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Abstract Neuron transmits spikes to postsynaptic neu-

rons through synapses. Experimental observations indi-

cated that the communication between neurons is

unreliable. However most modelling and computational

studies considered deterministic synaptic interaction

model. In this paper, we investigate the population rate

coding in an all-to-all coupled recurrent neuronal network

consisting of both excitatory and inhibitory neurons con-

nected with unreliable synapses. We use a stochastic on-off

process to model the unreliable synaptic transmission. We

find that synapses with suitable successful transmission

probability can enhance the encoding performance in the

case of weak noise; while in the case of strong noise, the

synaptic interactions reduce the encoding performance. We

also show that several important synaptic parameters, such

as the excitatory synaptic strength, the relative strength of

inhibitory and excitatory synapses, as well as the synaptic

time constant, have significant effects on the performance

of the population rate coding. Further simulations indicate

that the encoding dynamics of our considered network

cannot be simply determined by the average amount of

received neurotransmitter for each neuron in a time instant.

Moreover, we compare our results with those obtained in

the corresponding random neuronal networks. Our

numerical results demonstrate that the network randomness

has the similar qualitative effect as the synaptic unreli-

ability but not completely equivalent in quantity.
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Introduction

Neuron is a powerful nonlinear information processor in

the brain. By sensing its surrounding inputs, neuron con-

tinually generates appropriate discrete electrical pulses

termed as action potentials or spikes. These spikes are

transmitted to the corresponding postsynaptic neurons

through synapses, which serve as the communication

bridges between different neurons. It is known that the

information processing in the brain is highly reliable.

However, some biological experiments have demonstrated

that the microscopic mechanism of synaptic transmission

displays the unreliable property (Abeles 1991; Friedrich

and Kinzel 2009; Raastad et al. 1992; Smetters and Zador

1996). Such unreliability is attributed to the probabilistic

neurotransmitter release of the synaptic vesicles (Allen and

Stevens 1994; Branco and Staras 2009; Katz 1966; Katz

1969; Trommershauser et al. 1999). For real biological

neural systems, the successful spike transmission rates

between 0.1 and 0.9 are widely reported in the literature

(Abeles 1991; Allen and Stevens 1994; Rosenmund et al.

1993; Stevens and Wang 1995). In the past decades,

several works, though not many, have investigated the
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dynamics and information transmission capability of

unreliable synapses. Researchers especially paid close

attention to the functional roles of unreliable synapses on

the information transmission of neuronal systems. It has

been demonstrated that the synapses with suitable suc-

cessful transmission probability are able to improve

information transmission efficiency (Goldman 2004), filter

redundant information (Goldman et al. 2002), enhance

synchronization (Li and Zheng 2010), as well as enrich

dynamical behaviors of neuronal networks (Friedrich and

Kinzel 2009; Kestler and Kinzel 2006). It has been also

found that the unreliability of synaptic transmission may be

viewed as a useful tool for analog computing, rather than as

a ‘‘bug’’ in neuronal networks (Maass and Natschlaeger

2000; Natschlaeger and Maass 1999). Moreover, a very

recent study has clearly uncovered that the depressing

synapses with a certain level of facilitation allow recov-

ering the good retrieval properties of networks with static

synapses while maintaining the nonlinear characteristics of

dynamic synapses, convenient for information processing

and coding (Mejias and Torres 2009). All above findings

indicate that the unreliability of synaptic transmission

might play important functional roles in the information

processing of the brain.

One of the most significant challenges in the field of

computational neuroscience is to understand how neural

information is represented by the activities of neuronal

ensembles. So far many neural encoding mechanisms have

been proposed, including the population rate coding

(Dayan and Abbott 2001; Gerstner and Kistler 2002),

synchrony coding (Dayan and Abbott 2001; Gerstner and

Kistler 2002), transient coding (Friston 1997), time-to-first-

spike coding (Thorpe et al. 1996; Thorpe et al. 2001),

and so on. Among these encoding mechanisms, the popu-

lation rate coding is an elegant theoretical hypothesis,

assuming that the neural information about the external

stimuli is contained in the population firing rate. Actually,

this encoding mechanism is based on the experimental

observation that the firing rates of most biological neurons

correlate with the intensity of the external stimuli (Gerstner

and Kistler 2002; Kandel et al. 1991). In recent years, the

population rate coding has been widely examined in dif-

ferent neuronal network models, e.g. (Masuda and Aihara

2003; Masuda et al. 2005; Rossum et al. 2002; Wang and

Zhou 2009). However, to the best of our knowledge, the

dynamical behaviors of synapses in these studies are typ-

ically simulated by using the deterministic synaptic inter-

action model. Since the communication between real

biological neurons indeed displays the unreliable property,

a naturally arising question to be tackled is how the unre-

liable synapses influence the performance of the population

rate coding. In reality, such question is more complicated

when the topology of the considered neuronal network has

the recurrent structure. This is because the intrinsic recur-

rent currents due to synaptic interactions will also affect the

encoding performance of the neuronal network.

To answer the aforementioned question, we systemati-

cally investigate the population rate coding in a recurrent

neuronal network by computational modelling. The recur-

rent network model considered in this paper is an all-to-all

neuronal network consisting of both the excitatory and

inhibitory neurons connected with unreliable synapses,

which can be roughly regarded as a local cortex. Here we

mainly examine the effects of the synaptic unreliability as

well as some other important synaptic parameters, such as

the synaptic strength and synaptic time constant on the

performance of the population rate coding under different

levels of noise. Furthermore, in order to clarify the dif-

ferences between the synaptic unreliability and the network

randomness, we also make comparisons on the encoding

performance between our considered neuronal network

model and the corresponding random neuronal network

(the meaning of ‘‘corresponding’’ will be given in detail in

‘‘Comparison with the corresponding random neuronal

networks’’ section).

