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Abstract

fMRI experiments with awake non-human primates (NHP) have seen a surge of applications in recent years. However, the
standard fMRI analysis tools designed for human experiments are not optimal for analysis of NHP fMRI data collected at high
fields. There are several reasons for this, including the trial-based nature of NHP experiments, with inter-trial periods being
of no interest, and segmentation artefacts and distortions that may result from field changes due to movement. We
demonstrate an approach that allows us to address some of these issues consisting of the following steps: 1) Trial-based
experimental design. 2) Careful control of subject movement. 3) Computer-assisted selection of trials devoid of artefacts and
animal motion. 4) Nonrigid between-trial and rigid within-trial realignment of concatenated data from temporally separated
trials and sessions. 5) Linear interpolation of inter-trial intervals and high-pass filtering of temporally continuous data 6)
Removal of interpolated data and reconcatenation of datasets before statistical analysis with SPM. We have implemented a
software toolbox, fMRI Sandbox (http://code.google.com/p/fmri-sandbox/), for semi-automated application of these
processing steps that interfaces with SPM software. Here, we demonstrate that our methodology provides significant
improvements for the analysis of awake monkey fMRI data acquired at high-field. The method may also be useful for clinical
applications with subjects that are unwilling or unable to remain motionless for the whole duration of a functional scan.
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Introduction

In human fMRI studies, there are theoretically and experimen-

tally established preprocessing procedures that prepare the data

for subsequent statistical analysis. First, all images of a session are

spatially co-registered to either the first or the mean image of a

time series to remove variance stemming from voxel position

changes. Secondly, the realigned images are normalized to a

template brain to prepare the data for later analysis at the group

level. Third, images are spatially smoothed with a Gaussian kernel

to reduce noise, and often to facilitate combination of data across

subjects (see e.g. [1,2] for detailed descriptions of each step). To

suppress slowly varying trends and remove high-frequency noise,

data are temporally filtered before running statistical tests.

However, using this conventional processing pipeline for awake

non-human primate (NHP) data acquired at high magnetic field

(7T) without specific adaptations is not appropriate for a variety of

reasons, including the trial-based nature of NHP experiments, with

inter-trial periods being of no interest, and the artefacts produced by

field changes due to movement. In this paper we describe an

approach to analysis of high-field data from NHPs, overcoming

several limitations of standard automated processing packages.

One assumption underlying popular realignment algorithms,

e.g. in Statistical Parametric Mapping (SPM, Wellcome Depart-

ment of Imaging Neuroscience, London, UK. Accessed 2011 Dec

7), is a high degree of similarity and/or conservation of the subject’s

head shape across time within a session, with the possibility for shifts

and rotations in any direction. In high-field awake NHP scans, this

assumption is not met. The subject’s head is not free to move, but is

instead secured to the primate chair by an implanted head post .

Thus, head motion in the conventional sense is not an issue. Instead,

due to the sensitivity of the high field to animal jaw and body

movements, other more complex issues arise [3].

With increasing field strength, subject movement has a

correspondingly larger impact on image quality. Because they

significantly alter the B0 field at high field strength, subject

movements during image acquisition cause substantial image

distortions and signal changes, e.g. [4]. One important source of

such distortions is jaw movement, inevitable since animals

participate for juice reward. Swallowing also causes image warping

[5], and artefacts can also be introduced by movements of the

animal’s body or limbs. An established procedure to detect and

prevent such movements during experiments is training the

animals to remain still during certain experiment phases (trials)

with the help of motion sensors attached to the animal chair [3].

Large body or jaw movements lead to image degradation in the

form of severe ghosting with segmented EPI sequences (for an

example from our data see Figure 1). In addition, shifts of the
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brain in the phase-encoding direction can occur when there is a

position change of the animal during the inter-trial phase. These

shifts are not caused by actual head movements, but by changes in

the B0 field induced by position changes of the animal’s body.

Other authors have addressed these issues with the help of field

maps [6–8].

In the case of NHP imaging with very frequent body

movements, field maps would have to be acquired between every

trial, which would require special imaging sequences not available

to most laboratories at present.

To address some of these problems, one common strategy is to

label every artefact volume with a separate single volume

regressor, thus eliminating the effects of artefacts on the model

estimation. Another way to avoid these issues is to remove the

volumes containing artefacts entirely [9]. This method however

results in a concatenated dataset, which introduces special

considerations in the subsequent data processing steps, relating

to filtering, model specification and brain masking. Conventional

temporal high- or low-pass filtering for complete datasets without

artefact removal introduces filter edge effects whenever artefacts

occur in the time series. Using such filters after concatenation

introduces filter edge effects between the concatenated time series

segments whenever there is a stepwise intensity change.

