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Colloidal suspensions self-assemble into equilibrium structures ran-
ging from face- and body-centered cubic crystals to binary ionic
crystals, and even kagome lattices. When driven out of equilibrium
by hydrodynamic interactions, even more diverse structures can
be accessed. However, mechanisms underlying out-of-equilibrium
assembly are much less understood, though such processes are
clearly relevant in many natural and industrial systems. Even in
the simple case of hard-sphere colloidal particles under shear, there
are conflicting predictions about whether particles link up into
string-like structures along the shear flow direction. Here, using
confocal microscopy, we measure the shear-induced suspension
structure. Surprisingly, rather than flow-aligned strings, we ob-
serve log-rolling strings of particles normal to the plane of shear.
By employing Stokesian dynamics simulations, we address the
mechanism leading to this out-of-equilibrium structure and show
that it emerges from a delicate balance between hydrodynamic
and interparticle interactions. These results demonstrate a method
for assembling large-scale particle structures using shear flows.

colloids ∣ shear-induced structure

The study of ordered structures and symmetries of equilibrium
phases in condensed matter is central to our understanding of

its various material properties (1). Once driven out of equili-
brium, a material can exhibit richer phases with many unexpected
structures (2–6). However, the dynamics of these nonequilibrium
phases are much less understood relative to their equilibrium
counterparts (7–9). Sheared hard-sphere colloidal suspensions
provide a simple system for probing many out-of-equilibrium
structures. For example, sliding layers in sheared colloidal crystals
(10, 11), shear-induced crystallization of colloidal fluids (5), and
formation of shear transformation zones—localized regimes of
shear-induced structural rearrangement—in colloidal glasses
(12) have been observed in such systems.

The simplest and lowest ordered structure predicted to arise
from sheared hard-sphere colloidal suspensions is a one-dimen-
sional (1D) string structure, where particles link into strings un-
der shear. This structure has received much attention since it was
first found in a numerical simulation (13). Despite intensive study
(13–23), however, there is still heated debate over whether such
a structure exists in experiments (10, 23, 24) or is an artifact of
certain numerical algorithms (20–23). In part, this controversy
persists due to the lack of experimental techniques that provide
direct visualization of the suspension structure. Since the string
structure is predicted to exist in less concentrated suspensions
below the crystallization threshold, previous scattering experi-
ments, which average over large sample volumes, have not pro-
vided detailed information to unambiguously confirm or disprove
the existence of this less regular structure (10, 24). Here, by
employing fast confocal microscopy, we show that sheared hard-
sphere colloidal suspensions form strings aligned normal to the
plane of shear. In combination with Stokesian dynamics simula-
tions (25), we elucidate the mechanical mechanism leading to the
observed structures.

Results and Discussion
Experimental Observations of Vorticity-Aligned Strings.Our colloidal
suspension consists of d ¼ 0.96 μm silica particles suspended
in an index-matched glycerol/water mixture (see Materials and
Methods). We apply a plane sinusoidal shear to the suspensions
with a fixed shear strain amplitude γ ¼ 3.51� 0.16 and control-
lable shear angular frequency ω. The structure of particles in
the flow (x)—vorticity (z) plane is imaged at different locations
along the shear gradient direction (y). With the hard-sphere par-
ticles under shear, the relevant dimensionless parameters are the
volume fraction of the suspension, ϕ, and the Péclet number
Pe≡ η0 _γd3∕ð8 kBTÞ, which is the ratio of the diffusion and advec-
tion time scales. η0 is the viscosity of the solvent and _γ ¼ ωγ is
the amplitude of shear rate.

We explore particle configurations at different Pe in a sample
with ϕ ¼ 0.34, well below the crystallization threshold for hard-
sphere colloidal suspensions. The sample is confined between the
two shear plates at a separation h ¼ 7.0d. At this gap size, the
particles form weak layers parallel to the flat shear plates (x-z
layers) in equilibrium. These layers enhance strongly with in-
creasing shear (6). We image the particle structure in these x-z
layers. Without shear or at low Pe, the particle distribution is
nearly isotropic (Fig. 1A). The corresponding pair correlation
function, gðx;zÞ, shows a uniform ring for the first shell of neigh-
boring particles (Fig. 1A, Inset). However, at intermediate Pe, the
suspension develops a string structure, where chains of particles
align predominately along the vorticity direction (Fig. 1B). The
lifetime of these strings is longer than a full period of the shear
cycle and is much longer than our imaging speed (Movie S1). This
trend is also shown in the change of gðx;zÞ: the ring at low Pe
breaks into two crescents along the z direction indicating the 1D
symmetry of the string structure (Fig. 1B, Inset). As Pe is in-
creased further, the vorticity-aligned string structure becomes
more pronounced (Fig. 1C). Although the existence of a string
structure is consistent with some simulations (13–19), the orien-
tation of the strings is unexpected: it is normal to the numerically
predicted flow direction. To make sure that the vorticity-aligned
string structure is not an artifact of our confocal imaging techni-
ques, we perform two numerical and experimental control tests.
First, we deshear the raw images by shifting each scan line back-
wards affinely using the average shear velocity, which cancels any
possible shear-induced particle distortions. Second, we switch the
shear direction by 90° such that the vorticity direction is normal to
the confocal scanning direction. In both controls, we find the
same vorticity-aligned string structure at large Pe (Fig. S3).

