, in the understanding of social faux pas) appears

later, between the ages of 9 and 11 years (Baron-Cohen

et al., 1999). Developmental fMRI studies further suggest

that the neural substrates of ToM continue to develop

during adolescence, long after children are able to perform

complex cognitive and affective ToM tasks. For example, a

meta-analysis by Blakemore (2008) found that adolescents

activated mPFC (BA 10) to a greater extent than did adults

on a number of tasks requiring inferences about mental

states: both cognitive ToM, e.g. understanding intentions

(Blakemore et al., 2007), and affective ToM, e.g. irony com-

prehension (Wang, et al., 2006) and understanding social

emotions (Burnett et al., 2009). However, no previous

fMRI study has explicitly looked at similarities and differ-

ences in the neural processing of cognitive and affective ToM

between adolescence and adulthood. Therefore, it is unclear

whether the previously observed differential activation of

mPFC between adolescence and adulthood is attributable

to late development of a process that is shared between cog-

nitive and affective ToM, or whether it reflects particularly

protracted development in regions subserving more complex

ToM demands, requiring the integration of cognitive ToM

with empathy processing.

The third aim of the present study was to explore the

relationship between ToM and self-reported ability to em-

pathize, since the model by Shamay-Tsoory et al. (2010)

suggests that affective ToM requires the integration of cog-

nitive ToM and empathy. However, empathy is itself not a

unitary construct, and there is considerable disagreement as

to how the different dimensions of empathy should be

defined. For the purposes of the present study, we explore

potential relationships between cognitive and affective ToM,

and cognitive and affective (or emotional) dimensions of

empathy. We use the definitions of cognitive/affective

Fig. 1 The model of the relationship between cognitive ToM, affective ToM and
empathy proposed by Shamay-Tsoory et al. (2010). Cognitive ToM is a prerequisite for
affective ToM, which also requires cognitive and emotional (or affective) aspects of
empathy. Figure adapted with author’s permission.
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empathy adopted by Jolliffe and Farrington’s (2006)

Basic Empathy Scale (BES), with cognitive empathy defined

as ‘understanding another’s emotions’ and affective empathy

as ‘affect congruence’, i.e. sharing another’s emotions and

being aware that the other person is the source of one’s

own affective state (de Vignemont and Singer, 2006). In

adopting these definitions, the BES attempts to avoid con-

fusing cognitive empathy with perspective taking (taking an-

other’s point of view), and affective empathy with sympathy

(concern for the target person). Since this scale has not been

used previously in relation to ToM ability, we aimed to

characterize potential relationships, particularly between em-

pathy subscales and affective ToM.

The current study used a cartoon vignette paradigm with

separate conditions for cognitive ToM, affective ToM and a

physical causality control condition. This allowed neural re-

sponses to each ToM subtype (cognitive and affective) to be

explored relative to a control condition that did not require

mental state attribution (physical causality), as well as to

each other. The cartoon paradigm, adapted from Völlm

et al. (2006), was chosen because it makes few demands on

reading ability. As discussed above, Völlm and colleagues

originally investigated the distinction and overlap between

neural responses to ToM vs empathy. However, the cartoon

scenarios used in the present study more closely followed

the cognitive/affective ToM dichotomy as outlined by

Shamay-Tsoory et al. (2010). Cognitive ToM cartoons

required participants to understand beliefs or intentions,

while affective ToM cartoons required participants to under-

stand feelings, in order to select the appropriate story

ending.

We tested only males for several reasons. First, although

no previous studies have investigated the neural processing

of cognitive vs affective ToM in an adolescent group, several

studies investigating ToM processing in adolescents exist,

but some have focused on females only (e.g. Blakemore

et al., 2007; Burnett et al., 2009). Therefore, more data on

the development of this ability in males is needed. Second,

differing trajectories of structural brain development be-

tween males and females during adolescence (Giedd et al.,

1999; Raznahan et al., 2010) suggests that averaging results

across both sexes might result in noisy data that are not

representative of either sex. Finally, prominent conditions

associated with difficulties in either cognitive or affective

ToM (e.g. autism spectrum disorders and psychopathy) are

more commonly reported in males (Blair et al., 2005; Baird

et al., 2006). Data on typical neural circuitry underpinning

these abilities in healthy males, therefore, provides a back-

drop for potential future studies on disordered populations.