The normalization of the brains in a group study to a template

brain is another issue that is not straightforward in non-human

primates. One important prerequisite is the removal of non-brain

tissue from the images, since the anatomical variability of such

tissue in primates is high. In NHP studies that use custom coils to

maximize signal to noise ratio (SNR), there often exists a strong

image intensity gradient. This image intensity gradient combined

with the lack of suitable a priori images makes an automated brain

extraction difficult.

In this paper, we illustrate the benefits of using a combined

approach of trial selection and concatenation, non-standard

realignment and custom filtering, as well as an adaptive brain

extraction algorithm on two typical NHP datasets and compare

this to a more standard approach of modelling the artefacts in a

design matrix in SPM.

Materials and Methods

Animals
Two male macaque monkeys (M1&M2, Macaca mulatta) were

used in the experiment. All procedures were approved by the local

authorities (Regierungspraesidium), and were in full compliance

with the guidelines of the European Community (EUVD 86/609/

EEC) for the care and use of laboratory animals. The surgical

procedures are described in detail elsewhere [10].

Training and Task
We used a mock scanner setup to simulate conditions in the

scanner [3]. To limit motion artefacts, special training procedures

were implemented to make sure that animal movement within

experimental trials was minimal. To this end, motion sensors were

used to measure jaw and body movements [3].

The animals were gradually familiarized with the mock scanner

chair, the head holding apparatus, the feedback from the

monitoring of eye movements and body- and jaw motion, and

finally exposed to scanner noise. The animals had to perform

sequences of tasks (trials) that consisted of the following

components: to remain still and maintain visual fixation before

and during the presentation of a sequence of six familiar fractal

images; after stimulus presentation, the animals were required to

stay still for a period of 8–10 s before reward delivery (a droplet of

fruit juice). Trials in which movement was detected by the motion

sensors were instantly aborted (for detailed task and trial

information see [11]).

MR system and coil
We performed experiments in a vertical 7-T magnet with a bore

diameter of 60 cm (Bruker, BioSpin GmbH, Ettlingen, Germany).

We used a whole head volume coil (linear saddle coil) designed by

H. Merkle [12].

Imaging Protocol
For animal M1, we used a 2-segment interleaved T2*-weighted

gradient-echo echo planar imaging (GE-EPI) sequence. In-plane

resolution was 1.261.6 mm2. Field of View (FOV) was

1156115 mm2, echo time (TE) was 19 ms, repetition time (TR)

was 1000 ms, intervolume time was 2000 ms, Bandwidth

(BW) = 158.7 kHz. We acquired 19 contiguous slices. A single-

shot GE-EPI sequence was used for animal M2. In-plane

resolution was 0.7560.75 mm2. FOV was 96696 mm2, TR was

1000 ms, intervolume time was 1000 ms, TE was 21 ms, BW was

156.25 kHz. We acquired 11 contiguous slices. For both datasets,

slice thickness was 2 mm gapless. Comprehensive shimming was

done at the beginning of every session. We acquired functional

data in runs of 5 minutes each. More detailed information about

the animals, implants, MR system & coils [13], training, task,

motion sensors and imaging protocol is provided in [3] and [11].

Sample Datasets
Each session consisted of several short sequences (runs) of

5 minutes, in each of which 150 (M1) or 300 (M2) functional

volumes were acquired containing a mixture of successful trials

and artefact periods. To demonstrate the benefits of our algorithm,

we used two sample datasets. The first dataset consisted of 4

Figure 1. Ghosting artefact due to animal movement in segmented EPI -acquisition. Example of ghosting artefact in a 2-shot GE EPI image
in four axial slices (9–12) from a volume acquired during a period of animal movement.
doi:10.1371/journal.pone.0029697.g001
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sessions acquired on different days for animal M1. The second

dataset consisted of one full day of scanning for animal M2. These

protocols are representative for many NHP fMRI experiments, in

which data are collected over several days.

Overview of methods used in fMRI Sandbox
All processing steps were performed with fMRI Sandbox (FSB,

available on Google Code: http://code.google.com/p/fmri-sand-

box/ Accessed 2011 Dec 7.), unless otherwise stated. The software

has a built-in logging functionality to record all processing steps

made by the user. It allows the user to interact with the data in a

more direct way than established software toolboxes like SPM or

FSL [14,15]. Moreover, it contains integrated approaches to

several problems common to awake NHP fMRI. After FSB

preprocessing which used a modified SPM2 function for part of

the realignment, further processing was done with SPM5 in all

cases.

In the first FSB step, the user can semi-automatically and

interactively select trials and volumes that contain artefacts and

reject them from the subsequent analysis. We refer to this

procedure as data concatenation.

In a second step, we introduce a custom realignment method (2-

step realignment) for datasets containing distortions even within

the concatenated data for which the trial structure is known. This

method we call 2-step realignment.

Another possibility integrated into fMRI Sandbox is a custom

temporal filtering algorithm that takes into account the specific

properties of concatenated data and bridges the gaps that are

created by concatenation before temporal filtering.