When samples with higher ϕ are sheared, we find that the vor-
ticity-aligned strings in the x-z layers are pushed closer along the x
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direction. Finally, at ϕ ¼ 0.46 near the crystallization threshold,
we observe that strings locally collapse into crystalline islands
with fourfold symmetry (Fig. 1 D, E). These square crystalline
islands melt gradually at an even higher Pe above 40 (Fig. 1F).
To quantify the smooth transition between the string structure
and the shear-induced crystalline phase at intermediate Pe, we
measure the average distance between neighboring particles
along the x and z direction, Lx, Lz, over a range of ϕ (Fig. 1G).
Lx∕Lz starts at 1.15 for the string structure at low ϕ and ap-
proaches 1.0 for the square crystalline phase at high ϕ. Lx∕Lz
extrapolates to 1.0 at ϕ ¼ 0.50� 0.03, corresponding to the
fluid-crystal transition for hard-sphere suspensions in 3D.

While Lx∕Lz and gðx;zÞ provide detailed information about the
distribution of neighboring particle pairs, quantifying larger scale
structures requires further analysis. To determine how the result-
ing string structure depends on the experimental parameters, we
perform a cluster analysis. First we identify all the strings within
the x-z layers that are aligned along an angle θ with respect to the

flow direction x (Fig. 2 A, B). Then we count the fraction of par-
ticles in the strings, f ðθÞ. Consistent with the direct observations
shown in Fig. 1 A–C, we find that with increasing Pe, the flat dis-
tribution for f ðθÞ develops a strong peak at θ ¼ π∕2 (Fig. 2C),
which indicates the formation of vorticity-aligned strings. In ac-
cord with the trends shown in Fig. 1G, with increasing ϕ strings
get sufficiently close that our algorithm identifies a significant
number of particle strings along the flow direction (Fig. 2D).
Furthermore, inside each sample, particles in the x-z layers nearer
to the boundary plates—where layering order is strongest (6, 26)
—show an enhanced string structure as indicated by the higher
peak at π∕2 (Fig. 2E). Consistent with this layering order depen-
dence, we find that decreasing h, which enhances the confine-
ment of samples and hence induces stronger layering order
(26), also results in enhanced strings at π∕2 (Fig. 2F).

Measurement of Anisotropic Particle Diffusion. To gain further in-
sight into the symmetry-breaking mechanisms that lead to string
formation, we experimentally investigate the microscopic dy-
namics of individual particles. Specifically, we measure the effec-
tive particle diffusion in the x-z plane in the reference frame
of the oscillating shear (Fig. 3A). By comparing the effective dif-
fusion constant in the x and z directions, Dx∕Dz, we find a broken
symmetry in the particle dynamics: with increasing Pe the
enhancement of particle diffusion along x is much stronger than
enhancement along z (Fig. 3B). Since the experiments are con-
ducted at constant γ, the increase of Dx∕Dz cannot be due to
Taylor dispersion (27). Owing to the anisotropic particle diffu-
sion, particle density along z has to increase relative to that along
x in order to maintain a uniform osmotic pressure within the
layer. Consequently, close-packed strings along the vorticity
direction gradually emerge with increasing Pe.