We predicted that, across all participants, cognitive and

affective ToM cartoons would elicit responses in the ‘classic’

ToM network (pSTS/TPJ, precuneus, temporal poles,

mPFC), but that affective ToM would be associated with a

greater or additional response in regions integrating cogni-

tive and affective information (mPFC and vmPFC) and

those involved in basic affective processing (e.g. amygdala)

and empathy (e.g. insula). We further predicted that devel-

opmental differences between adolescents and adults in the

neural processing of ToM would be most pronounced for

affective ToM, in line with previous behavioural evidence

suggesting that affective ToM may develop later, and con-

sistent with the Shamay-Tsoory model suggesting that affect-

ive ToM requires the integration of cognitive ToM and

empathy. Finally, we conducted exploratory analyses to

assess whether the neural processes associated with cognitive

and affective ToM would be differentially related to cognitive

and affective components of empathy as measured by

self-report.

METHODS
Participants
Originally, 16 adolescents and 15 adults were recruited. One

adolescent was subsequently excluded from all analyses due

to excessive motion during MRI scanning. The final sample

therefore comprised 15 participants in each group. Mean age

was 14.18 years (s.d.¼ 1.88, range¼ 11.17–16.30) for the

adolescent group and 28.88 years (s.d.¼ 4.54,

range¼ 24.14–40.71) for the adult group. There were no

group differences in relation to full scale IQ as measured

by the Wechsler Abbreviated Scale of Intelligence (WASI;

1999) two-subtest version [adolescents: M¼ 106.40,

s.d.¼ 10.60; adults: M¼ 111.73, s.d.¼ 7.70; t(28)¼ 1.58,

P¼ 0.13]. No participants had a history of neurodevelop-

mental or psychiatric disorder, based on parental report

(adolescents) or self-report (adults). Procedures were

approved by the University College London Research

Ethics Committee.

Experimental task
The task was adapted from a cartoon vignette paradigm used

by Völlm et al. (2006). The scenarios were rewritten and the

cartoons redrawn so that the scenarios would be easily

understood by both adolescents and adults. All conditions

were matched in terms of the number of protagonists per

cartoon, and the complexity of the scenes. Stimuli consisted

of 30 cartoons; each cartoon consisted of three frames telling

a story, and one final screen with two choices of ending. The

participant was asked to decide the appropriate ending.

The cartoons were divided into three conditions of

10 cartoons each; Affective ToM, Cognitive ToM and

Physical Causality (PC). Each cartoon scenario portrayed

two people to control for social content. For Affective

ToM cartoons, participants were required to infer how one

story character would react to their companion’s affective

state, in order to choose the correct ending. Cognitive

ToM cartoons required an inference to be made based on

the intentions or beliefs of one story character and their

companion. PC scenarios required an understanding of

cause and effect (e.g. sunshine melting snow or a football

breaking a window): selecting the correct answer did not
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require the understanding of mental states of the story char-

acters appearing in the cartoon (Figure 2).

The 30 cartoons were presented in sets of 6 cartoons. In

between sets, a fixation cross was displayed for 15 s. Each set

consisted of two cartoons from each condition. These two

cartoons were yoked together, although the order of the

three conditions within a set was randomized. The order

in which cartoons were presented was randomized anew

for each participant. Each trial (i.e. presentation of one car-

toon) started with an instruction screen displayed for 3 s:

‘What happens next?’ This was followed by the three

‘story’ frames, each presented for 2 s (6 s in total). The

choice of endings was then displayed for 5 s. During this

interval, the participant selected their chosen ending using

a key press response. Their choice was highlighted with a

blue box around the edge of the cartoon, and this remained

onscreen until the end of the 5 s decision period. There was

then an ISI of 1 s. Each trial therefore lasted a total of 15 s,

and each block of two cartoons from each condition lasted

30 s. The task was piloted on children of the target age group

(10–16 years) for both clarity of the stories and the appro-

priateness of the timings.

Questionnaire measures
Affective and cognitive empathy
The Basic Empathy Scale (BES; Jolliffe and Farrington, 2006)

was used to assess affective (11 items) and cognitive

(9 items) empathy by self-report. Example items included

‘I get caught up in other people’s feelings easily’ (affective

empathy) and ‘I can often understand how people are feeling

even before they tell me’ (cognitive empathy). Each item was

rated on a 5-point scale ranging from ‘strongly disagree’ (1)

to ‘strongly agree’ (5). The BES has demonstrated good val-

idity (Jolliffe and Farrington, 2006). For the adolescent par-

ticipants, the internal consistency (Cronbach’s �) of the

affective and cognitive empathy scales was 0.80 and 0.76,

respectively. For the adult participants, the internal consist-

ency of the affective and cognitive empathy scales was 0.86

and 0.90, respectively.

fMRI data acquisition
A Siemens Avanto 1.5 T MRI scanner was used to acquire a

5.5 min 3D T1-weighted structural scan, and multislice

T2*-weighted echo planar volumes with BOLD contrast.

