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Abstract Granger causality (GC) has been widely

applied in economics and neuroscience to reveal causality

influence of time series. In our previous paper (Hu et al., in

IEEE Trans on Neural Netw, 22(6), pp. 829–844, 2011),

we proposed new causalities in time and frequency

domains and particularly focused on new causality in fre-

quency domain by pointing out the shortcomings/limita-

tions of GC or Granger-alike causality metrics and the

advantages of new causality. In this paper we continue our

previous discussions and focus on new causality and GC or

Granger-alike causality metrics in time domain. Although

one strong motivation was introduced in our previous paper

(Hu et al., in IEEE Trans on Neural Netw, 22(6),

pp. 829–844, 2011) we here present additional motivation

for the proposed new causality metric and restate the pre-

vious motivation for completeness. We point out one

property of conditional GC in time domain and the short-

comings/limitations of conditional GC which cannot reveal

the real strength of the directional causality among three

time series. We also show the shortcomings/limitations of

directed causality (DC) or normalize DC for multivariate

time series and demonstrate it cannot reveal real causality

at all. By calculating GC and new causality values for an

example we demonstrate the influence of one of the time

series on the other is linearly increased as the coupling

strength is linearly increased. This fact further supports

reasonability of new causality metric. We point out that

larger instantaneous correlation does not necessarily mean

larger true causality (e.g., GC and new causality), or vice

versa. Finally we conduct analysis of statistical test for

significance and asymptotic distribution property of new

causality metric by illustrative examples.

Keywords Granger causality � New causality �
Linear regression model � Prediction

Introduction

Given a set of time series, the topic of how to define

causality influence among them has kept philosophers

busy for over two thousand years and has yet to be

completely resolved. In the literature one of the most

popular definitions for causality is Granger causality

(GC). Due to its simplicity and easy implementation, GC

has been widely used in economics and recently in neu-

roscience. The basic idea of GC was originally conceived

(Wiener 1956) and later formalized by Granger in the

form of linear regression model (Granger 1969; Geweke

1982). It can be simply stated as follows: if the variance

ðr2
�1
Þ of the prediction error for the first time series at the

present time is not less than the variance ðr2
g1
Þ of the

prediction error by including past measurements from the

second time series in the linear regression model, then the

second time series can be said to have a causal (driving)

influence on the first time series. Reversing the roles of

the two time series one repeats the process to address the

question of driving in the opposite direction. GC value of
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lnðr2
�1
=r2

g1
Þ is defined to describe the strength of the

causality which the second time series has on the first one

(Freiwald et al. 1999; Hesse et al. 2003; Ding et al. 2006;

Oya et al. 2007; Bressler and Anil 2010). From GC value,

it is clear that (i) lnðr2
�1
=r2

g1
Þ ¼ 0 when there is no causal

influence from the second time series to the first one and

lnðr2
�1
=r2

g1
Þ[ 0 when there is. This GC definition was

extended to frequency domain to show causal influence

from one time series on the other one in different fre-

quencies (Geweke 1982; Ding et al. 2006). Several GC or

Granger-alike causality metrics in frequency domain have

been developed such as spectral GC (Geweke 1982; Ding

et al. 2006), PDC (Baccal and Sameshima 2001), RPC

(Yamashita et al. 2005), and DTF (Kaminski et al. 2001).

To show whether the influence is a direct component or

mediated by the third time series, conditional GC is

defined (Geweke 1984; Freiwald et al. 1999; Hesse et al.

2003; Ding et al. 2006; Oya et al. 2007; Bressler and Anil

2010). In recent years there has been significant interest to

discuss causal interactions between brain areas which are

highly complex neural networks in both time and fre-

quency domains (Freiwald et al. 1999; Hesse et al. 2003;

Roebroeck et al. 2005; Oya et al. 2007; Wang et al. 2007,

2008; Atmanspacher and Rotter 2008; Gow et al. 2008,

2009; Rajagovindan and Ding 2008; Seth 2008; Cadotte

et al. 2009; Zhang et al. 2010).