Using Stokesian Dynamics Simulations to Determine the Mechanism
for String Formation. To parse the contributions from different
physical factors to the observed structure and dynamics, we em-
ploy Stokesian dynamics simulations (25). In our simulations,
spheres immersed in a 3D fluid are confined by an external
potential (See Materials and Methods). For computational effi-
ciency, we study a small system with only two layers of particles
(Fig. 4A) confined by an external potential. We quantify particle
structure in the x-z layers with gðr ¼ d;θÞ, which corresponds to
the first peak of gðx;zÞ in the polar coordinate (Fig. 4B). In the
absence of shear, the suspension equilibrates and gðr ¼ d;θÞ is
flat. Under steady shear, our simulation shows a clear signature
of vorticity-aligned string structure as indicated by the large peak
in gðr ¼ d;θÞ near θ ¼ π∕2 (Fig. 4B). Thus, our simulation on a
small system is already able to capture the basic string formation
observed in the experiments.

Two more sets of simulations are performed to test the impor-
tance of the hydrodynamic interactions. We first turn off the
hydrodynamic interactions between particles. In this limit, the
simulations become similar to previous Brownian dynamics simu-
lations of sheared particles (14–17, 19). We find that instead of
vorticity-aligned strings, particles form strings aligned along the
flow direction, as indicated by the stronger peaks of gðr ¼ d;θÞ
near θ ¼ 0 and θ ¼ π in Fig. 4B. This finding highlights the fact
that hydrodynamic couplings between particles are essential for
formation of vorticity-aligned strings. In another simulation,
we turn off the coupling between the rotational motions of par-
ticles about their centers and their translational motions. Such a
situation would be realized by nonrotating spheres immersed in
a liquid with slip boundary conditions. We find that the results
are qualitatively similar to the results with full hydrodynamic
couplings (Fig. 4B). This finding indicates that the direct coupling
between rotational and translational degrees of freedom of par-
ticles is not essential for formation of the vorticity-aligned string
structure.

Fig. 1. String structure in sheared colloidal suspensions. (A)–(C) The real-
space structures of particles in an x-z layer are shown for a suspension of ϕ ¼
0.34 under confinement h ¼ 7.0d at Pe ¼ 0.72 (A), Pe ¼ 72 (B), and Pe ¼ 337

(C). The corresponding pair correlation function gðx;zÞ is shown in the inset of
each plot. gðx;zÞ is defined as the probability of finding a particle at position
(x, z) with respect to the center of each particle. Each gðx;zÞ measurement
averages over about 5,000 particles. The intensity scale in each inset was
adjusted for clarity. (D)–(F) show the structure and gðx;zÞ for the ϕ ¼ 0.46
sample under otherwise the same experimental conditions as (A)–(C). (G)
shows the ratio of the distances between neighboring particles along the
x and z directions, Lx∕Lz, versus ϕ at Pe ¼ 70. Lx∕Lz ¼ 1 is indicated by the
dashed line. The solid line is a linear fit of the data. The inset of (G) shows
a definition of our coordinate system. All thesemeasurements are for the 2nd
particle layer in the x-z plane counted from the top stationary plate.
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Furthermore, we explore the role of particle layers in the for-
mation of vorticity-aligned strings in our simulations. We first
work in the highly confined limit with only one particle layer:
spheres are so confined by the external potential that no displa-
cement in the y direction is allowed (see Materials and Methods).
The results show that vorticity-aligned strings do not emerge
under shear (Fig. 5). Consistent with this result, when we insert
a strong potential barrier between the two particle layers in our
small system presented above (see Materials and Methods), we
find that instead of vorticity-aligned strings, particles with full
hydrodynamic coupling preferentially form strings aligned along
the flow direction (Fig. 5). Both of these results indicate that
particle migration in y across different layers is crucial for the for-
mation of vorticity-aligned strings.

Mechanism for String Formation. Based on our numerical results,
we propose a detailed physical picture of how the vorticity-
aligned strings form. As the basic element, the relative motion
of a particle pair can be divided into motion along the line con-
necting their centers (radial motion) and the rotation around the
center of mass of the pair (rotational motion). With increasing
shear, both motions are unaltered in the vorticity direction (z),
but are faster in the x and y directions by a factor of Pe in the
dilute limit. When the pair gets closer, however, the hydrody-
namic coupling (lubrication) between the two particles strongly
represses their radial motion. Hence, for close pairs at large
Pe, the rotational motion in the x-y plane becomes the dominant
mode. Specifically, the relative motion of a particle pair, which is
arranged along z, is unaltered with increasing Pe. But a particle
pair arranged along the flow direction rotates out of the x-z
plane increasingly faster with increasing shear. This out-of-plane
rotation induces strong particle migrations along y and leads to
random collisions between particles of different linear shear
velocities—an effect that is even stronger in the situation where

the particles are already organized into layers. These collisions
strongly enhance particle diffusion in the x-z plane (28–30). Due
to the linear velocity profile, momentum transfer between two
colliding particles should on average be largest along the flow
direction. Hence, this mechanism enhances diffusion to a greater
degree along the flow direction than along the vorticity direction
as observed in the experiments, which eventually leads to the for-
mation of vorticity-aligned strings with increasing Pe as required
by the balance of the osmotic pressure.