The rest of this paper is organized as follows. In ‘‘Model

and method’’ section, we introduce the computational

model and the measurement of the population rate coding.

In ‘‘Simulation results’’ section, we present the mainnu-

merical simulation results of this work. In ‘‘Conclusion and

discussion’’ section, we discuss our findings and their

implications in detail, and summarize the conclusion of the

present work.

Model and method

In this section, we introduce the computational model and

the measurement of the population rate coding used in this

work. We first consider an all-to-all neuronal network

totally containing N = 100 spiking neurons coupled by

unreliable synapses. We assume that the larger fraction of

neurons in the considered network (Nexc = 80) is excit-

atory and the rest (Ninh = 20) is inhibitory, as the ratio of

excitatory to inhibitory neurons is approximate to 4:1 in

mammalian neocortex. It should be noted that we do not

allow a neuron to be coupled with itself. Spiking dynamics

of each neuron is simulated based on the integrate-and-fire

(IF) neuron model. Let Viði ¼ 1; 2; . . .;NÞ denote the

membrane potential of neuron i. The subthreshold

dynamics of the membrane potential for a single IF neuron

can be expressed as follows (Dayan and Abbott 2001;

Gerstner and Kistler 2002):

sm
dVi

dt
¼ Vrest � Vi þ R½IðtÞ þ I

syn
i þ Inoise

i �: ð1Þ
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In this equation, the IF neuron is characterized by a

membrane time constant sm, a resting membrane potential

Vrest, and a membrane resistance R. Throughout our sim-

ulations, we let the values of these parameters be: sm = 20

ms, Vrest = -60 mV, and R ¼ 20 MX. I(t) is a time-

varying external input current injected to all neurons, Ii
syn

denotes the total synaptic current of neuron i, and Inoise
i ¼

ffiffiffiffiffiffi

2D
p

niðtÞ represents the noise current of neuron i, where

ni(t) is a zero-mean Gaussian white noise with unit vari-

ance and D is referred to as the noise intensity. A neuron

fires a spike whenever its membrane potential exceeds a

fixed threshold value Vth = -50 mV, and then its mem-

brane potential is reset to the resting membrane potential at

which it remains clamped for a 5 ms refractory period.

For each simulation, we use the time-varying external

input current I(t) generated according to an Ornstein-Uh-

lenbeck process g(t) whose dynamics is represented by

IðtÞ ¼ gðtÞ if gðtÞ� 0;
0 if gðtÞ\0:

�

ð2Þ

with

sc
dgðtÞ

dt
¼ �gðtÞ þ

ffiffiffiffiffiffi

2A
p

nðtÞ; ð3Þ

where n(t) is a Gaussian white noise with zero mean and

unit variance, sc is a correlation time constant, and A is a

diffusion coefficient used to denote the intensity of the

external input current. In the following studies, we choose

A = 200 and sc = 80 ms. It should be noted that the

external input current I(t) corresponds to a Gaussian noise

low-pass filtered at 80 ms and half-wave rectified. In the

literature, this type of external input current is widely used

in studying the population rate coding (Rossum et al. 2002;

Wang and Zhou 2009).

The total synaptic current onto neuron i is the linear sum

of currents of all incoming synapses, Ii
syn =

P

j Iij
syn, where

the individual synaptic currents are modeled by a modified

version of the traditional conductance-based model as in

our previous work (Guo and Li 2011),

Isyn
ij ¼ gij � ðEsyn � ViÞ: ð4Þ

Here gij is the conductance of the synapse from neuron j to

neuron i, and Esyn is the reversal potential. In our study, the

value of Esyn is fixed at 0 and -75 mV for excitatory and

inhibitory synapses, respectively. Whenever apresynaptic

neuron j fires a spike, the corresponding postsynaptic

conductances are increased instantaneously after a 1 ms

spike transmission delay

gij 
gijþDg � hij; if synapse j! i is excitatory;

gijþ k �Dg � hij; if synapse j! i is inhibitory;

�

ð5Þ

where Dg is the relative peak conductance of the excitatory

synapses (also called ‘‘excitatory synaptic strength’’ in this

paper), k is the scale factor used to control the relative

strength of inhibitory and excitatory synapses, and hij is the

synaptic reliability variable. In other time, gij decays

exponentially with a fixed synaptic time constant ss. In our

model, a stochastic on-off process is introduced to mimic

the probabilistic transmitter release of the real biological

synapses. When a presynaptic neuron j fires a spike, we let

the corresponding synaptic reliability variables hij = 1

with probability p and hij = 0 with probability 1 - p,

where parameter p represents the successful transmission

probability of spikes. Here we use the above stochastic

process describes whether the neurotransmitter is success-

fully released or not. It should be noted that the synaptic

transmission in real biological neural systems is much

more complex than our model. For instance, it has been

found that there exists an increased release probability for

the second spike within a short time interval after the first

spike has arrived a synapse (Stevens and Wang 1995).

However, in modelling studies, we should accept that there

are no exact mathematical descriptions of processes in

nature, and have to search for approximations that capture

all aspects of interest as accurately as feasible and at the

same time allow us to gain insight from the analysis. In this

work, we choose the above stochastic on-off process as an

intermediate level between the deterministic synaptic

interaction and real biological synaptic interaction, allow-

ing us to build effective simulations while capturing the

basic properties of biological neuronal networks.