Although there are wide applications of GC and Gran-

ger-alike causality metrics in both time and frequency

domains, some shortcomings/limitations of these metrics

were pointed out in our recent paper (Hu et al. 2011). To

overcome these shortcomings/limitations, we proposed

new causality metrics in time and frequency domains. In

particular, we emphasized that GC or Granger-alike cau-

sality metrics in frequency domain cannot reveal real

strength of causality at all and new causality metric in

frequency domain has advantages over spectral GC or

Granger-alike causality metrics.

In this paper we will focus on time domain and show

inherent shortcomings of conditional GC and DC or

normalized DC. We will demonstrate that the proposed

new causality metric better reveal directed real causality

from one time series on the other one than conditional

GC and DC or normalized DC. Thus, we must be cau-

tion in drawing any conclusion based on GC, conditional

GC and DC or normalized DC by noting the short-

comings/limitations of GC (Hu et al. 2011). We will

show the influence of one of the time series on the other

is linearly increased as the coupling strength is linearly

increased by computing GC and new causality values via

an example. We will also discuss statistical test for

significance and asymptotic distribution property of new

causality metric.

Granger causality in time domain

In this section we introduce the well-known Granger cau-

sality and conditional Granger causality.

Given two stochastic process X1(t) and X2(t) which are

assumed to be jointly stationary. Their autoregressive

representations are described as

X1;t ¼
Pm

j¼1

a11;jX1;t�j þ �1;t

X2;t ¼
Pm

j¼1

a22;jX2;t�j þ �2;t

8
>><

>>:
ð1Þ

and their joint representations are described as

X1;t ¼
Pm

j¼1

a11;jX1;t�j þ
Pm

j¼1

a12;jX2;t�j þ g1;t

X2;t ¼
Pm

j¼1

a21;jX1;t�j þ
Pm

j¼1

a22;jX2;t�j þ g2;t

8
>><

>>:
ð2Þ

where t ¼ 0; 1; . . .;N; the noise terms are uncorrelated over

time, �i and gi have zero means and variances of r2
�i

and

r2
gi
; i ¼ 1; 2: The covariance between g1 and g2 is defined

by rg1g2
¼ covðg1; g2Þ:

Now consider the first equalities in Eqs. 1 and 2.

According to the original formulations (Wiener 1956;

Granger 1969), if r2
g1

is less than r2
�1

in some suitable

statistical sense, then X2 is said to have a causal influence

on X1. In this case, the first equality in Eq. 2 is more

accurate than that in Eq. 1 to estimate X1. Otherwise, if

r2
g1
¼ r2

�1
; then X2 is said to have no causal influence on X1.

In this case, the two equalities are almost same. Such kind

of causal influence called Granger causality (GC) (Ding

et al. 2006; Geweke 1982), can be defined by

FX2!X1
¼ ln

r2
�1

r2
g1

: ð3Þ

Obviously, FX2!X1
¼ 0 when there is no causal influence

from X2 to X1 and FX2!X1
[ 0 when there is. Similarly, the

causal influence from X1 to X2 is defined by

FX1!X2
¼ ln

r2
�2

r2
g2

: ð4Þ

To show whether the interaction between two time

series is direct or is mediated by another recorded time

series, conditional Granger causality (Ding et al. 2006;

Geweke 1984), was defined by

FX2!X1jX3
¼ ln

r2
�3

r2
g3

ð5Þ

where r2
�3

and r2
g3

are variances of two noise terms, �3 and g3,

of the following two joint autoregressive representations:
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X1;t ¼
Xm

j¼1

a11;jX1;t�j þ
Xm

j¼1

a13;jX3;t�j þ �3;t ð6Þ

and X1,t =
Xm

j¼1

a11;jX1;t�j þ
Xm

j¼1

a12;jX2;t�j þ
Xm

j¼1

a13;jX3;t�j þ g3;t: ð7Þ

According to this definition, FX2!X1jX3
¼ 0 means that no

further improvement in the prediction of X1 can be

expected by including past measurements of X2. On the

other hand, when there is still a direct component from X2

to X1, the past measurements of X1, X2, X3 together result

in better prediction of X1, leading to r2
g3

\r2
�3
; and

FX2!X1jX3
[ 0:

For conditional GC, we point out one important property

as follows.