The T2* EPI sequence used the following acquisition param-

eters: 46 2mm slices acquired in a descending trajectory with

a 1 mm gap, TE¼ 50 ms; TR¼ 4100 ms; slice tilt¼�308
(T > C); flip angle¼ 908; field of view¼ 192 mm; matrix

size¼ 64� 64. Functional data were acquired in two runs

of 9 min, with 134 volumes acquired per run.

fMRI data analysis
Imaging data were analysed using SPM8 (www.fil.ion.ucl.ac

.uk/spm). The first four functional image volumes from each

run were discarded to allow for T1 equilibrium effects, leav-

ing 130 image volumes per participant. Pre-processing

included rigid-body transformation (realignment) and nor-

malization into the standard space defined by the Montreal

Neurological Institute (MNI) template with a voxel size of

2� 2� 2 mm, and smoothing with a Gaussian filter of

8-mm full width at half-maximum.

Across both runs of the cartoon task, a block analysis was

conducted in order to compare neural activity associated

with Affective ToM, Cognitive ToM and PC. For each run,

Fig. 2 Examples of the cartoon story stimuli for (A) Affective ToM, (B) Cognitive ToM and (C) Physical Causality conditions. Each frame of the story was sequentially displayed for
2 s. The choice between two endings was displayed for 5 s. A blue frame highlighted the participant’s choice from the onset of the key press response until the end of the 5 s
display. For illustrative purposes the correct answer is shown highlighted on the left of the display, although during the task the location of the correct answer was randomized.
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the time series of 130 image volumes was deconstructed into

five block types, each of which was included as a separate

regressor in the design matrix. These consisted of Affective

ToM, Cognitive ToM and PC (variables of interest), as well

as visual fixation and a variable comprising the times during

which the instruction screen and ISI were displayed (vari-

ables of no interest). These five regressors were modelled as

boxcar functions convolved with a canonical haemodynamic

response function. The six realignment parameters were

modelled as effects of no interest, in order to account for

any variance due to head movement. For three adolescent

participants, extra regressors were included to model a small

number of corrupted images resulting from excessive

motion. These images (one image for two participants and

two images for one participant) were removed and the ad-

jacent images interpolated in order to prevent distortion of

the between-subjects mask. Data were high-pass filtered at

128 s to remove low-frequency drifts.

At the first level, four contrasts of interest were conducted

for each participant: (i) Affective ToM > PC, (ii) Cognitive

ToM > PC, (iii) Affective ToM > Cognitive ToM and (iv)

Cognitive ToM > Affective ToM. The resulting contrast

images were then entered into separate second-level analyses

for each contrast of interest, where Group (adults, adoles-

cents) served as a between-subjects variable in independ-

ent samples t-tests. Main effects of each of the four basic

contrasts, as well the interaction between Condition and

Group for each contrast, could then be explored. For the

Condition by Group interaction analysis, the SPM was ini-

tially thresholded at P < 0.001, uncorrected. Reported re-

gions are those reaching cluster-level significance at

P < 0.05, FWE corrected, or those with k� 5 voxels which

survived small volume correction at P < 0.05, FWE corrected

with a 10 mm sphere centred on peak co-ordinates taken

from the main effects analysis (an orthogonal contrast).

Correlations were also conducted between BOLD signal

associated with the four contrasts of interest and (i) BES

subscales (BES affective and BES cognitive) as well as

(ii) age in the adolescent group. The same thresholds were

applied for these analyses as for the Condition by Group

interactions.

RESULTS
Behavioural data
Task performance
For each participant, mean reaction times for correct trials

(RTs) and percentage error rates were averaged across the

two experimental runs. These data are displayed in Table 1.

A Condition (Affective ToM, Cognitive ToM, PC) by Group

(adults, adolescents) ANOVA with mean RT as the depend-

ent variable showed no main effects of Condition or Group

(P’s > 0.40), and no significant interaction (P¼ 0.083). In a

Condition by Group ANOVA with percentage error rate as

the dependent variable, there were no main effects of

Condition or Group (P’s > 0.24). However, there was a

significant interaction between Condition and Group:

F(2, 56)¼ 4.92, P¼ 0.011. Post hoc tests showed that this

was driven by a greater error rate in the Affective ToM con-

dition in the adolescent group compared with both the adult

error rate for Affective ToM (mean difference¼ 7.67%,

P¼ 0.035) and the adolescent error rate for PC (mean dif-

ference¼ 8.67%, P¼ 0.018, Bonferroni corrected). Missed

trials were excluded from these analyses. Missed trial rates

were very low (below 1.5% across all Conditions and

Groups), and an ANOVA showed no main effects or inter-

actions involving Condition or Group (P’s > 0.60).