The last feature of fMRI Sandbox useful for awake NHP fMRI

is an interactive brain extraction algorithm that allows removal of

muscle tissue from macaque brains with an interactively generated

a-priori mask.

In the following sections, we explain each of these steps in detail.

Each step can be used independently of the others, even though

some steps (e.g. 2-step realignment) will facilitate the application of

other steps.

Trial selection and data concatenation
For the reasons described in the introduction, subject movement

needs to be addressed explicitly in the analysis of NHP fMRI

experiments at high field. In particular, even in the absence of

head-movement, image distortions can occur due to movements of

the body or of limbs, in the following referred to as ‘body

movement’ or of the jaw, in the following referred to as ‘jaw

movement’. In our representative sample dataset, large body and

jaw movements of the animal were most common in between-trial

periods. Movement usually occurred after the end of each trial

when the animal was rewarded (Figure 2a). Large movements

during trials were generally detected by motion sensors, and the

trial accordingly aborted. In some cases, however, slight animal

body movement was not detected by the sensors and led to image

degradation in the form of visible ghosting even within a

completed trial. If the movement was only slight and the

distortions were not instantly visible, it led to apparent image

shifts in the phase encoding direction or to distortions. In rare

cases, such minor body movements could also result in serious

image degradation (animal M1), making the images unusable for

further processing.

In order to obtain a clean time course, the first step was to label

trial periods and remove all scan epochs outside of trials

(Figure 2b). For the 2-segment GE sequence (animal M1), trial

periods were then automatically examined for motion artefacts

using fMRI Sandbox. This was done by calculating the ratio of the

mean intensity of a predefined area within the brain to the mean

intensity of the area outside of the brain that was most affected by

ghosting artefacts; thresholds were set manually and the result

inspected online. Data were finally inspected by eye. Center of Mass

(CoM) shifts were displayed together with the data timecourse to

facilitate artefact detection. Where artefacts were detected, data for

the whole trial were removed. We thus obtained a temporally

discontinuous series of volumes that were devoid of visible artefacts.

Using this semi-automated process with manual input intro-

duces some degree of subjectivity into the trial selection process.

However, similar procedures are also used e.g. in EEG data

cleaning, and are not suspected to introduce condition-specific

biases [16]. An investigation of inter-rater reliability has not been

done in the context of our study.

Realignment within trials
Because of optimized scan parameters [12,17], and motion

control of the animal’s jaw and body, distortions within trials were

minimal. Nevertheless, due to physiological motion, e.g. breathing,

there were some slight shifts of the brain in the Anterior – Posterior

(A-P) axis within the trials. A standard realignment algorithm, such

as the one implemented in SPM, does not give priority to shifts in

the phase direction over all other spatial transformations. As

rotations and shifts in any other direction were physically

impossible, we only compensated for image shifts in the phase

direction. We used a modified SPM2 routine to realign every

volume in a trial to its respective first volume, correcting only

apparent head motion along the A-P axis. To avoid unnecessary re-

slicing and thus interpolation of the data, we only kept the spatial

transformation parameters; re-slicing was done at a later stage.

Realignment and normalization of mean trial images
Our experimental design allowed animals to move between trials.

Because of changes in animal position between trials, the apparent

position and shape of the brain was not exactly the same over trials.

Since using a simple 6-parameter rigid body co-registration as

implemented in SPM would not have accounted for distortion of

mean trial images, we corrected for brain position shifts and image

distortions between trials with a custom algorithm. First, mean

images of the different trials were calculated. These were then non-

rigidly coregistered to the first mean trial image with algorithms

from SPM2 using an affine 12-parameter transformation (rotation,

shifts, scaling and shears in x, y and z axes).

2-step realignment
To combine in-plane realignment within trials and 12-

parameter nonrigid coregistration of mean trial images, we used

the following algorithm:

For each functional volume, the individual combination of

within- and between-trial realignment and normalization trans-

formations was calculated, and then applied to each single data

volume to nonrigidly coregister to the mean volume of the first

trial. Images were re-sliced at this point in order to prepare them

for further processing.

This combination of realignment within trials and realignment

and normalization of mean trial images is in the following referred

to as 2-step realignment. A separate paper [18] lays out the details

and reports a detailed comparison of this realignment method with

a number of other approaches.