Property 1 Consider the following model

X1;t ¼ a11;1X1;t�1 � 0:8X2;t�1 þ a13;1X3;t�1 þ g1;t

X2;t ¼ a21;1X1;t�1 þ 0:8X2;t�1 þ a23;1X3;t�1 þ g2;t

X3;t ¼ a31;1X1;t�1 � 0:8X2;t�1 þ a33;1X3;t�1 þ g3;t

8
<

:
ð8Þ

where 0 \ ai1,1, ai3,1 \ 0.7, i = 1, 2, 3 and for simplicity

g1, g2, g3 are assumed to be independent white noise pro-

cesses with zero mean and variances r2
g1
¼ r2

g2
¼ r2

g3
¼ 1:

Figure 1 shows FX2!X1jX3
for Model (8) under different

parameters ai1,1 and ai3,1. When we calculate conditional

GC it should be pointed out that for each specific Model (8)

we generate a data set of 200 realizations of 10,000 time

points. For each realization, we estimate AR models (joint

representations Model (6) and Model (7)) with the order of

8 by using the least-squares method and calculate condi-

tional GC where the order 8 fits well for all examples

throughout the paper (see Fig. 1a and b from which one can

see FX2!X1jX3
keeps steady when the order of the estimated

models is[8). Then we obtain the average value across all

realizations and get FX2!X1jX3
: From Fig. 1 one can clearly

see that FX2!X1jX3
has nothing to do with parameters ai1,1

and ai3,1, i = 1, 2, 3 (of course, choices of parameters ai1,1

and ai3,1 are such that Model (8) does not diverge).

By the conditional GC definition (5), we know that

conditional GC FX2!X1jX3
explicitly measures the degree to

which X2 predicts X1 over and above the degree to which

X1 already predicts itself and X3 predicts X1, the influence

of X1 on itself (i.e. the coefficients ai1,1) and X3 on X1 (i.e.

the coefficients ai3,1) are factored out and quite correctly

makes no difference to the result. So, according to the

conditional GC definition (5) the above property is true.

In general GC is useful to show whether or not theo-

retically there is directional interaction between two neu-

rons or among three neurons. When there exists causal

influence, a question is arising: does GC value reveals the

real strength of causality? to answer this question, let’s

consider the following simple model

X1;t ¼ a12;1X2;t�1 þ g1;t

X2;t ¼ a21;1X1;t�1 þ g2;t

�

ð9Þ

whereg1 andg2 are two independent white noise processes with

zero mean and a12,1a21,1 = 0. From Model (9) one can get

X1;t ¼ a12;1ða21;1X1;t�2 þ g2;t�1

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
X2;t�1

Þ þ g1;t

¼ a12;1a21;1X1;t�2 þ a12;1g2;t�1 þ g1;t:

ð10Þ

So, GC value FX2!X1
¼

ln
a2

12;1r
2
g2
þ r2

g1

r2
g1

¼ � ln 1�
a2

12;1r
2
g2

a2
12;1r

2
g2
þ r2

g1

 !

ð11Þ

2 ½0;þ1Þ or equivalently,

FX2!X1
¼

a2
12;1r

2
g2

a2
12;1r

2
g2
þ r2

g1

2 ½0; 1� ð12Þ

which is only related to the last two noise terms and has

nothing to do with the first term. It is noted that all of three

terms make contributions to current X1,t, and a12,1a21,1X1,t-2

must have causal influence on X1,t and must be considered to

illustrate real causality. Especially, when r2
g2
¼ 0; we have

X1,t = a12,1a21,1X1,t-2 ? g1,t and FX2!X1
¼ 0: Since a21,1

X1,t-2 comes from X2,t-1 we can surely know that X2 has real

nonzero causality on X1 due to a12,1a21,1 = 0. Thus, GC

value may not reveal real causality at all. As such, the defi-

nition has its inherent shortcomings and/or limitations to

illustrate the real strength of causality. Please refer to

Remark 1 (Hu et al. 2011) for the detailed discussions.

New causality

Due to the shortcomings and/or limitations of GC, we next

give a new definition for causality anaylsis of multivariate

time series. Let’s consider the following general model:

X1;t ¼
Pm

j¼1

a11;jX1;t�j þ � � � þ
Pm

j¼1

a1n;jXn;t�j þ g1;t

X2;t ¼
Pm

j¼1

a21;jX1;t�j þ � � � þ
Pm

j¼1

a2n;jXn;t�j þ g2;t

..