Conclusions
In general, our results in conjunction with previous studies (13–
19, 22) help clarify the conditions necessary for obtaining string
structures with different orientations in hard-sphere colloidal sus-
pensions. We conclude that: (i) in Brownian dynamics simulations
without hydrodynamic couplings between particles, strings form
along the flow direction (13–17); (ii) with confinement that allows
no motion in y, the vorticity-aligned string structure does not ex-
ist; (iii) with both hydrodynamic coupling and freedom for par-
ticles to migrate in y, a string structure with log-rolling strings
along the vorticity direction prevails. Determining how these re-
sults are altered by additional interactions between the particles
remains an active area of research (31–34). It is also of great in-
terest to determine how particle layering order plays a role in the
string formation.

Our studies demonstrate that when driven out-of-equilibrium,
a simple system with isotropic components can show anisotropic
particle dynamics and display intriguing 1D order. In many ways,
our system is analogous to equilibrium systems comprised of
asymmetric particles that also exhibit anisotropic diffusion. For
example, discotic liquid crystals can form columnar structures
with 1D order (1). Furthermore, we illustrate that by employing
the anisotropic shear-induced particle diffusion (28–30), one can
regulate the effective direction-dependent particle interactions,

Fig. 2. Characterization of the string structure. (A), To identify strings aligned along θ direction with respect to x in x-z plane, we perform an angle-dependent
cluster analysis: Two particles with their center-to-center distance l < 1.24d and the bond orientation θb in a small range Δθ ¼ π∕9 around θ, jθb-θj ≤ Δθ, are
included within clusters, and only large clusters with cluster size N ≥ 4 are counted as strings. This analysis, while imitating how we identify strings with the
naked eye, characterizes the string structure of particles on a large scale beyond their first neighbors. As a comparison, gðx;zÞ provides more accurate in-
formation on the correlation between neighboring particles (Fig. 1 A–F inset). (B) shows an example of identified strings aligned along θ ¼ π∕2. We measure
the fraction of particles in the strings along θ over the total number of particles, fðθÞ, for different controlled parameters. (C) shows fðθÞ versus Pe for the 2nd
particle layer in a sample of ϕ ¼ 0.34 and h ¼ 6.7d. The number of layers is always counted from the top plate. (D) shows fðθÞ of the 2nd particle layer for
samples of different ϕwith h ¼ 6.8d and Pe ¼ 71. (E) shows fðθÞ in different x-z layers along y with ϕ ¼ 0.34, h ¼ 7.4d (8 layers in total) and Pe ¼ 54. We exclude
the boundary layers, which show strong crystalline structure even without shear at low ϕ. (F) shows fðθÞ of the 2nd particle layer for different confinement, h,
with ϕ ¼ 0.34 and Pe ¼ 54.
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and therefore, accelerate rates at which particles form contacts—
a method potentially useful for rapid bioanalysis if biofunctiona-
lized particles are used (35–37).

Materials and Methods
Colloidal Suspensions and Experimental Methods. The average diameter of our
silica particles is d ¼ 0.96 μm with polydispersity of 5%. The solvent we use is
a mixture of glycerin (80 weight%) and water, which matches the refractive
index of the particles and has viscosity η0 ¼ 0.06 Pa·s. By adding a small
amount of fluorescein dye into the mixture, we can image the three-dimen-
sional (3D) structure of suspensions with confocal microscopy. Our particles
are weakly charged in the suspensions and, in the range of volume fractions
we study (0.30 < ϕ ≤ 0.49), they exhibit near hard-sphere behavior with ther-
mal and hydrodynamic interactions. Suspensions are loaded into a plane
shear cell with an accurately controlled spacing, h, between the top and bot-
tom shear plates. We can vary h from 1 μm up to 100 μm. Hence, we are able
to study the effect of confinement on the structure of sheared suspensions
in our experiment. While the top plate is held fixed, a sinusoidal motion is
applied to the bottom plate by a piezoelectric actuator. The imaging plane of
our confocal microscope (61.4 μm × 61.4 μm) is parallel to the flow velocity
(x)—vorticity (z) plane. To obtain the full 3D structure, the location of the
imaging plane is varied along the shear gradient (y) direction. A further
detailed description of our experimental apparatus can be found in ref. 6,
and a detailed description of our confocal imaging techniques can be found
in the SI Text.