In the present work, the performance of the population

rate coding is quantified by determining the correlative

property between the output of the network and the time-

varying external input current I(t) (Masuda and Aihara

2003; Masuda et al 2005; Wang and Zhou 2009; Vogels

and Abbott 2005). To do this, we use a 5 ms moving time

window with 1 ms sliding step to compute both the pop-

ulation firing rate r(t) and the smooth version of the

external input current Is(t). In our study, the population

firing rate r(t) means the average of the firing rates of all

neurons for the time bin centered at time t, and is employed

to represent the output of the considered neuronal network.

The cross-correlation coefficient between r(t) and Is(t) is

therefore given by (Masuda and Aihara 2003; Masuda et al

2005; Wang and Zhou 2009; Vogels and Abbott 2005):

CðsÞ ¼
Isðt þ sÞ � Is

� �

rðtÞ � r½ �
� �

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Isðt þ sÞ � Is

� �2
D E

t
rðtÞ � r½ �2

D E

t

r ; ð6Þ

where h�it stands for the average over time. The maximum

cross-correlation coefficient Q = max{C(s)} is used to

measure the performance of the population rate coding,
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where Q is a normalization measure and a larger value

corresponds to a better encoding performance. This mea-

sure determines how well the input signal is encoded by the

network in terms of the population firing rate of neurons,

which has been widely used both in feedforward (Masuda

and Aihara 2003; Masuda et al 2005; Vogels and Abbott

2005) and all-to-all (Wang and Zhou 2009) neuronal net-

works. Note that the maximum cross-correlation coefficient

might be largely influenced by the bin size chosen for

analysis. Bin sizes in the range 1 to 10 ms are widely used

for evaluating the dynamics of the neuronal networks

composed of integrate-and-fire neurons (Vogels and Abbott

2005; Tetzlaff et al. 2008; Kumar et al. 2008; Guo and Li

2011). As we mentioned above, bin size of 5 ms is used in

the present work. In additional simulations, we have also

checked other bin sizes and found that our results are valid

for the bin sizes within the range 1–10 ms.

The aforementioned stochastic differential equations are

solved numerically by the standard Euler-Maruyama inte-

gration scheme (Kloeden et al. 1994). To ensure the sta-

bility of the IF neuron model, the integration step is taken

as 0.1 ms. For each simulation, the initial membrane

potentials of the neurons are chosen randomly from a

uniform distribution on (Vrest, Vth), and the initial values of

gij are chosen randomly from a uniform distribution on

(0, 0.5). We perform all simulations up to 5,000 ms to

collect enough spikes for statistical analysis. It should be

emphasized that we realize at least 100 independent runs

with different random seeds for each group of experimental

conditions and report the average value as the final result in

the present work (except for the data shown in Fig. 2).

Simulation results

In this section, we first study the effects of synaptic unre-

liability as well as several other important synaptic

parameters on the performance of population rate coding in

our considered neuronal network. Then, we compare the

encoding performance in our considered network with that

in the corresponding random neuronal network.

Roles of the unreliable synapses

Let us systematically investigate how unreliable synapses

influence the performance of the population rate coding in

the considered neuronal network under different parameter

conditions. As a starting point, we examine the dependence

of the performance of the population rate coding Q on the

successful transmission probability p and the scale factor k

at different levels of noise. To this end, we let the other

synaptic parameters be Dg ¼ 0:2 nS and ss = 5 ms. The

numerically obtained results are shown in Figs. 1 and 2,

respectively. It is clear that several interesting features can

be extracted from these two figures.

Our first finding is that, for a fixed scale factor, the

population rate coding achieves the best performance at a

corresponding intermediate successful transmission prob-

ability, provided that the intensity of the additive Gaussian

white noise is small (Fig. 1a–c). This result indicates that

the synapses with suitable successful transmission proba-

bility can enhance the encoding performance in our con-

sidered neuronal network in the weak noise regime. For a

sufficiently small p, due to weak noise, the firing activities

of the network are dominated by the external input current.

This reason makes neurons in the considered network fire

spikes almost synchronously, thus resulting that the infor-

mation of the external input current is poorly encoded by

the population firing rate (see Fig. 2a) (Mazurek and

Shadlen 2002; Kumar et al. 2010). With the increasing of

p, the synaptic currents from other presynaptic neurons

start to influence the firing dynamics of the postsynaptic

neuron. For a suitable intermediate p, due to the sparse

active synaptic connections taking part in transmitting

spikes in a time instant, the synaptic currents act as a

source of noise (Gerstner and Kistler 2002; Brunel et al.

2001; Destexhe and Contreras 2006). Such ‘‘noise’’ effect

of synaptic currents makes neurons encode different

aspects of the external input current through the desyn-

chronization process. As a result, a suitable level of

information exchange between neurons is able to facilitate

the encoding performance in the case of weak noise

(Fig. 2b). Further increasing the successful transmission

probability will just deteriorate the performance of the

population rate coding. This is at least due to the following

two reasons: (i) for too small or too large k, a high synaptic

reliability tends to evoke bursting firings or excessively

firing suppression (see Fig. 2d, e), respectively. (ii) For an

intermediate k, although excitation and inhibition is bal-

anced to a certain degree, the unavoidable overlap of input

populations for different neurons introduces strong corre-

lations of network activity. The synaptic currents therefore

have the tendency to drive neurons fire spikes synchro-

nously in this case (Fig. 2c). Accordingly, the neural

information of the external input current cannot be well

read from the population firing rate for large p. For sim-

plicity, we call the optimal encoding performance occur-

ring at an intermediate parameter value (here the parameter

is the successful transmission probability) the encoding

enhancement phenomenon in the following studies.