Temporal filtering
Intensity drifts and stepwise shifts in voxel intensity remained

even after trial concatenation, artefact removal and realignment

Analysis Approach for High Field fMRI Data
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Figure 2. Animal movement and trial concatenation. Relationship of jaw and body movements with instabilities of the fMRI data before a) and
after b) trial concatenation of one sample run of animal M1. The black thick line indicates the centre of mass (CoM) shift in millimetres relative to the
first volume in the time series (see also [3]), representing apparent brain movement. The thin grey line indicates the recorded signal from the jaw
movement sensor, and the thin black line the signal from the body movement sensor. Trial periods are shaded in light grey. Most movement occurs
between trials and causes large artefacts visible in the CoM shifts. Trial concatenation removes most volumes containing such artefacts.
doi:10.1371/journal.pone.0029697.g002
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(Figure 3a, b). In order to remove these and other general scanner

drifts and noise from the voxel time courses, a high-pass filter with

a cut-off of 96 s was used. We linearly interpolated artefact periods

in every run separately (Figure 3c) and then filtered the single runs

one by one. For interpolation, the voxel-wise average of the last

two volumes of every trial was calculated, likewise the average of

the first two volumes of the subsequent trial. We linearly

interpolated the values of these two averages over the time

elapsing between them in the actual scan.

After the filtering was done, the interpolated data were discarded,

and the trials concatenated. This way, we obtained temporally

filtered time courses from concatenated data (Figure 3d). What still

remained were stepwise intensity differences between runs that had

been filtered. To eliminate the effects of such intensity changes, we

modelled every run separately as a session in SPM.

Brain extraction
Conventional brain extraction is usually done by combining an

a-priori intensity distribution image with the intensity thresholded

image that needs to be extracted. Such algorithms failed to extract

the brain from the surrounding tissue in the functional volumes in

our study. This happened for two main reasons. First, a suitable

probabilistic map of the distribution of brain and tissue for

macaque brains was not available for the functional EPI images.

Second, given the severe distortions that we observed at 7T, using

static probabilistic distributions did not improve the brain

extraction for EPI images because of the distortion of the latter

at high field. Even though a number of probabilistic atlases are

available, some were created for a different primate species [19–

22], making their use less suitable for our sample of Macaca mulatta

scans. One atlas [23] comes with a T2-weighted average template

of a Macaca mulatta brain and recently, another template has been

made available that aims to integrate the two monkey species M.

mulatta and M. fascicularis [24]. Still, using any of these templates

was not sufficient to successfully extract the brain from the

surrounding tissue in our samples.

Using conventional probabilistic maps created for human

imaging was not possible because of different size and tissue

distribution. Furthermore, B1 inhomogeneity is a common problem

at 7 T. As is typical for high-field NHP fMRI experiments, our scans

Figure 3. Timecourse of a surface voxel affected by distortion. Effect of the various processing steps on a single voxel time course. The x-axis
depicts time in volumes, the y-axis shows voxel intensity values. The voxel time course: a) before any processing; b) after trials have been
concatenated, showing low frequency drifts and a stepwise change at the boundary between scanning runs (vertical black line) c) when artefact
periods are interpolated between trials in order to reproduce the original temporal arrangement of volumes; d) after filtering of interpolated data and
removal of interpolated segments; there is now less variance in the time course due to filtering, though a step between runs remains.
doi:10.1371/journal.pone.0029697.g003
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were acquired with custom made Radio Frequency (RF) coils,

which were relatively small in order to increase the SNR and

needed to be open in order to fit our visual stimulation system. The

high field in combination with the custom coils did not deliver the

kind of B1-homogeneity common in lower-field scanners and

standard clinical coils used in human fMRI studies. This caused

intensity gradients in the images which made a purely automatic

detection of brain boundaries difficult. As software like FSL,

MRIcro and SPM did not achieve a clear extraction of brain tissue

from surrounding tissue, we created our own brain extraction

routine with additional functionality. Our algorithm improves brain

extraction by allowing the user to interactively determine the brain

border and extract only brain without including other tissue such as

muscle or eyes. The results are illustrated for monkey M1 in

Figure 4.

In Figure 4a, one slice of the raw image before brain extraction

is shown. Image intensity of the brain and of adjacent tissue is

similar, which makes a segmentation based on image intensity

differences alone difficult. To address this issue, a filter which

increases the intensity in the middle of the image and decreases

intensity in the periphery of the image is applied in Figure 4b. This

results in an image intensity difference between the brain and

other tissue, which allows for better brain extraction. The strength

of the filter can be adjusted by the user to maximize image

intensity differences between tissue and brain for the processed

dataset. Additionally, the centre of the filter (crosshair) can be

positioned such that the intensity differences for the image under

observation are optimized for the specific dataset and region of

interest. This filtered image is then intensity thresholded. The

thresholded image is used to create a binary mask, which is then

filled from inside to determine the brain border. In a next step, this

mask is multiplied with the filtered image to generate a preview of

the actual brain extraction. The user can interactively optimize

brain tissue selection with sliders for the filter and the intensity

threshold used. (Figure 4c). Once the optimal combination of bias

field and extraction mask is found, the extraction mask can be

applied to the original volume, which results in Figure 4d. Thus,

the bias field is not included in the further analysis. The whole

Figure 4. Adaptive brain extraction algorithm. Demonstration of the effects of the algorithm implemented in fMRI Sandbox on an example
slice (#10) of the mean image of a sample dataset M1: a) before applying any mask or filter; b) after applying a filter to suppress matter outside the
brain; c) after brain extraction, now containing intensity changes in the brain due to the prior filtering; d) after a mask with the extraction data derived
from c) has been applied to the original dataset.
doi:10.1371/journal.pone.0029697.g004
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procedure is semi-automated and is usually completed within less

than a minute with good separation of brain and other tissue.