.

Xn;t ¼
Pm

j¼1

an1;jX1;t�j þ � � � þ
Pm

j¼1

ann;jXn;t�j þ gn;t

8
>>>>>>>>><

>>>>>>>>>:

ð13Þ

where Xiði ¼ 1; . . .; nÞ are n time series, t ¼ 0; 1; . . .;N; gi has

zero mean and variance of r2
gi

and rgigk
¼ covðgi; gkÞ; i; k ¼

1; � � � ; n:Based on Eq. 13, Fig. 2 clearly shows contributions to

Xk,t, which includes
Pm

j¼1

ak1;jX1;t�j; . . .;
Pm

j¼1

akn;jXn;t�j and the
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noise term gk,t where the influence from
Pm

j¼1

akk;jXk;t�j is

causality from Xk’s own past values. Each contribution plays an

important role in determining Xk,t. If
Pm

j¼1

aki;jXi;t�j occupies

larger portion among all those contributions, then Xi has

stronger causality on Xk, or vice versa. Thus, a good definition

for causality from Xi to Xk in time domain should be able to

describe what proportion Xi occupies among all these

contributions. This is a general guideline for proposing any

causality method (i.e., all contributions must be considered).

For Eq. 10, let’s define

�gt ¼
D

a12;1g2;t�1 þ g1;t ð14Þ

which is summation of two noise terms and each noise term

makes contributions to �g: To describe what proportion g2

occupies in �g; we define

a2
12;1

PN

t¼1

g2
2;t�1

a2
12;1

PN

t¼1

g2
2;t�1 þ

PN

t¼1

g2
1;t

¼
a2

12;1r
2
g2

a2
12;1r

2
g2
þ r2

g1

ð15Þ

which is the same as GC defined in Eq. 12. Therefore, here

in nature GC is actually defined based on the noise model

A B

C D

E F

Fig. 1 a FX2!X1 jX3
as a function of the order of the estimated models

for Model (8) when a21,1 = a31,1 = 0.4, a13,1 = a23,1 = a33,1 = 0.2

and a11,1 changes from 0.1 to 0.7. b FX2!X1 jX3
as a function of the

order of the estimated models for Model (8) when a11,1 =

a31,1 = 0.4, a13,1 = a23,1 = a33,1 = 0.2 and a21,1 changes from 0.1

to 0.7. c FX2!X1 jX3
as a function of the order of the estimated models

for Model (8) when a11,1 = a21,1 = 0.4, a13,1 = a23,1 = a33,1 = 0.2

and a31,1 changes from 0.1 to 0.7. d FX2!X1 jX3
as a function of the

order of the estimated models for Model (8) when a11,1 =

a21,1 = a31,1 = 0.4, a23,1 = a33,1 = 0.2 and a13,1 changes from 0.1

to 0.7. e FX2!X1 jX3
as a function of the order of the estimated models

for Model (8) when a11,1 = a21,1 = a31,1 = 0.4, a13,1 = a33,1 = 0.2

and a23,1 changes from 0.1 to 0.7. f FX2!X1 jX3
as a function of the

order of the estimated models for Model (8) when a11,1 =

a21,1 = a31,1 = 0.4, a13,1 = a23,1 = 0.2 and a33,1 changes from 0.1

to 0.7. From a–f one can see that a) FX2!X1 jX3
keeps steady and

converges to 0.61 when the order p [ 4. b FX2!X1 jX3
has nothing to do

with parameters ai1,1 and ai3,1

36 Cogn Neurodyn (2012) 6:33–42
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(14) and follows the above guideline. Motivated by this

idea, we can naturally extend the noise model (14) to the

kth equation of Model (13) and define a new direct

causality from Xi to Xk as follows:

n
Xi!