Second, in the case of D = 0, we observe that there

exists the encoding rebound phenomenon occurring at

p = 1 for both too small and too large scale factors

(see k = 3 and 25 in Fig. 1a). The underlying mechanism

can be interpreted as follows. In the absence of noise, the

firing activities of the network are purely determined by the

78 Cogn Neurodyn (2012) 6:75–87
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external input current as well as the synaptic currents.

Based on the above discussion, for too small or too large

k, a high synaptic reliability (in this case, p = 1) tends to

evoke bursting firings or excessively firing suppression,

respectively. When p = 1, due to the same synaptic cur-

rents (without noise current), all neurons in the considered

network are easy to be driven to the synchronous state.

Although the total synaptic current for each neuron is also

very large (its absolute value) in this case, due to refractory

period the total synaptic current will decay to a small value

before the membrane potential of the neuron can be excited

again. This will reduce the effects of synaptic currents and

avoid both the occurrence of the bursting firings and

excessive firing suppression (Fig. 2f). It should be

emphasized that even a weak noise may destroy the syn-

chronous state of neurons at p = 1, indicating that the

encoding rebound phenomenon might not be observed for

D [ 0.

As the third observation, we find that the so-called

encoding enhancement phenomenon is largely influenced

by the intensity of the additive Gaussian white noise. As we

see from Fig. 1a–c, increasing the parameter D from 0 to a

slightly larger value can suppress the encoding enhance-

ment phenomenon. This may be partially because with the

help of slightly stronger noise, the population firing rate

will reflect more accurate temporal structural information
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Fig. 1 Effect of the successful transmission probability and the scale

factor on the performance of the population rate coding at different

noise levels. Results are obtained for D = 0 (a), D = 0.05 (b),

D = 0.2 (c), D = 0.5 (d), D = 2 (e), and D = 10 (f), respectively.

We choose Dg ¼ 0:2 nS and ss = 5 ms in all cases
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(i.e., temporal waveform) of the external input current. In

this case, the encoding performance of the considered

network is promoted in the whole parameter regime from 0

to 1. Because of the bottleneck effect of coding,1 the above

reason leading to the tuning of the synaptic transmission

probability cannot further enhance the encoding perfor-

mance in a significant way, at least not as in the case of

D = 0. Once the noise intensity exceeds a critical value

slightly larger than 0.5, we observe that the optimal

encoding performance is obtained at p = 0. In this situa-

tion, each Q curve basically decreases from a corre-

sponding large initial value as the successful transmission

probability grows, implying that the synaptic unreliability

induced encoding enhancement phenomenon disappears

(Fig. 1e, f). That is to say, the intrinsic synaptic interac-

tions between neurons will disturb their firing behaviors

and purely deteriorate the accuracy of neural information

for strong noise. This is possible because strong noise can

cause some neurons to fire an amount of ‘‘false’’ spikes,

and the intrinsic information exchange from these false

spikes will reduce the encoding performance.

Moreover, the numerical results shown in Fig. 1a–f also

suggest that the relative strength between inhibitory and
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Fig. 2 Examples of several

typical network activity. In each

subfigure, the upper panel

shows the smooth version of the

external input current Is(t); the

middle panel depicts the spike

raster diagram; and the lower
panel presents the population

firing rate. We set ss = 5 ms

and Dg ¼ 0:2 nS in all cases

1 In the present work, the bottleneck effect of coding means that: (i)

the measurement of the population rate coding Q is always smaller

than one, and (ii) the closer the value of Q to one, the more difficult

that the encoding performance can be enhanced by tuning the values

of system parameters.
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excitatory synapses (i.e., scale factor) plays an important

role in the performance of the population rate coding for

both the weak and strong noise. When the noise intensity is

small, the optimal encoding performance is found to

increase gradually as the scale factor grows at first, and

then almost reaches a saturation value at around k = 18.

With the increasing of k, it is observed that the peak

position of the Q curve moves toward the left direction.

At the same time, our simulation results show that the top

plateau region of the Q curve becomes narrower during this

process. Therefore, there exists a ‘‘compromising’’ scale

factor regime (between about 8 and 12), and when

parameter k falls into this special regime, the considered

network undergoes better encoding performance within a

wide range of the successful transmission probability.

It should be noted that the similar effect of scale factor can

be observed even for the case of strong noise, but becomes

less and less marked as the noise intensity is increased.

These findings tell us that the turning of scale factor is

critical for the population rate coding, and the benign

competition between excitation and inhibition can help the

considered neuronal network maintain better information

processing capability with different levels of synaptic

unreliability.

Next, to examine what happens when the synaptic

strength changes in our considered neuronal network, we

manually set ss = 5 ms. First, we study the effects of the

excitatory synaptic strength on the encoding performance

for both the weak and strong noise. For simplicity, we fix

the scale factor k at 10, and calculate the value of Q as a

function of Dg for various successful transmission proba-

bilities with noise intensities D = 0.05 and 2. The corre-

sponding results are plotted in Fig. 3a, b, respectively. In

the case of weak noise, the Q curves all first rise and then

drop with the increasing of the excitatory synaptic strength,

indicating that there exists an optimal intermediate excit-

atory synaptic strength to best support the population firing

rate coding for each value of p (p [ 0). In fact, it is not

surprising that the excitatory synaptic strength induced

encoding enhancement phenomenon can be observed for

weak noise, because increasing Dg with p fixed has similar

effect as increasing p while keeping Dg fixed (see also

the discussion in the last paragraph of this subsection).