As our brain extraction algorithm works on the mean image of

all volumes to be processed, prior realignment was necessary at

this step. Without realignment, a mean image of all volumes would

have included either not all of the brain or also tissue of no

interest, e.g. the large jaw muscle in some of the volumes.

Comparison of sample data analysis with conventional
algorithm and new algorithm

In order to evaluate our non-standard methods with the

established practice for human subjects, we ran 5 different analyses

(Methods 1–5) on two datasets. To assess each method, we

calculated the contrast between the fixation and the stimulation

phase of the trial.

Two of these analyses were done with standard SPM

preprocessing, with and without artefact modelling, while the

remaining three cumulatively applied our NHP-specific prepro-

cessing methods. Regressors were modelled before trial concate-

nation with standard SPM functions (event durations convolved

with a canonical hemodynamic response function) to accurately

represent the expected hemodynamic response to the stimulus

presented. Any fMRI data concatenation was applied to the

regressors as well to maintain temporal coherence.

As our experimental setup involved frequent short scan periods

of 5 minutes (runs), often containing a small number of successful

trials, run effects were modelled as session effects. Modelling single

trials as sessions is possible but not suitable for designs that aim to

elucidate differences between two or more trial types, since both

trial types would be scaled differently; thus we avoided it here.

Figure 5 shows example fixation and stimulation regressors for a

single trial.

Except for Method 1, the same trials were used or excluded for

all methods. All detected artefacts and trials affected by artefacts

were labelled for Method 2, while all detected artefacts and trials

affected by artefacts were removed for Methods 3–5.

For animal M1, we excluded 9 of 62 trials or 15% of all trials, as

well as 434 of 1800 volumes (24%) altogether. Our automatic

detection algorithm correctly identified 431/1800 volumes (24%)

and 6/62 trials (10%) as affected by artefacts. Upon closer manual

inspection, we rejected or labelled another 3 trials from the

dataset. These contained visible artefacts that were not automat-

ically detected by our detection algorithm. We also rejected or

labelled all intertrial periods. We note that signal from animal

movement sensors for the rejected trials was not sufficiently

different from the non-rejected trials to lead to automatic trial

abortion during the experiment based on the sensor thresholds

used. Setting the automatic detection threshold lower would have

been another option, but at the risk of increasing false positives

and reducing the number of successful trials.

For animal M2, automated artefact detection was not possible,

since it was a single-shot acquisition and segmentation artefacts

could not be observed. Thus, we only discarded inter-trial periods,

retaining all trial data for analysis.

Smoothing was done with a FWHM (Full Width at Half

Maximum) kernel and a spatial extent of 26262 mm3 with SPM5.

In the SPM model specification, a high-pass filter with a cut-off of

128 s was used for all analyses, including the ones that had been

filtered within fMRI Sandbox before. All datasets were AR(1)

corrected. Grand mean scaling was used rather than global scaling.

For quantitative analysis we thresholded the resulting SPM t-

maps at T = 3.11 (p,0.001 uncorrected) and counted the

suprathreshold voxels for each method and both animals.

Method 1: Standard modelling. We took the original raw

datasets and analyzed them in a standard way, running all volumes

through standard SPM re-alignment and re-slicing, and model

setup with our hemodynamic regressors as our task regressors for

fixation and stimulation. We did not use motion regressors, since

real head movement was not possible.

Method 2: Standard modelling with artefact regressors. In

order to get a measure of the best possible approach for a standard

SPM analysis, we removed the influence of artefacts on the statistical

map. To this end, an additional artefact regressor was modelled

separately for every artefact-affected volume, thus effectively removing

artefact-tainted variance from the dataset. For M1, this included every

visible artefact volume, plus every single volume in all trials containing

any artefacts. Since artefact volumes could not be individually

identified for animal M2 (see above), we simply modelled all volumes

outside of trials as artefacts.

Method 3: Concatenated data. To determine the contribution

of different processing steps, we ran the steps of our algorithm

separately. As a first step, inter-trial periods as well as artefact-tainted

trials were directly removed from the dataset before further

processing. For all concatenated datasets, artefact labelling

regressors are not included any more, since all detected artefacts

were already removed by the concatenation.

Method 4: Concatenated data with 2-step realignment. As a

second step to elucidate the effects of our algorithm, we used our 2-step

realignment procedure on both datasets.