BES affective and BES cognitive subscales
For adolescents, the mean (s.d.) of the affective and cognitive

empathy scales was 30.40 (6.30) and 35.47 (4.81), respect-

ively. For adults, the mean (s.d.) of the affective and cogni-

tive empathy scales was 37.15 (5.79) and 36.13 (4.47),

respectively. Mean scores on the cognitive empathy scale

did not differ between adolescent and adult groups

[t(28)¼�0.39, P¼ 0.70]. However, adolescents had lower

scores of affective empathy compared with adults

[t(28)¼�3.06, P¼ 0.005].

fMRI data
Main effects of Condition
Regions reaching cluster-level significance at P < 0.05, FWE

corrected, for the four contrasts of interest are shown in

Table 2. For Affective ToM > PC, significant clusters were

found in bilateral mPFC/vmPFC, precuneus/posterior cingu-

late cortex, pSTS/TPJ and temporal poles (Figure 3A). For

Cognitive ToM > PC, significant clusters were found in bi-

lateral precuneus/posterior cingulate cortex and temporal

poles, and the right pSTS/TPJ (Figure 3B). For Affective

ToM > Cognitive ToM, significant clusters were found in

bilateral precuneus/posterior cingulate cortex and right tem-

poral pole. The predicted result in vmPFC for this contrast

did not survive cluster-level correction; however, a cluster of

30 voxels in right vmPFC reached significance at P < 0.001,

uncorrected at the voxel level (peak voxel [4 52� 8],

t¼ 4.15, z¼ 3.63).

Table 1 Means and standard deviations for RT (ms) and percentage error
data for the cartoon task, presented by Condition and Group

Adults Adolescents

Mean RT (s.d.)
Affective ToM 1979 (253) 1967 (483)
Cognitive ToM 1963 (306) 1966 (461)
Physical causality 2006 (299) 1836 (428)

Percent errors (s.d.)
Affective ToM 5.33 (6.40) 13.00 (11.77)
Cognitive ToM 5.67 (6.23) 8.33 (7.48)
Physical causality 8.00 (10.14) 4.33 (5.30)
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Table 2 Regions showing a main effect at P < 0.05 with FWE correction at the cluster level for contrasts Affective ToM > PC, Cognitive ToM > PC, Affective
ToM > Cognitive ToM and Cognitive ToM > Affective ToM

Brain region BA L/R Peak voxel k z Cluster corrected, P-value

Affective ToM > PC
Precuneus/posterior cingulate cortex 31, 7 R 8 �54 26 2382 6.81 <0.001

23 L �6 �46 26 5.40
STS/TPJ ext. occipitotemporal cortex 40, 39, 19 L �54 �50 18 883 6.24 <0.001
Medial/ventromedial prefrontal cortex 9, 10 R 10 50 22 948 5.66 <0.001

10 L �8 54 0 4.29
Temporal pole 38, 21 R 50 8 �24 1326 5.62 <0.001
STS/TPJ ext. occipitotemporal cortex 40, 19 R 52 �48 20 1404 5.06 <0.001
Temporal pole 21 L �62 �10 �14 426 4.73 <0.001

Cognitive ToM > PC
Precuneus/posterior cingulate cortex 31, 7 R 8 �60 26 7555 7.73 <0.001
ext. occipitotemporal cortex 19 L �40 �80 22 6.02
STS/TPJ 40, 39 R 50 �48 20 1337 4.82 <0.001
Temporal pole 21, 22 R 56 �6 �16 480 4.69 <0.001
Temporal pole 21 L �62 �12 �12 138 4.45 0.043

Affective ToM > Cognitive ToM
Precuneus/posterior cingulate cortex 23, 7 L �6 �52 26 280 4.34 0.002

31 R 4 �54 28 3.89
Temporal pole 38, 21 R 50 10 �24 195 3.97 0.015

Cognitive ToM > Affective ToM
Inferior temporal gyrus 37 L �46 �54 �6 17 121 7.30 <0.001
ext. parahippocampal gyrus 19 R 30 �44 �10 7.04
ext. precuneus 7 L �20 �76 50 6.86
Premotor cortex 6 L �22 8 52 1130 6.05 <0.001
Premotor cortex 6 R 24 8 52 1045 5.49 <0.001
Premotor cortex 6 L �40 �8 30 466 4.42 <0.001
ext. Dorsolateral prefrontal cortex 9 L �46 4 36 3.91

BA¼ Brodmann area. Where more than one BA is shown, the peak voxel falls in the first BA, but the cluster extends to include the others listed. L/R¼ left/right,
peak voxel¼MNI xyz co-ordinates, k¼ cluster size.