Furthermore, we find that such encoding enhancement
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Fig. 3 Effects of the synaptic strength on the performance of the

population rate coding. The value of Q as a function of Dg for

different values of p, with noise intensities D = 0.05 (a) and D = 2

(b). We choose the scale factor k = 10 for a and b. The value of Q as

a function ofDg for different values of k, with noise intensities

D = 0.05 (c) and D = 2 (d). The successful transmission probability

p is fixed at 0.1 for c and d. The synaptic time constant is ss = 5 ms

in all cases
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phenomenon largely depends on the successful transmis-

sion probability. With a suitable small p, our considered

neuronal network is able to support the encoding

enhancement phenomenon within a wide range of the Dg

(for comparison, see p = 0.1, p = 0.3, and the line of

p = 0 in Fig. 3a). For a quite high synaptic reliability, a

slightly larger Dg might evoke more synchronized or burst

firings, resulting that the value of Q rapidly decreases with

the excitatory synaptic strength after an insignificant

encoding enhancement in the weak Dg regime. In the case

of strong noise, we find that the encoding enhancement

phenomenon vanishes, which is in agreement with the

conclusion drawn from Fig. 1e, f. In this case, the intrinsic

information exchange just deteriorates the performance of

the population rate coding in our considered neuronal

network (Fig. 3b). Second, to investigate the effects of

inhibitory synaptic strength, we set p = 0.1, and calculate

the value of Q versus Dg for different scale factors with

noise intensities D = 0.05 and 2. The corresponding results

are present in Fig. 3c, d, respectively. Similar to Fig. 1, a

compromising scale factor is also found to better support

the performance of the population rate coding for both the

weak and strong noise. Theoretically, it is also because too

small k will lead to burst firings and too large k will sup-

press firings excessively. The results shown here further

reveal that the inhibition has significant effects on the

performance of the population rate coding in our consid-

ered network.

We further evaluate the effects of the synaptic time

constant, which is also a very important parameter for

synapses, on the encoding performance. Figure 4a illus-

trates Q versus the successful transmission probability p for

different values of ss at the weak noise level. For the case of

ss = 1 ms, the performance of the population rate coding

has no significant change as p is increased from 0 to 1.

During this process, the value of Q keeps between 0.75 and

0.8, and only weak encoding enhancement phenomenon

can be observed. With the increasing of ss, the maximum

of Q becomes larger, and at the same time, the peak

position of the Q curve moves toward left and the top

region becomes narrower. When ss = 10 ms, the maximal

Q achieves a quite large value, and due to the bottleneck

effect of coding, further increasing the synaptic time con-

stant cannot enhance the encoding performance signifi-

cantly. One possible candidate mechanism for these

behaviors can be elucidated as follows. For a fixed

p, slower synapses will provide neurons with more corre-

lated inputs (Tetzlaff et al. 2008), which drive these neu-

rons to fire more synchronously. The network therefore

needs a relatively smaller p to generate appropriate ran-

domness to maintain the best encoding performance for a

larger ss. On the other hand, a long synaptic time constant

with suitable small p also means that the synaptic currents

have enough intensity and suitable randomness, which are

able to accelerate the response speed of the network to the

external input current (Gerstner 2000). To a certain extent,

this will enhance the correlation between the inputs and

outputs of the network. For a high synaptic reliability, a

larger ss tends to evoke more synchronized or burst firings.

In this situation, the neural information cannot be better

read from the population firing rate. In Fig. 4b, we present

the numerical simulation results corresponding to the case

of strong noise (D = 2). Again, we observe that the

encoding enhancement phenomenon disappears. For a

fixed p, increasing the synaptic time constant can enhance

the propagation of false spikes, which are caused by strong

noise. As a result, the performance of the population rate

coding reduces as the synaptic time constant grows in this

case. Our above findings indicate that: (i) for weak noise,

fast synapses support ordinary encoding performance in the

whole parameter region, while slow synapses can support

high level of encoding performance but in narrow param-

eter region; (ii) for strong noise, slow synapses have the

tendency to purely reduce the encoding performance.
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Fig. 4 Effects of the synaptic time constant on the performance of the population rate coding. Results are obtained for D = 0.05 (a) and D = 2

(b), respectively. In all cases, other synaptic parameters are Dg ¼ 0:2 nS and k = 10
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Some persons might postulate that the encoding

dynamics in neuronal networks with unreliable synapses

can be simply determined by average amount of received

neurotransmitter for each neuron in a time instant, which

can be reflected by the produce of Dg � p: To check whether

this is true, we calculate the value of Q as a function of

Dg � p for different successful transmission probabilities at

different levels of noise. For a fixed D, it is obvious that

such postulate is true if all Q curves coincide with each

others. The numerically obtained results are plotted in

Fig. 5a, b, respectively. As we see, although the Q curves

exhibit the similar trend with the increasing of Dg � p; they

do not superpose in most parameter region for both strong

and weak noise. The results shown here clearly demonstrate

that the encoding performance of our considered network

can be not simply determined by the produce Dg � p or,

equivalently, by the average amount of received neuro-

transmitter for each neuron in a time instant. This may be

because the unreliability of the neurotransmitter release will

add randomness to the system. Since different values of

successful transmission probability will introduce different

levels of randomness, and this randomness might affect the

spiking dynamics of neurons, therefore the network may

show different encoding performance for different values of

p at a fixed Dg � p: It should be emphasized that this result

does not contradict our previous discussion, that is,

increasing Dg with p fixed has similar effect as increasing p

while keeping Dg fixed. This is due to the fact that the

Q curves for different successful transmission probabilities

show the similar trend as Dg � p is increased (see Fig. 5a, b).