Numerical Methods. We use Stokesian dynamics to simulate the sheared
colloidal suspensions (22, 25, 29). In this approach, the configuration space
trajectories are composed of successive displacements of the colloidal parti-

cles each taken over a short time step Δt. The influence of hydrodynamic
interactions is incorporated through the resistance tensor, which only de-
pends on the configuration of all the colloidal particles. At the beginning
of each time step, the resistance tensor is evaluated and then used to deter-
mine the displacements of all the colloidal particles. We initially generate
N ¼ 110 spheres of unit diameter d, the center of mass of which falls in

Fig. 3. Effective particle diffusion in the x-z plane. (A) shows the mean
squared displacement of particles along the x direction, hx2i, (solid symbols)
and along the z direction, hz2i, (empty symbols) in the reference frame of the
oscillatory shear. To obtain particle motions in the shear frame, the global
shear motion, measured with particle image velocimetry, is subtracted from
the motion of individual particles. A residual oscillatory shear motion can still
be identified at a short time scale. The solid line has an exponent of 0.81.
Particles show subdiffusive behavior even in equilibrium, which may result
from the formation of rough particle layers due to confinement. Particle
motions are measured in the 2nd layer of the suspension with ϕ ¼ 0.34
and h ¼ 7.3d. The subdiffusion constant Dx and Dz are obtained by fitting
the slope of hx2i and hz2i versus time t in the log-log scale at later time
with power 0.81. (B) shows Dx∕Dz and the inset of (B) shows Dx∕D0 and
Dz∕D0 versus Pe, respectively, where D0 is the diffusion constant of particles
without shear.

Fig. 4. String formation in Stokesian dynamics simulations. (A) shows the
probability distribution of particles along y under different simulation con-
ditions. (B) shows the first peak of gðx;zÞ, gðr ¼ d;θÞ, versus θ. gðr ¼ d;θÞ is
normalized by its minimal value near π∕8. Black squares show the equilibrium
structure with Pe ¼ 0. Red disks show the results from Stokesian dynamics
simulations with Pe ¼ 50. Blue triangles show results from Brownian dy-
namics simulations with Pe ¼ 50 after the hydrodynamic couplings between
particles have been turned off. Empty circles show results from Stokesian
dynamics simulations when the hydrodynamic couplings between the parti-
cle rotations and translational motions are turned off. The volume fraction of
the sample is chosen such that gðx;zÞ show comparable values in Stokesian
dynamics simulations and in experiments with ϕ ¼ 0.34 samples.

Fig. 5. Effects of layers on the string structure. The first peak of gðx;zÞ;gðr ¼
d;θÞ is shown for Stokesian dynamics simulations at Pe ¼ 50 with particles
confined in one layer (circles), and for Stokesian dynamics simulations at Pe ¼
50 with extra an flat potential barrier inserted in the middle of the suspen-
sion at y ¼ 0 (squares).
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the range 0 < x < 15, 0 < z < 15, and −a < y < a, where a ¼ 0 for the single
layer simulations and a ¼ 0.475 for the double layer simulations (Fig. 4A).
To control the center of mass of particles in y, we apply an external potential
that is 0 for jyj ≤ a and Uy ¼ ðf∕2Þ · ðjyj − aÞ2 for jyj > awith f ¼ ∞, a ¼ 0 for
the single layer simulations, and f ¼ 10;000 kBT , a ¼ 0.475 for the double
layer simulations. Periodic boundary conditions in the x and z directions
are used. For one set of simulations, an additional potential barrier Uy0 is
added to repress the inter layer exchanges (see text), where Uy0 is 0 for
jyj > 0.3 and 40 kBT · ½1þ cosðπy∕0.3Þ� for jyj ≤ 0.3. The interparticle poten-
tial was chosen to be isotropic and can be represented by the continuous
but nearly hard sphere potential function over the separation r as
UðrÞ∕kBT ¼ Cðr − 0.5Þ−α with C ¼ 8 × 10−9 and α ¼ 32. The unit time of the
simulation is defined in terms of the characteristic time of the system: the
diffusive time scale d2∕D when Pe < 1 and the inverse shear rate 1∕_γ when
Pe > 1. D is the short time diffusion constant of particles. In each simulation

40,000 time steps of Δt ¼ 5 × 10−4 are taken initially to allow the system to
settle into steady state, after which 400,000 time steps were taken for com-
puting average properties.
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