Method 5: Concatenated data with 2-step realignment

and high-pass filtering. As our next step aimed to remove

linear and nonlinear trends as well as high-frequency noise from

the dataset, all voxels were separately high-pass filtered with a filter

cut-off 96 s after linearly interpolating out-of-trial and bad trial

time points.

Results

Brain extraction
For M1, the performance of our brain extraction algorithm is

illustrated in Figure 6, comparing SPM analysis masks derived

from different brain extraction approaches. In Figure 6a, the mask

for the non-concatenated data of a standard analysis, including

Figure 5. Hemodynamic regressors. Modelled fixation and
stimulation regressors for one single trial. The blue line depicts the
modelled regressor for pure fixation (6 s), the green line the modelled
regressor for visual stimulation (2 s).
doi:10.1371/journal.pone.0029697.g005
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artefact regressors for each separate artefact volume, is very

fragmented due to automatic thresholding done by SPM with the

default mask value. In Figure 6b, the mask threshold value has

been sufficiently lowered to include all of the brain, but also

includes other tissue and even empty space around the brain.

Figure 6c shows the resulting mask after semi-automated brain

extraction in fMRI Sandbox. Areas of no interest around the brain

are no longer included; at the same time, nearly the whole brain is

successfully extracted.

For M1, analysis methods were compared using fMRI Sandbox

brain extraction as illustrated in Figure 6c. This excludes Method

1, which was a baseline SPM analysis excluding all fMRI Sandbox

functionality. For M2, however, brain extraction failed for

Methods 1–3, since SPM’s standard realignment methods were

not adequate for this data set. For a fair comparison of the five

methods on M2 data, accordingly, no brain extraction was

employed with any method.

Comparison of sample data analysis with conventional
algorithm and new algorithm

In Figures 7 and 8 we show the same slices of our sample

datasets (Figure 7, M1; Figure 8, M2) processed with different

methods. The figure shows results for the contrast stimulation vs.

fixation in a fixed-effects model. For each animal, Figure 9 shows

proportions of suprathreshold voxels for this contrast, separately

for each method and animal.

Method 1: Standard modelling. Figures 7a and 8a show the

maps resulting from a standard SPM analysis without explicit

modelling of artefact volumes. The proportion of suprathreshold

voxels for animal M1 is very low, not even reaching 1% of the whole

dataset (Figure 9). For M2, the corresponding proportion is nearly

4%.

Method 2: Standard modelling with artefact

regressors. Here, the same dataset without concatenation was

used, but the artefact volumes in the dataset were labelled with separate

regressors. For M1, statistical maps were improved (Figure 7b). Both

for animal M1 and M2, the proportion of suprathreshold voxels was

higher than for method 1, above 4% for animal M1 and above 8% for

animal M2.

Method 3: Concatenated data. Figures 7c/8c show the

maps for the concatenated dataset, where inter-trial periods as well

as artefact-tainted trials were removed during preprocessing. For

animal M1, at first glance, functional maps look very similar, yet

the quantitative measures (Figure 9) were slightly worse than for

the artefact modelling. Still, there was a clear improvement

compared to the original analysis without artefact modelling with

more than 3% of all voxels in the dataset reaching suprathreshold

level for M1. For M2, method 3 produced a smaller proportion of

suprathreshold voxels than method 1.

Method 4: Concatenated data with 2-step realignment. In

Figure 7d/8d, we used our 2-step realignment algorithm, which for

animal M1 did not visibly affect the map. The quantitative measure

(Figure 9) improved slightly compared to the concatenated data

realigned with the standard SPM function, yet were still clearly

worse than for method 2. For M2, similarly, methods 3 and 4

produced rather similar results.

Method 5: Concatenated data with 2-step realignment

and high-pass filtering. In order to remove linear and

nonlinear trends from the dataset, all voxels were separately

high-pass filtered after linearly interpolating out-of-trial and bad

trial voxel time points (Figures 7e/8e). For both animals, this

increased the proportion of suprathreshold voxels above the results

obtained with the SPM best practice method 2.

Discussion

As awake NHP scanning at high magnetic field is becoming

more widespread, and new issues with movement artefacts are

arising due to the high susceptibility of the field homogeneity to

animal motion, there is an urgent need for new approaches for

movement artefact handling, experimental design and data

analyses. In this paper, we propose special-purpose refinements

and additions to data analysis that address several issues specific to

NHP fMRI experiments at high fields. All of the methods

presented here are part of fMRI Sandbox, a toolbox to

Figure 6. Mask images for animal M1. a) A mask from a standard analysis with artefact regressors. Due to the strong intensity changes in many
voxels over time, the mask image is seriously degraded. b) Mask image after the mask threshold value has been adjusted to include the whole brain.
The mask does now cover not only the brain but all other tissue as well. c) A mask image resulting from running a standard analysis after our
advanced preprocessing. The mask image now homogenously covers the whole brain. Slices 7–11 are depicted.
doi:10.1371/journal.pone.0029697.g006
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interactively process fMRI data, which can be downloaded from

Google Code: (http://code.google.com/p/fmri-sandbox/). It al-

lows more efficient use of acquired animal data, thereby reducing

the number of scans needed. Elements of this approach have been

laid out in earlier work [3,11,18].