Comparison with the corresponding random neuronal

networks

Up to now, we have systematically examined how unreli-

able synapses influence the performance of the population

rate coding in an all-to-all neuronal network consisting of

both the excitatory and inhibitory neurons connected with

unreliable synapses. We have also shown that, for different

levels of synaptic unreliability, the considered neuronal

networks with unreliable synapses may display different

encoding performance (but have the similar trend), even

when their average amount of received neurotransmitter for

each neuron in a time instant remains unchanged. In order

to further clarify the differences between the synaptic

unreliability and network randomness, we make compari-

sons on the encoding performance between our considered

neuronal network model (unreliable model) and a corre-

sponding random neuronal network (random model) in this

subsection.

We first introduce how to generate a corresponding

random neuronal network. Assume that there is an all-to-all

neuronal network consisting of N neurons coupled by

unreliable synapses with successful transmission proba-

bility p. A corresponding random neuronal network is

constructed by using the connection density p (on the

whole), that is, a unidirectional synapse exists between

each directed pair of neurons with probability p. As men-

tioned above, we also do not allow a neuron to be coupled

with itself. It is obvious that parameter p has different

meanings in these two different neuronal network models.

From the viewpoint of mathematical expectation, the

numbers of active synaptic connections taking part in

transmitting spikes in a time instant are the same in these

two different neuronal network models. In the corre-

sponding random neuronal network, neurons are also

simulated by using the IF neuron model, whereas the

synaptic interactions are implemented by using the tradi-

tional conductance-based model, i.e., removing the con-

straint of the synaptic reliability parameter from Eq. 5.

In Fig. 6a–c, we show several comparisons on the

encoding performance between our considered neuronal

network model and the corresponding random neuronal

network model for different noise intensities. Here we

manually set Dg ¼ 0:3 nS, ss = 5 ms, k = 10, and choose

D = 0.05, 0.2 and 2 for Fig. 6a–c, respectively. As we see,

changing the value of connection density in the random

model has the similar qualitative effect on the encoding
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Fig. 5 Dependence of the

encodingperformance Q on the

produce Dg � p: Results are

obtained for D = 0.05 (a) and

D = 2 (b), respectively. In all

cases, other synaptic parameters

are ss = 2 ms and k = 10
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performance as changing the value of successful trans-

mission probability in the unreliable model. However, we

find some interesting results in the weak noise regime.

In this case, the corresponding random neuronal network

obviously undergoes a slightly better encoding perfor-

mance, although the two different Q curves exhibit the

similar trend with the increasing of p. This is possible

because the long-time averaging effect of unreliable syn-

apses tends to make neurons fire more synchronous spikes.

With the increasing of D, we observe that the encoding

difference between these two neuronal network models

becomes smaller and smaller. For a sufficiently large noise

intensity, the difference becomes so small that the two Q

curves almost coincide with each other (for example

D = 2, see Fig. 6c). Theoretically, this is due to the fact

that the information from weak excitatory synaptic inter-

action is almost drowned in strong noise in this case. Our

results are further demonstrated by the data shown in

Fig. 6d.

On the other hand, we also find that the encoding dif-

ference between the unreliable model and random model

are largely influenced by the excitatory synaptic strength

and scale factor. For sufficiently strong network excitation

(large Dg and small k), it is observed that the encoding

difference between these two different neuronal network

models becomes significant (see k = 0 in Fig. 7a, b). This

is because strong excitation will lead to high firing rate of

neurons, thus resulting in much more different spiking

dynamics and encoding performance. Moreover, compared

to the case of weak network excitation shown in Fig. 7, we

see that there also exists significant encoding difference

between these two different network models in the strong

network excitation region even for strong noise intensity.

This is of no surprise, since for sufficiently strong network

excitation, the information due to strong excitatory syn-

aptic interaction has also great effect on the spiking

dynamics of neurons, thus leading to different encoding

performance.

Although form the above results we cannot conclude

that unreliable synapses have advantages and play specific

functional roles in encoding performance, at least it is

shown that the encoding performance in these two different

neuronal network models is different to a certain degree. In

reality, the neuronal network model considered in our work

can be roughly regarded as a local cortex. As we know,

signal propagation is a widespread phenomenon in the

brain and many higher cognitive tasks involve signal

propagation through multiple brain regions. Such encoding
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Fig. 6 Comparisons on the encoding performance between our

considered neuronal network (unreliable model) and the correspond-

ing random neuronal network (random model). (a–c): The value of

Q versus p for three typical noise intensities. Here D = 0.05 (a),

D = 0.2 (b), and D = 2 (c). d The value of Q as a function of D, with

p = 0.2. In all cases, we set Dg ¼ 0:3 nS, ss = 5 ms, k = 8
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difference for these two different network models should

be further accumulated and enlarged through the process of

neural activities transmission. According to above discus-

sions, we feel that it should be better not to simply use the

random connections to replace the unreliable synapses in

modelling research, especially when considering the net-

work has feedforward structure (Guo and Li 2011).

Conclusion and discussion

Information processing in biological neuronal networks

involves the process of spike transmission through syn-

apses. Thus, the synaptic dynamics will, at least to a certain

degree, determine how well the neural information is

encoded by the output of the neuronal network. So far,

most relevant computational studies only considered that

neurons transmit spikes based on the deterministic synaptic

interaction model. However, some experiments have

revealed that the communication between neurons more or

less displays the unreliable property (Abeles 1991; Fried-

rich and Kinzel 2009; Raastad et al. 1992; Smetters and

Zador 1996). The question as to what roles the unreliable

synapses play in the neural information encoding is still

unclear and requires investigation. It is reasonable and

worthwhile to use a heuristic unreliable synaptic model to

study this type of question.