D
Xk
¼

PN

t¼m

Pm

j¼1

aki;jXi;t�j

 !2

Pn

h¼1

PN

t¼m

Pm

j¼1

akh;jXh;t�j

 !2

þ
PN

t¼m
g2

k;t

: ð16Þ

When N is large enough,

XN

t¼m

g2
k;t ¼

XN

t¼1

g2
k;t �

Xm

t¼1

g2
k;t ¼ Nr2

gk
�
Xm

t¼1

g2
k;t � Nr2

gk
:

Then, Eq. 16 can be approximated as

PN

t¼m

Pm

j¼1

aki;jXi;t�j

 !2

Pn

h¼1

PN

t¼m

Pm

j¼1

akh;jXh;t�j

 !2

þNr2
gk

: ð17Þ

Throughout the paper, we always assume that N is large

enough so that n
Xi!

D
Xk

is always defined as Eq. 17.

New causality based on Eq. 10 can be written as

n
X2!

D
X1

¼

PN

t¼1

a12;1X2;t�1

� �2

PN

t¼1

a12;1X2;t�1

� �2þ
PN

t¼1

g2
1;t

¼

PN

t¼1

a12;1X2;t�1

� �2

PN

t¼1

a12;1X2;t�1

� �2þNr2
g1

; ð18Þ

which describes what proportion X2 occupies among two

contributions in X1 (see Eq. 10). Note that for (10) GC

FX2!X1
is proposed based on Model (14) and describes

what proportion g2 occupies among two contributions in �g
(see Eq. 15). Thus GC actually reveals causal influence

from g2 to �g; it does not reveal causal influence from X2 to

X1 at all by noting that �g is only partial information of X1,

i.e., the noise terms a12,1g2,t-1 ? g1,t. One can see that new

causality definition based on Eq. 10 is a natural extension

of GC definition based on Eq. 14 as far as the concept of

proportion is concerned (in this way, our new causality

definition has a rather sound conceptual or theoretical

basis). But, as said above, the equivalent GC describes

what the proportion g2 occupies in �g of Eq. 14 and new

causality describes what the proportion X2 occupies in X1

of Eq. 10. Thus, they are two totally different concepts, that

is, the equivalent GC reveals causal influence from g2 to �g;
but new causality indeed reveals causal influence from X2

to X1. Obviously, one cannot use causal influence value

from g2 to �g (involving partial information of X1, i.e., the

noise terms a12,1g2,t-1 ? g1,t) to express causality influ-

ence value from X2 to X1 (involving complete information,

i.e.,the noise terms a12,1g2,t-1 ? g1,t plus a12,1a21,1X1,t-2).

Any causality definition (like traditional GC) only using

partial information of X1 inevitably leads to misinterpre-

tation result. In addition to some important points shown in

Remark 2 (Hu et al. 2011), next we give some more

comments for new causality in the following remark.

Remark 1 (1) Let the transfer function of Model (13) be

H(f) = [Hij(f)]n 9 n. RPC (Yamashita et al. 2005) is used

to reveal causality influence from Xj to Xi at frequency f

and is defined as

Ri jðf Þ ¼
jHijðf Þj2r2

gj

SXiXi
ðf Þ ð19Þ

where the power spectrum

SXiXi
ðf Þ ¼

Xn

j¼1

jHijðf Þj2r2
gj
; ði ¼ 1; . . .; nÞ: ð20Þ

Equation 20 indicates that the power spectrum of Xi,t at

frequency f can be decomposed as to n terms

jHijðf Þj2r2
gj
; ðj ¼ 1; . . .; nÞ; each of which can be interpreted

as the power contribution of the jth innovation gj,t trans-

ferring to Xi,t via the transfer function Hij(f). RPC Ri jðf Þ
can be regarded as a ratio of the power contribution of the

innovation gj,t on the power spectrum of Xi,t to the power

spectrum SXiXi
ðf Þ: From this point of view, this ratio also

provides a strong motivation (or theoretical basis) to define

the proposed new causality metric Eq. 16 for multivariate

time series. However, as pointed out in Remark 6 (Hu et al.

2011) RPC has inherent shortcomings/limitations and

cannot reveal real causality influence at all.