Our approach relies on the trial-based training and data

acquisition approach introduced in [3] to minimize animal motion

during experiment periods of a scan and uses elements of the data

processing strategies introduced by [9]. We extend this approach

by introducing specific realignment strategies that focus on in-

plane shifts; moreover, we compensate for brain distortions within

and between runs and sessions with a non-rigid coregistration

algorithm [18]. Our temporal filtering strategy addresses the issue

of discontinuous volume time series and global and local intensity

changes over single and multiple runs. It furthermore allows the

use of established fMRI analysis software packages (e.g. SPM) for

further processing.

Our approach deviates from the conventional approach to

human data analysis in several ways. Firstly, we do not rely on

complete datasets for analysis, as usually done in human scanning.

Other artefact treatment algorithms have been proposed [25], but

these do not allow for completely interactive handling of series of

functional scans to the extent required for the processing of our

datasets here. Awake monkey imaging at high field is different

from human imaging in many respects. In our study, we did not

have actual head movements, but field changes due to whole body

movement that usually occurred at predictable times and lasted for

several volumes. Even in an optimal case, less than half of the

volumes of a functional scan contain data which are related to an

experimental task. Trial periods last between 10 and 20 seconds,

Figure 7. Activation maps for animal M1 after the consecutive data processing steps. All runs have been modelled separately. Activation
maps show the contrast for visual stimulation vs. simple fixation, overlaid on 5 slices (7–11) of the mean EPI-images. Colour bars show T-values; voxel
threshold p = 0.001 uncorrected (T = 3.11); all cluster sizes shown.
doi:10.1371/journal.pone.0029697.g007
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while the subsequent reward-associated movement takes up to

20 seconds before another trial is initiated by the animal.

Additionally, the animal does not always finish every trial,

resulting in further unusable volumes. A simple interpolation of

artefact volumes with data from volumes before and after such

artefact periods would not really be useful. We therefore decided

to completely eliminate such volumes, which brought the issue of

concatenated datasets about. In principle, it is not appropriate to

process such datasets in a conventional way, as the assumption of

temporal coherence of volume data does not hold. In order to

circumvent this, we used a custom interpolation and filtering

method. After preprocessing is done, the dataset can be treated as

a conventional dataset, and filtering will not have additional

adverse effects.

We removed whole trials instead of single artefact volumes,

because cutting out single volumes from a time series brings about

two issues. First, time discontinuities are introduced again within

the time series. Secondly, it remains possible that the animal

movement that produced image deterioration in one volume also

led to field changes within the same trial. To avoid this, we have

chosen not to include the whole trial if affected by artefacts.

To show the improvement possible with our methods, we began

with two established approaches on two sample datasets acquired

with different sequences and animals. The first was to simply run

the SPM estimation on the whole dataset without explicitly

labelling volumes containing artefacts. This would be the standard

approach taken if manual inspection of datasets would be too time-

consuming or automated inspection of datasets would not be

available or established.

As an alternative best-practice standard approach, we used a

tailored method where artefact regressors were used to remove the

effect of artefact volumes. For M1, we modelled all volumes with

visible artefacts, plus all additional volumes of trials where artefacts

occurred. For M2, where artefacts were generally not visible, we

Figure 8. Activation maps for animal M2 after the consecutive data processing steps. All runs have been modelled separately. Activation
maps show the contrast for visual stimulation vs. simple fixation, overlaid on 5 slices (2–6) of the mean EPI-images. Colour bars show T-values; voxel
threshold p = 0.05 FWE corrected (T = 4.96), all cluster sizes shown.
doi:10.1371/journal.pone.0029697.g008

Analysis Approach for High Field fMRI Data

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e29697



simply added artefact regressors for all inter-trial volumes. For M1,

this approach yielded a much better and more localized map with

a much higher proportion of voxels in the dataset reaching

statistical significance. For animal M2, likewise, the number of

suprathreshold voxels strongly increased in comparison to the

standard approach.

For the next step, we produced a pruned dataset consisting only

of trial periods. This step reduced the number of suprathreshold

voxels for both animals. This was likely due to filter edge effects

between the concatenated trials because of the stepwise changes at

trial boundaries and a reduction in the effective degrees of freedom

due to the removal of a large number of volumes from the dataset.

To account for position changes within trials and distortions and

local intensity changes between trials we used a special 2-step

realignment procedure. The realignment procedure consisted of a

within-trial rigid and a between-trial non-rigid coregistration of

volumes [18]. We observed a higher number of suprathreshold

voxels for both animals. In M2, furthermore, our 2-step

realignment procedure was essential to allow successful brain

extraction, though to maintain comparability of methods, we have

not reported its effects here.