Fig. 3 Main effects relative to Physical Causality for (A) Affective ToM and (B) Cognitive ToM. Medial (left panel) and right lateral (right panel) views are shown at a threshold of
P < 0.001, overlaid on an average structural scan from all 30 participants. For both contrasts, significant clusters were seen in the pSTS/TPJ, temporal poles and precuneus.
Affective ToM>PC was additionally associated with BOLD response in bilateral mPFC/vmPFC.
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The reverse contrast Cognitive ToM > Affective ToM was

associated with significant clusters in bilateral inferior tem-

poral gyrus and premotor cortex.

Interactions with group
For the Affective ToM > PC contrast, an interaction between

Condition and Group in left vmPFC (adolescents > adults)

survived SVC with a 10 mm sphere centred on the

co-ordinate from the main effect peak in this region [�8

54 0] (peak voxel for the interaction¼ [�10 46 �8]; BA

32/10; k¼ 7; z¼ 3.54; SVC P¼ 0.045, FWE-corrected)

(Figure 4). Post hoc t-tests conducted on the peak voxel

showed that the interaction was driven by the adolescent

group, with a greater response during the Affective ToM

condition than during PC [t(28)¼ 5.93, P < 0.001]: in con-

trast, there was no difference between conditions in the adult

group [t(28)¼ 0.23, P¼ 0.41; all one tailed]. As adolescents

made more errors than did adults during the Affective ToM

cartoons relative to the PC cartoons, this analysis was also

conducted with the error rate difference included as a

covariate. Results were very similar to the original analysis:

peak voxel¼ [�10 46 �8]; BA 32/10; k¼ 6; z¼ 3.50; SVC

P¼ 0.043, FWE. There were no interactions with Group for

any other contrasts of interest.

Correlations
Age
For correlations conducted within the adolescent group

only, there was a significant positive relationship between

age and BOLD response for the Cognitive ToM > PC con-

trast in the left occipitotemporal cortex (peak voxel¼ [�38

�84 26]; BA¼ 19; k¼ 28; z¼ 3.78; P¼ 0.019, SVC with a

10 mm sphere using the co-ordinate [�40 �80 22] from the

Cognitive ToM > PC main effect). There were no further

correlations with age for any of the other contrasts of

interest.

BES-affective empathy scale
Correlations with this measure were conducted across the

whole sample (Table 3). The group difference in

Fig. 4 Group difference in BOLD response in the vmPFC for the contrast Affective ToM>PC: (A) Graph showing the shape of the interaction in the peak voxel [�10 46 �8].
Adolescents showed a significantly greater response in this region during Affective ToM than during PC, while the adult group showed no difference between conditions. Please
note that some responses are plotted as deactivations relative to fixation baseline. This does not change the interpretation of relative differences between conditions; (B) An
overlay showing the main effect across all participants in left vmPFC for Affective ToM>PC (red blob) as well as the cluster showing an interaction with age group (blue blob).
Age group differences are evident for the most ventral part of the vmPFC activation only. Data are displayed at a threshold of P < 0.001, overlaid on an average structural scan
from all 30 participants.
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self-reported BES-affective scores was controlled for by using

independent samples t-tests across the two groups, and

including the BES-affective subscale as a continuous inde-

pendent variable which was modelled separately in each

group. The effect of the BES-affective subscale, independent

of the group difference in BES-affective score, could then be

ascertained. For the Affective ToM > PC contrast, there was a

negative relationship between BES-affective empathy score

and BOLD response in the right ventrolateral PFC, right

premotor cortex and left cerebellum. Similarly, for the

Affective ToM > Cognitive ToM contrast, negative relation-

ships were found in the right ventrolateral PFC, the left

post-central gyrus and the left posterior insula. There were

no regions showing a positive relationship with BES-affective

score for either Affective ToM > PC or Affective

ToM > Cognitive ToM. For Cognitive ToM > Physical

Causality, there was a positive relationship between

BES-affective Empathy score and BOLD signal in the left

parahippocampal gyrus/hippocampus. No regions showed

a negative relationship with this measure.

BES-cognitive empathy scale
There were no significant correlations involving this

measure.

DISCUSSION
This study used a cartoon vignette paradigm to explore the

distinction and overlap in the neural processing of cognitive

and affective ToM. Relative to the Physical Causality condi-

tion, both Cognitive and Affective ToM elicited a response in

regions classically associated with ToM, including bilateral

pSTS/TPJ, precuneus and temporal poles. In support of the

model by Shamay-Tsoory et al. (2010), the Affective ToM

condition additionally recruited bilateral mPFC, extending

both dorsally and ventrally, relative to the PC condition.