In the present work, we investigated the population rate

coding in an all-to-all coupled neuronal network consisting

of the excitatory and inhibitory neurons connected with

unreliable synapses. By introducing a stochastic on-off

process to explicitly simulate the unreliable synaptic

transmission, we systematically examined how the synaptic

unreliability and other important synaptic parameters

influence the encoding performance in our considered

neuronal network. Interestingly, we found that a suitable

level of synaptic unreliability can enhance the performance

of the population rate coding for weak noise. While in the

case of strong noise, the synaptic interactions between

neurons purely have negative effects on the encoding

performance. Further simulation results indicated that the

encoding performance of our considered network depends

on several other important synaptic parameters, such as the

synaptic strength, scale factor, and synaptic time constant.

Better choosing the values of these synaptic parameters can

help our considered neuronal network maintain high levels

of encoding performance. The heuristic reasons for these

behaviors have been discussed in the present work.

Moreover, it was also found that encoding dynamics in

neuronal networks with unreliable synapses cannot be

simply determined by the average amount of received

neurotransmitter for each neuron in a time instant. For

different levels of synaptic unreliability, our considered

networks may display different encoding performance,

even when their average amount of received neurotrans-

mitter for each neuron in a time instant remains unchanged.

On the other hand, we compared the encoding performance

in our considered network with that in the corresponding

random neuronal network. Our simulation results sug-

gested that the network randomness has the similar effect

as the synaptic unreliability on the performance of the

population rate coding, but they are not completely

equivalent in quantity. This result tells us that it is better

(or more safe) not to simply use the random connections to

replace the unreliable synapses in modelling research,

especially if we consider the network having feedforward

structure.

In reality, our main finding that synapses with suitable

successful transmission probability can improve the

encoding performance of the considered neuronal network

in the weak noise region might be related to a well known

phenomenon called stochastic resonance (SR) (Collins
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Fig. 7 Effect of the successful transmission probability and scale

factor on the encoding difference for the unreliable model and random

model. Here ‘U’ denotes the unreliable model and ‘R’ denotes the

random model. System results are obtained for D = 0.05 (a) and

D = 2 (b), respectively. In all cases, other system parameters are

ss = 5 ms, k = 10 and p = 0.1
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et al. 2002; Wenning and Obermayer 2003; Destexhe and

Contreras 2006; Guo and Li 2009). Theoretically, SR refers

to a phenomenon that an appropriate intermediate level of

noise makes a nonlinear dynamical system reach its opti-

mal response to external inputs. As we discussed above, the

unreliability of neurotransmitter release will add a certain

of randomness to the neural system. Therefore, in the case

of weak noise, suitable synaptic transmission probability

might provide appropriate additional randomness to help

the considered system trigger the SR mechanism and

enhance its encoding performance. Notice that it is not

surprised that we could not observe the similar result in the

strong noise region, because in this case the noise current

itself has already exceeded the optimal noise level for

triggering SR.

The neuronal network model we considered in this work

is an all-to-all coupled recurrent network model used to

study the population rate coding. In fact, such model can be

roughly regarded as a local cortex. We have shown that, in

principle, the unreliable synapses might have significant

effects on the performance of the population rate coding. In

additional simulations, we have demonstrated that the

similar results can be also observed in large scale neuronal

networks. Since the communication between real neurons

indeed exhibits the unreliable property, we believe that

these results are able to improve our understanding about

the effects of biological synapses on the population rate

coding. In real neural systems, we anticipate that neurons

may make full use of the properties of unreliable synapses

to enhance the encoding performance in the weak noise

region, and also suggest physiological experiments to test

the results. Further work on this topic includes studying the

effects of unreliable synapses on other types of neural

coding, for example the synchrony coding, examining the

information transmission capability of neuronal networks

with unreliable synapses through the information-theoretic

analysis (Zador 1998; Manwani and Koch 2000), as well as

considering the roles of unreliable synapses in neuronal

networks with complex topology structures, such as the

random neuronal networks, small-world neuronal networks

(Watts and Strogatz 1998; White et al. 1986; Sporns et al.

2004; Stam 2004; Humphries et al. 2006; Guo and Li

2010), and neuronal networks with community structure.

Acknowledgments We gratefully acknowledge Ying Liu, Qiuyuan

Miao, and Qunxian Zheng for valuable comments on an early version of

this paper. We also sincerely thank Yuke Li and Qiong Huang for

helping us run simulations. This work is supposed by the National

Natural Science Foundation of China (Grant No. 60871094 &

61171153), the Foundation for the Author of National Excellent Doc-

toral Dissertation of PR China, the Scientific Research Foundation for

the Returned Overseas Chinese Scholars and the Fundamental Research

Funds for the Central Universities (Grant No. 2010QNA5031). Daqing

Guo would also like to thank the award of the ongoing best PhD thesis

support from the University of Electronic Science and Technology of

China.

References

Abeles M (1991) Corticonics: neural circuits of the cerebral cortex.