(2) Consider the following two models

X1;t ¼ �0:99X2;t�1 þ g1;t

X2;t ¼ 0:1X2;t�1 � 0:99X3;t�1 þ g2;t

X3;t ¼ 0:1X2;t�1 � 0:99X3;t�1 þ g3;t

8
<

:
ð21Þ

and

Fig. 2 Contributions to Xk,t
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�X1;t ¼ �0:99 �X2;t�1 þ �g1;t
�X2;t ¼ 0:1 �X2;t�1 þ �g2;t
�X3;t ¼ 0:1 �X2;t�1 þ �g3;t

8
<

:
ð22Þ

where g1, g2 and g3 are three independent white noise

processes with zero mean and variances r2
g1
¼ 1 ¼ r2

g3
;

r2
g2
¼ 0:1; g1;t ¼ �g1;t; g2;t ¼ �g2;t; g3;t ¼ �g3;t; and the initial

conditions X1;0 ¼ �X1;0;X2;0 ¼ �X2;0 and X3;0 ¼ �X3;0: From

both of Models (21) and (22) it can be seen that there are

no direct causality from X3 to X1, so, FX2!X1jX3
¼ FX2!X1

:

Moreover, based on Property 1, FX2!X1jX3
are same for both

of Models (21) and (22). We can obtain FX2!X1jX3
¼ 0:092

for both of Models (21) and (22), n
X2!

D
X1

¼ 0:824 for

Model (21), and n
X2!

D
X1

¼ 0:090 for Model (22). Figure 3

shows trajectories �0:99X2;�0:99 �X2; and g1 for one

realization of Model (21) and Model (22). From Fig. 3a and

c one can clearly see that amplitudes of -0.99X2 are much

larger than that of g1 and the contribution from -0.99X2,t-1

occupies much larger portion compared to that from g1,t, as

a result, the causal influence from X2 to X1 occupies a

major portion compared to the influence from g1 and the

real strength of causality from X2 to X1 should have higher

value. This fact is real. Our causality value n
X2!

D
X1

¼ 0:824

for Model (21) is consistent with this fact. Similarly, from

Fig. 3b and c one can clearly see that amplitude of �0:99 �X2

is much smaller than that of g1 and the contribution from

�0:99 �X2;t�1 occupies much smaller portion compared to

that from g1,t, as a result, the causal influence from �X2 to �X1

occupies a rather small portion compared to the influence

from g1 and the real strength of causality from �X2 to �X1

should have smaller value. This fact is also real. Our

causality value n
X2!

D
X1

¼ 0:090 for Model (22) is consistent

with this fact. However, conditional GC always equals to

0.092 for both of Models (21) and Eq. 22 and does not

reflect such kind of changes at all, and violates above two

real facts. These results show that the conditional GC

definition (5) does not reveal real strength of direct cau-

sality from X2 to X1 at all for Models (21) and (22), our new

causality definition very reasonably reflects the real

strength of the direct causality.

(3) An alternate time-domain metric namely direct

causality (DC) has been proposed earlier (Kaminski et al.

2001) which quantifies causality based on the AR

coefficients

DCXk!Xi
¼
Xm

j¼1

a2
ik;j

or the following normalized measure

DCXk!Xi
¼

Pm

j¼1

a2
ik;j

Pn

k¼1

Pm

j¼1

a2
ik;j

: ð23Þ

Since the AR coefficients themselves represent the

coupling strength, now a question is arising: would this

normalized measure suffice to reveal the real causality of

two time series? Unfortunately, the answer is no. Let’s take

a look at the following model:

X1;t ¼ 0:1X1;t�1 þ 0:9ð�X2;t�1 þ X2;t�2 � X2;t�3

þX2;t�4Þ þ 0:9X3;t�1 þ g1;t

X2;t ¼ g2;t

X3;t ¼ �0:1X1;t�1 þ 0:1X2;t�1 � 0:9X3;t�1 þ g3;t

8
>><

>>:
ð24Þ

where g1, g2 and g3 are three independent white noise

processes with zero mean and variances r2
g1
¼ 0:1 ¼

r2
g2
; r2

g3
¼ 1: For Models (24) we can obtain DCX2!X1

¼
0:78 and n

X2!
D

X1

¼ 0:11: Figure 4 shows trajectories of

X1,t, 0.9(- X2,t-1 ? X2,t-2 - X2,t-3 ? X2,t-4), 0.9X3,t, and

g1,t for one realization of Model (24). From Fig. 4a–d one

can clearly see that amplitudes of 0.9X3 are much larger

than that of g1,t and 0.9(- X2,t-1 ? X2,t-2 - X2,t-3 ?