Although it did not survive FWE correction, vmPFC re-

sponded to a greater extent during Affective ToM than

during Cognitive ToM cartoons. Increased response in

vmPFC in the adolescent group relative to adults during

the Affective ToM condition (relative to PC) suggests that

the role of vmPFC in mediating affective ToM continues to

change between adolescence and adulthood. Finally, explora-

tory analyses across groups relating self-reported empathy to

neural responses during the task revealed several regions in

which the neural response to affective ToM was negatively

correlated with self-reported affective empathy.

Behavioural data
Behavioural data showed that adolescents made significantly

more errors on the Affective ToM cartoons than did adults.

Table 3 Regions showing a correlation between the BES-Affective Empathy subscale and BOLD response for the contrasts of interest across all participants

Brain region BA L/R Peak voxel k z FWE-corrected P-value

BES-affective (Affective ToM > PC)
Positive relationship�none
Negative relationship

Premotor cortex 6 R 26 �6 50 192 5.20 0.009
Ventrolateral prefrontal cortex 47 R 44 40 �8 316 4.96 <0.001

46 R 42 32 16 4.42
46/47 R 44 36 4 3.91

Cerebellum, posterior lobe – L �32 �60 �40 389 4.93 <0.001
L �22 �66 �46 4.85
L �32 �70 �30 3.80

BES-affective (Cognitive ToM > PC)
Positive relationship

Parahippocampal gyrus ext. hippocampus – L �22 �18 �24 182 4.95 0.012
– L �12 �18 �24

Negative relationship�none
BES-affective (Affective ToM > Cognitive ToM)a

Positive relationship�none
Negative relationship

Post-central gyrus 40 L �58 �28 20 234 4.83 0.004
Ventrolateral prefrontal cortex 45 R 56 14 2 248 4.21 0.003

ext. insula 13 R 46 12 2 4.05
ext. superior temporal gyrus 22 R 62 0 4 3.79

Posterior insula 13 L �40 �8 4 593 4.11 <0.001
13 L �38 �2 10 4.08

ext. superior temporal gyrus 22 L �50 2 2 3.93

aCognitive ToM > Affective ToM correlations with BES are the reverse of those shown here. Results are significant at P < 0.05 FWE-corrected at the cluster level.
L/R¼ left/right, peak voxel¼MNI xyz co-ordinates, k¼ cluster size.
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However, there were no group differences for Cognitive

ToM or PC cartoons. This finding suggests that Affective

ToM is particularly challenging, and may continue to de-

velop between adolescence and adulthood. It also fits with

evidence showing that children need to be older to solve

tasks requiring affective ToM (age 9–11 years for under-

standing social faux pas: Baron-Cohen et al., 1999) than to

solve tasks requiring cognitive ToM (age 6–7 years for

second order cognitive ToM: Perner and Wimmer, 1985).

The model by Shamay-Tsoory et al. (2010) suggests that

affective ToM requires the integration of cognitive ToM

and empathy (Figure 1). Recent studies have shown contin-

ued behavioural and neural development during adolescence

in both cognitive ToM (Blakemore, 2008; Dumontheil et al.,

2009) and empathy (Decety and Michalska, 2010). Future

work could address whether the relative immaturity of af-

fective ToM in adolescence is due to immaturity in cognitive

ToM and/or empathy components independently, or

whether it results from difficulties integrating these two

components. An additional factor to consider is that sub-

components within the construct of empathy also develop at

different rates (Decety, 2010). Of relevance to this issue, the

current study found significantly lower self-reported affect-

ive empathy in the adolescent group relative to adults, but

no group difference in self-reported cognitive empathy. This

is somewhat surprising, since it has been suggested that the

development of affective empathy precedes that of cognitive

empathy (Decety, 2010), and this result will need replication

in a larger sample.

Neural correlates of cognitive and affective ToM
fMRI responses to Cognitive and Affective ToM conditions

relative to PC were broadly similar to each other, and

included bilateral pSTS/TPJ, temporal pole and precuneus.

These regions are classically associated with ToM (see Frith,

2007 and Saxe, 2006 for discussions of each region’s pro-

posed role in ToM processing). Their activation in both

ToM conditions supports the proposal by Shamay-Tsoory

et al. (2010) that an ability to infer mental states is required

for both cognitive and affective ToM. Importantly however,

only Affective ToM (relative to PC) activated a significant

cluster in mPFC, extending both dorsally and ventrally.