Cambridge Uinversity Press, New York

Allen C, Stevens CF (1994) An evaluation of causes for unreliability

of synaptic transmission. Proc Natl Acad Sci USA 91(22):

10380–10383

Branco T, Staras K (2009) The probability of neurotransmitter

release: variability and feedback control at single synapses. Nat

Rev Neurosci 10:373–383

Brunel N, Chance FS, Fourcaud N, Abbott LF (2001) Effects of

synaptic noise and filtering on the frequency response of spiking

neurons. Phys Rev Lett 86(10):2186–2189

Collins JJ, Chow CC, Imhoff TT (2002) Stochastic resonance without

tuning. Nature 376:236–238

Dayan P, Abbott LF (2001) Theoretical neuroscience: computaional

and mathematical modeling of neural systems. MIT Press,

Cambridge

Destexhe A, Contreras D (2006) Neuronal computations with

stochastic network states. Science 314(5796):85–90

Friedrich J, Kinzel W (2009) Dynamics of recurrent neural networks

with delayed unreliable synapses: metastable clustering. J Com-

put Neurosci 27(1):65–80

Friston KJ (1997) Another neural code? Neuroimage 5(3):213–220

Gerstner W (2000) Population dynamics of spiking neurons: fast

transients, asynchronous states, and locking. Neural Comput

12(1):43–89

Gerstner W, Kistler WM (2002) Spiking neuron models: single

neruons, populations, plasticity. Cambridge University Press,

Cambridge

Goldman MS (2004) Enhancement of information transmission

efficiency by synaptic failures. Neural Comput 16(6):1137–1162

Goldman MS, Maldonado P, Abbott LF (2002) Redundancy reduction

and sustained firing with stochastic depressing synapses. J Neu-

rosci 22(2):584–591

Guo D, Li C (2009) Stochastic and coherence resonance in feed-

forward-loop neuronal network motifs. Phys Rev E 79(5):051921

Guo D, Li C (2010) Self-sustained irregular activity in 2-D small-

world networks of excitatory and inhibitory neurons. IEEE Trans

Neural Netw 21(6):895–905

Guo D, Li C (2011) Signal propagation in feedforward neuronal

networks with unreliable synapses. J Comput Neurosci

30(3):567–587

Humphries MD, Gurney K, Prescott TJ (2006) The brainstem

reticular formation is a small-world, not scale-free, network.

Proc R Soc B 273(1585):503–511

Kandel E, Schwartz J, Jessel TM (1991) Principles of neural science.

Elsevier Press, New York

Katz B (1966) Nerve, muscle and synapse. McGraw-Hill Pliblica-

tions, New York

Katz B (1969) The release of neural transmitter substances. Liverpol

University Press, Liverpool

Kestler J, Kinzel W (2006) Multifractal distribution of spike intervals

for two oscillators coupled by unreliable pluses. J Phys A

39(29):461–466

Kloeden PE, Platen E, Schurz H (1994) Numerical solution of SDE

through computer experiments. Springe, Berlin

Kumar A, Schrader S, Aertsen A, Rotter S (2008) The high-

conductance state of cortical networks. Neural Comput 20(1):

1–43

86 Cogn Neurodyn (2012) 6:75–87

123



Kumar A, Rotter S, Aertsen A (2010) Spiking activity propagation in

neuronal networks: reconciling differentperspectives on neural

coding. Nat Rev Neurosci 11:615–627

Li C, Zheng Q (2010) Synchronization of small-world neuronal

network with unreliable synapses. Phys Biol 7(3):036010

Maass W, Natschlaeger T (2000) A model for fast analog compu-

tation based on unreliable synapses. Neural Comput 12(7):1679–

1704

Manwani A, Koch C (2000) Detecting and estimating signals over

noisy and unreliable synapses. Neural Comput 13(1):1–33

Masuda N, Aihara K (2003) Duality of rate coding and temporal spike

coding in multilayered feedforward networks. Neural Comput

15(1):103–125

Masuda N, Doiron B, Longtin A, Aihara K (2005) Coding of

temporally varying signals in networks of spiking neurons with

global delayed feedback. Neural Comput 17(10):2139–2175

Mazurek ME, Shadlen MN (2002) Limits to the temporal fidelity of

cortical spike rate signals. Nat Neurosci 5:463–471

Mejias JF, Torres JJ (2009) Maximum memory capacity on neural

networks with short-term synaptic depression and facilitation.

Neural Comput 21(3):851–871

Natschlaeger T, Maass W (1999) Fast analog computation in

networks of spiking neurons using unreliable synapses. In:

ESANN’99 proceedings of the European symposium on artificial

neural networks. Bruges, Belgium, pp 417–422

Raastad M, Storm JF, Andersen P (1992) Putative single quantum and

single fibre excitatory postsynaptic currentsshow similar ampli-

tude range and variability in rat hippocampal slices. Eur J

Neurosci 4(1):113–117

Rosenmund C, Clements JD, Westbrook GL (1993) Nonuniform

probability of glutamate release at a hippocampal synapse.

Science 262(5134):754–757

Smetters DK, Zador A (1996) Synaptic transmission: noisy synapses

and noisy neurons. Curr Biol 6(10):1217–1218

Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization,

development and function of complex brain networks. Trends

Cogn Sci 8(9):418–425

Stam CJ (2004) Functional connectivity patterns of human magne-

toencephalographic recordings: a ‘small-world’ network. Neu-

rosci Lett 355(1–2):25–28

Stevens CF, Wang Y (1995) Facilitation and depression at single

central synapses. Neuron 14(4):795–802

Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M

(2008) Dependence of neuronal correlations on filter character-

istics and marginal spike-train statistics. Neural Comput 20(9):

2133–2184

Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human

visual system. Nature 381:520–522

Thorpe S, Delorme A, VanRullen R (2001) Spike-based strategies for

rapid processing. Neural Netw 14(6–7):715–726
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