X2,t-4), and the contribution from 0.9X3 occupies much

larger portion compared to that from g1,t and 0.9

(- X2,t-1 ? X2,t-2 - X2,t-3 ? X2,t-4). As a result, the

causal influence from X2 to X1 occupies a small portion

compared to the influence from 0.9X3 and the real strength

of causality from X2 to X1 should have smaller value. This

fact is real. Our causality value n
X2!

D
X1

¼ 0:11 for Model

(24) is consistent with this fact. However, DCX2!X1
¼ 0:78

for Model (24) violates the real fact. These results show that

the direct causality definition (23) does not reveal real

strength of direct causality from X2 to X1 at all for Model

(24), our new causality definition reflects the real strength

of the direct causality very reasonably.

(4) It should be noted that the influence of one of the

time series on the other is linearly increased as the coupling

strength is linearly increased. Let’s consider the following

bivariate AR process with 5 levels of coupling strength:

X1;t ¼ �0:1X1;t�1 þ c� 0:1ð�X2;t�1

þX2;t�2 � X2;t�3 þ X2;t�4Þ þ g1;t

X2;t ¼ �0:5X1;t�1 þ 0:5X2;t�1 þ g2;t

8
<

:
ð25Þ

where g1 and g2 are two independent white noise processes

with zero mean and variances r2
g1
¼ 1 ¼ r2

g2
: From Eq. 25

one can see that the coupling strength of X2 on X1 is lin-

early increased as the parameter c increases. The true

causality of X2 on X1 should increase as the parame-

ter c increases. The estimated causality measures (new
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causality and GC) against the parameter c are shown in Fig.

5a and b, respectively, from which one can clearly see that

both of two metrics indicate the increasing true causality as

the true coupling strength (i.e., the parameter c) increases.

(5) Figure 5c shows the increasing instantaneous corre-

lation (i.e., zero-lag influence) of two time series as the

parameter c increases. Combining Fig. 5a and b with c we can

conclude that the increasing instantaneous correlation leads

to the reasonable increasing new causality and GC. How-

ever, in general this conclusion may not be true. It is well

known that in general there may be no relationship between

true causality and correlation. In other words, larger

correlation does not necessarily mean larger true causality,

or vice versa. Therefore, it is meaningless to discuss whether

new causality or GC will be affected by correlation.

Statistical test for significance

Since new causality metric has a highly nonlinear relation

to the time series data, it makes tests of significance dif-

ficult to perform. In this section, we use the same

A B

C

Fig. 3 For one realization of

Model (21) and Model (22)

where Xi;0 ¼ �Xi;0 and gi;t ¼
�gi;t; i ¼ 1; 2; 3; trajectories for

�0:99X2;t;�0:99 �X2;t; and g1,t

are plotted: a -0.99X2,t’s

trajectory for Model (21).

b �0:99 �X2;t’s trajectory for

Model (22). c g1,t’s or �g1;t’s

trajectory

A B

C D

Fig. 4 For one realization of

Model (24), trajectories for

X1,t, 0.9(- X2,t-1 ? X2,t-2

- X2,t-3 ? X2,t-4), 0.9X3,t, and

g1,t are plotted: a Trajectory for

X1,t. b Trajectory for

0.9(- X2,t-1 ? X2,t-2 -

X2,t-3 ? X2,t-4). c Trajectory

for 0.9X3,t. d Trajectory for g1,t
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technology (Kaminski et al. 2001) to deal with this prob-

lem; that is, we first create a surrogate data set (Theiler

et al. 1992) for each channel, we then fit a model to this

surrogate data set and calculate new causality metric.

Repeating this process many time, we can obtain an

empirical distribution for the metric. Based on this distri-

bution we can then evaluate the significance of the causal

metric derived from the actual data. We use the following

model to illustrate the process.