Ventromedial PFC (vmPFC) also responded in the contrast

Affective ToM > Cognitive ToM, although this cluster did

not reach significance at the FWE-corrected level. These

findings provide some support for the idea that affective

ToM requires additional processing compared with cognitive

ToM, possibly reflecting the integration of cognitive and af-

fective information in vmPFC (Shamay-Tsoory et al., 2007,

2010).

However, the lack of a response during cognitive ToM in

the more dorsal portion of mPFC could be considered sur-

prising, given that many accounts of the role of mPFC in

ToM are not affect specific. For example, it has been sug-

gested that this region mediates meta-representational ability

(Amodio and Frith 2006; Frith and Frith, 2007), or that it

decouples mental states from reality (Gallagher and Frith,

2003). However, several lesion studies have shown intact

cognitive ToM when this region is damaged (Bird et al.,

2004; Shamay-Tsoory et al., 2005, 2006; Shamay-Tsoory

and Aharon-Peretz, 2007); thus it may be that mPFC is

not necessary for all ToM tasks (Saxe, 2006). Another pos-

sibility is that matching all conditions for social content (two

characters in each cartoon) eliminated an mPFC response in

cognitive ToM relative to the PC condition, since previous

studies have found that mPFC responds to the presence of

two people relative to a single person even when the task

does not require metalizing (Krämer et al., 2009).

One way in which the current findings deviate from the

model by Shamay-Tsoory et al. (2010), is that the direct

contrast between Affective and Cognitive ToM conditions

in the present study suggested that both dimensions of

ToM are associated with responses in distinct (as well as

overlapping) networks. Affective ToM was associated with

a greater response in bilateral precuneus and right temporal

pole relative to Cognitive ToM (in addition to the uncor-

rected result in vmPFC), while the reverse contrast revealed

activation in inferior temporal gyrus/occipitotemporal

cortex, premotor cortex and dorsolateral PFC (dlPFC).

Although not explicitly predicted, this latter result is of inter-

est, since a recent repetitive transcranial magnetic stimula-

tion (rTMS) study (Kalbe et al., 2010) found that rTMS over

the dlPFC selectively accelerated reaction times on a cogni-

tive ToM task, but had no effect on affective ToM RTs. Thus,

both the current findings and those of Kalbe et al. (2010)

suggest that affective and cognitive ToM are each associated

with their own distinct networks, in addition to regions that

overlap between the two (pSTS/TPJ, temporal poles, precu-

neus). A similar conclusion was reached in a study by Völlm

et al. (2006): and although the focus of that study was on

comparing cognitive ToM and empathy, the definition of

empathy was very similar to that of affective ToM used

here and elsewhere.

Comparison of fMRI data between adolescents
and adults
Comparison of fMRI data between adolescent and adult

groups revealed a region of vmPFC that responded in ado-

lescents but not in adults during the Affective ToM > PC

contrast. This region overlaps with the region identified in

lesion studies by Shamay-Tsoory and colleagues (2005, 2006,

2007) as mediating the integration of cognitive and affective

information to enable successful affective ToM. fMRI data

suggests that the functional neural correlates of ToM have a

protracted developmental trajectory (Blakemore, 2008).

However, the finding of a developmental difference during

affective but not cognitive ToM in the present study may

indicate that the trajectory of affective ToM is particularly

protracted. The idea that affective ToM is more complex

than cognitive ToM is further supported by the finding of
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a higher error rate in the adolescent group than in the adults

for the Affective ToM condition only. However, the fact that

the result in vmPFC was still significant when error rates

were included as a covariate suggests that error rate alone

cannot explain the difference between adolescent and adult

groups.

The nature of the interaction between age group and con-

dition (Affective ToM > PC) suggests that the most ventral

portion of the vmPFC cluster showing a main effect re-

sponded only in the adolescent group (Figure 3). At first

glance this might seem somewhat paradoxical, i.e. adults

activate a region that lesion evidence indicates is crucial

for task performance to a lesser extent than do adolescents.

However, it is possible that some complex cognitive pro-

cesses become more automatic and rely less on prefrontal

structures with increasing age. For example, there is evidence

from studies of developmental lesion patients showing that

vmPFC damage sustained early in life has a more detrimental

effect on social and emotional functioning than similar le-

sions sustained in adulthood (Anderson et al., 1999). Thus,

structures such as vmPFC may be, particularly, important

for the acquisition of social cognitive skills during develop-

ment, but are less crucial to task performance in adulthood.

The current study suggests that the process of acquiring

complex social cognitive skills such as affective ToM con-

tinues into adolescence. However, the mechanisms by which

neural responses are reduced and cognitive performance is

enhanced between adolescence and adulthood is still unclear.