In a final step, we temporally filtered the data after having

interpolated the non trial periods in order to preserve temporal

coherence of the dataset. This yielded a clear advantage for our

Figure 9. Proportion of suprathreshold voxels for animals M1 & M2. Number of voxels above a threshold of T = 3.11 are shown for methods
1–5 are depicted. a) Animal M1. b) Animal M2. Method 1: Standard modelling with SPM realignment; Method 2: Standard modelling with SPM
realignment and artefact regressors; Method 3: Concatenated data with SPM realignment. Method 4: Concatenated data with 2-step realignment;
Method 5: Concatenated data with 2-step realignment and high-pass filtering within FSB.
doi:10.1371/journal.pone.0029697.g009
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combined method in comparison to all other methods in respect to

the number of suprathreshold voxels. This is likely due to the

removal of stepwise changes at trial boundaries in the preprocess-

ing of the data with the high-pass filtering of interpolated data as

well as the filter setting we are using for the high-pass filter. To

explore if only the filter setting was responsible for the

improvement, we tested different filter settings both for the SPM

analysis as well as for our interpolated filtering, but found no clear

effect of filter size setting.

Issues of image distortion can also be addressed by improve-

ments in signal acquisition. Phased array coils [26] have recently

been used for a number of studies [27–31] with parallel imaging

[32] and sequences like GRAPPA [33] or SENSE [34] can reduce

distortion, although the reduced distortion comes at the expense of

SNR [32] and may decrease BOLD MRI sensitivity in areas

unaffected by artefacts [35]. For a review of these techniques, see

e.g. [36]. Our approach is complementary to these, providing an

optimal data analysis route even for data acquired with either

surface or standard extremity coils without parallel imaging (as in

the vast majority of awake monkey fMRI studies).

Multi-shot imaging [37] has likewise been successfully used to

reduce image distortion at high field, in awake animals [11,17,38],

and in anaesthetized preparations with up to 16 segments [38–40].

Still, given the short trial durations that monkeys can be trained to

tolerate without reward, using a multi-shot imaging sequence with

more than 2 shots (like one of the sample datasets used here)

reduces the efficiency by increasing the intervolume time, and thus

considerably reducing the number of samples within a trial.

Another approach to address distortion is based on the

acquisition of B0 field maps, to correct for distortion [6–8].

Because of the susceptibility of the magnetic field to animal

movement and position changes, the field was frequently changed

between trials in our experiments. To use the field map approach

in our study would have necessitated the acquisition of a field map

for each single trial or the use of dynamic field maps acquired for

each single volume [41]. Another option would have been to do

field map correction for single sessions to account for the static

field map distortion component only [12]. We have not explored

any of these options here.

Navigator echoes can also be used to correct movement [42],

segmentation artefacts [37] breathing effects [43], or geometric

distortions [44] in fMRI data. However, the use of navigator echoes

and shim navigators for awake monkey imaging at high field was

found to be inferior to both standard 3D and custom 2D realignment

methods for the removal of motion in the time series [45].

Even though some of the issues we address have been addressed

earlier with other methods, our proposed processing algorithm is

complementary to these methods mentioned above, and does not

require additional investments in hardware, software or sequence

programming.

The notion of combining animal training with motion-

controlled trials in the scanner paves the way for the analysis

algorithms we outline here. Our approach goes beyond the earlier

attempts by introducing analysis methods that allow scavenging

useful data from artefact-tainted datasets. This is especially

relevant for high-field studies in which the probability of obtaining

artefact-tainted data is high. By using advanced animal training,

scanning and analysis methods, it was possible to select trial

periods devoid of motion artefacts and combine them into new

datasets. Processing these datasets with the algorithm laid out in

the methods section markedly improved the quality of the datasets

which could then be analyzed in a conventional way. In another

paper we have demonstrated the extension of the single subject

analysis methods outlined in this study to group datasets [11].

Because high-field scanning in general is very susceptible to

subject motion, the methods described here could also be

considered for application in human scanning. One major

difference between the conventional data acquisition method used

so far in human scanning and the approach taken here lies in the

structuring of the scanning time into separate trials that can be

separately selected for further processing or discarded based on the

artefact content. In an application to patient scanning in clinical

studies, it would e.g. be possible to instruct participants to lie still

for a few seconds and allow small movements for a few seconds

after each trial, emulating the experiment structure proposed for

the acquisition of animal data. As in the present work, motion

contaminated scan periods could be interpolated and conventional

temporal filtering methods applied before removing these scan

periods again to avoid introducing artificial data points. In this

way, high field imaging may become possible for studies with

patients, children or nervous participants who find it impossible to

remain completely still for the whole duration of the scans.
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