X1;t ¼ 0:5X1;t�1 þ 0:5X2;t�1 þ g1;t

X2;t ¼ �0:5X1;t�1 þ 0:5X2;t�1 þ g2;t

�

ð26Þ

where g1 and g2 are two independent white noise processes

with standard normal distribution. For a simulated data of a

realization of Model (26), we produce surrogate data (i.e.,

perform random and independent shuffling of X1 and X2).

We then estimate a joint regression model (2) with m = 6

to fit the shuffled data and calculate new causality value.

Carrying out the procedure for 1,000 such independently

shuffled data sets we can construct an empirical distribu-

tion for the new causality values. Since the shuffling pro-

cedure destroys all the temporal structure in the data, this

empirical distribution gives the variability for the new

causality values when the null hypothesis of no causal

influence is true.

Figure 6 shows Histogram of new causality values based

on the original simulated data and 1000 surrogate data. One

can see that the new causality value (=0.275) based on

the original simulated data is statistically significant

(P \ 0.001).

Asymptotic distribution property

It is well known that the asymptotic distribution of GC

metric under the null hypothesis of zero causality is

known (it is a v 2-distribution) (Geweke 1982). Now a

question is arising: what is asymptotic distribution for

new causality metric under the null hypothesis of zero

causality? For new causality metric can we derive the

similar asymptotic distribution property as GC metric? In

general it is difficult to discuss this issue because of

complexity of new causality definition. But in the fol-

lowing example we find that new causality metric has

v2(1)-distribution as GC metric.

X1;t ¼ �0:5X1;t�1 þ g1;t

X2;t ¼ 0:5X1;t�1 � 0:5X2;t�1 þ g2;t

�

ð27Þ

where g1 and g2 are two independent white noise processes

with standard normal distribution, t ¼ 1; 2; . . .; 10; 000

(i.e., N = 10,000). For each realization of Model (27) we

set m = 1 to estimate the autoregression Model (1) and the

joint regression Model (2), then based on the two estimated

models we calculate new causalty nX2!X1
and GC FX2!X1

:

This process is repeated by N = 10,000 times. Finally we

plot large-sample distributions for N � nX2!X1
and N �

FX2!X1
in Fig. 7a and b, respectively. One can see proba-

bility density functions for both new causality and GC

follow v2(1)-distribution. In general, as for whether or not

N � nX2!X1
follows a v2-distribution under the null

hypothesis of zero causality keeps unknown and is left for

further study in near future.

A B

C

Fig. 5 Causality (or

correlation) vs the parameter

c for Model (25). a New

causality of X2 on X1 vs the

coupling strength (i.e., the

parameter c). b GC of X2 on X1

vs the coupling strength (i.e.,

the parameter c). c Correlation

of X2 and X1 vs. the coupling

strength (i.e., the parameter c)
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Conclusions

In this paper, we further make more discussions for GC or

Granger-alike causality and new causality metrics by fol-

lowing our previous paper (Hu et al. 2011) and focus on

time domain. In addition to the previous motivation for

introducing new causality metric in time domain, we pro-

vide additional strong motivation (or theoretical basis) to

the proposed metric for multivariate time series. After

introducing one property for conditional GC, we point out

the inherent shortcomings/limitations of conditional GC

and demonstrate that it cannot reveal directed causal

influence from one time series to the other one among three

time series. We also point out the shortcomings/limitations

of Granger-alike causality, i.e., DC or normalized DC

metric and show that it cannot disclose directed causality

influence at all for multivariate time series. Furthermore,

all these shortcomings/limitations demonstrate reasonabil-

ity and advantages of new causality metric. Therefore,

researchers must be caution in drawing any conclusion

based on DC (or normalized DC) value and conditional GC

value. By calculating GC and new causality values for an

example we show the influence of one of the time series on

the other is linearly increased as the coupling strength is

linearly increased. Finally for new causality metric in time

domain we analyze statistical test for significance and show

significance level for a simulated data, meanwhile we

conduct analysis for asymptotic distribution property by an

examples in which both GC and new causality metrics

follow v2(1)-distribution. However, in general, as for

whether or not new causality metric follows a v2-distri-

bution under the null hypothesis of zero causality keeps

unknown and is left for further study in near future. Thus

our proposed new causality metrics in time and frequency

domains may have wide applications in economics and

neuroscience.
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