It may be that age differences in cognitive strategy drive the

observed difference in neural response. Alternatively, or in

addition, physiological changes such as the pruning of excess

synapses between adolescence and adulthood may increase

efficiency of neural networks and drive cognitive develop-

ment (see Blakemore, 2008 for a discussion of these issues).

Correlations with self-reported empathy
We also explored potential correlations between

self-reported empathic abilities and BOLD response across

age groups during the cartoon task. The pattern of results

suggests that self-reported affective empathy correlates to a

greater extent with BOLD response during affective ToM

than does cognitive empathy. The lack of any correlations

with the cognitive empathy subscale was somewhat surpris-

ing, since cognitive empathy and affective ToM are often

defined in similar ways, i.e. in terms of ‘understanding emo-

tions’ (Jolliffe and Farrington, 2006; Shamay-Tsoory et al.,

2010). This may be due to the relatively small variance ob-

tained for the BES-cognitive subscale compared with the

BES-affective subscale.

Significant correlations between the BES-affective em-

pathy subscale and contrasts involving Affective ToM were

negative, i.e. these brain regions responded to a greater

extent for the contrasts involving Affective ToM in individ-

uals reporting lower levels of affective empathy. In the case

of frontal control regions, such as ventrolateral PFC,

individuals with greater self-reported empathy may have

had less difficulty regulating an affective response to

others’ distress and misfortune, which may aid in taking

an empathic stance. Alternatively, individuals low in affective

empathy may automatically regulate emotion arising from

another’s distress to a greater extent than more empathic

individuals: they may also have taken a more cognitive ap-

proach to the task, increasing the contribution of cognitive

control regions such as ventrolateral PFC. It is less clear how

the negative correlations in some of the other regions should

be interpreted. As these analyses were exploratory, future

studies should focus on designing a more direct test of the

link between empathy and Affective ToM.

Some limitations should be mentioned in the context of

the present study, which could be addressed by future work.

First, the naturalistic nature of the cartoon stimuli meant

that it was difficult to match the stimuli for visual complex-

ity. Differences in visual complexity might explain the exten-

sive activation in occipitotemporal cortex for the Cognitive

ToM > Affective ToM contrast. Second, it is not yet clear

how conceptual differences in complexity between affective

and cognitive ToM, and differences in neural responses be-

tween these conditions, relate to differences in the complex-

ity of neural computations performed. Third, this study

focused on males only, and future work using this paradigm

should also include females. However, there are also advan-

tages in collecting data from males only; for example such

data can provide an important starting point for exploring

neural correlates of affective and cognitive ToM in disorders

such as psychopathy and ASD, which are more prevalent in

males.

An additional consideration is that, although predictions

in the current study were based on the model of

Shamay-Tsoory et al. (2010), there are alternative conceptu-

alizations of the relationship between cognitive and affective

ToM. For example, Brothers (1990) argues that affective cues

(such as facial expressions) are used to infer motivations and

intentions, while Frith and Frith (2007) suggest that affect

sharing provides a mechanism for inferring another’s goal or

intention. Thus, both cognitive and affective ToM may rely

on basic emotional processing, followed by reasoning about

the inferred emotion or intention (Coricelli, 2005). This is in

contrast to the model discussed in the current study, which

suggests that making inferences about beliefs and knowledge

(cognitive ToM), and affective processes such as empathy

and emotional contagion, contribute separately to the abil-

ity to make inferences about emotions (affective ToM;

Figure 1). It may be that non-affective mental state infer-

ences are aided by basic affective processing. However, this

does not alter the conclusions of the present study: namely

that Affective ToM places additional demands relative to PC

and Cognitive ToM, and this is particularly evident during

adolescence as indexed by error rates and vmPFC response.

The current study explored the distinction and overlap in

the neural processing of cognitive and affective ToM using a
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non-verbal task with both adolescent and adult participants.

To our knowledge, this is the first fMRI study to explicitly

investigate the contrast between cognitive and affective ToM,

hypothesized by Shamay-Tsoory and colleagues on the basis

of evidence from lesion patients. Our findings suggest that

both affective and cognitive ToM are associated with distinct

neural substrates in addition to areas of common overlap in

the traditional ‘ToM network’. However, they also support

the view that vmPFC plays a specialized role in affective as

opposed to cognitive ToM. The current study also provides

further evidence of functional development within the ‘social

brain’ between adolescence and adulthood (Blakemore,

2008), with a greater BOLD response in adolescents than

adults in a subregion of vmPFC during Affective ToM rela-

tive to Physical Causality. Thus, it appears that the neural

basis of the ability to integrate affective information into

ToM-based decisions continues to develop between adoles-

cence and adulthood.
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